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The research and investigation on the removal of polycyclic aromatic hydrocarbons 

(PAHs) with high concentration (10000µg/L) in constructed wetlands under field 

conditions has not been explored prior to this. Hence, in this study, Horizontal 

Subsurface Flow Constructed Wetland (HSFCWs) was used to remove three 

polycyclic aromatic hydrocarbons. The synthetic PAHs that were used in the 

experiments include Phenanthrene, Pyrene, and Benzo [a]Pyrene in percentages that 

reflected their actual contents in the industrial wastewater. The CWs sustainable 

treatment technique incorporates two plants namely Phragmites Karka (Phragmites) 

and Vetiver Zizanioides (Vetiver) where they were tested for their ability in PAHs 

tolerance and uptake in pot experiments for 20 days using two different concentrations 

(2500 and 10000µg/L). Then, it was followed by treatment of high PAHs 

concentration (10000µg/L) using eight Horizontal Subsurface Flow Constructed 

Wetland (HSFCWs), each with dimensions of (length=90cm x width=30cm x 

depth=50cm) and planted with Phragmites and Vetiver. While, the other twelve 

constructed wetlands were smaller in size (length = 45cm, width = 15cm and height = 

30cm) and were used mainly to replace plants in the big CWs after sampling. The 

experiments on the CWs were conducted to measure plant growth, PAHs 

concentration in plants, PAHs removal efficiency, accumulation of PAHs in the soil 

of CW, and lipid effect on PAHs accumulation during sampling days according to a 

predetermined pattern (7, 14, 28, 42, and 72 days). The quantitative analysis of PAHs 

concentration was conducted by GC-FID. The mass balance technique was conducted 

to determine the distribution pathways of PAHs in HSFCWs. The effect of PAHs on 

the surface structure of different parts of Phragmites and Vetiver was investigated by 

using scanning microscopy. The capacity of the HSFCWs to address the wastewater 

contaminated with PAHs was modelled by using multiple regression stepwise method. 

The results revealed that the growth parameter was significantly different among the 

two plants. The highest concentrations of three PAHs were found to be in Phragmites 
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shoot and root system with 229µg/g and 192µg/g, for Phenanthrene, 69µg/g and 

59µg/g for Pyrene, and 25µg/g and 20µg/g for Benzo [a]Pyrene respectively. While 

the greatest concentrations of the same compounds in the Vetiver shoot and root 

systems were 88µg/g and 64µg/g for Phenanthrene, 63µg/g and 42µg/g for Pyrene, 

and 21µg/g and 27µg/g for Benzo[a]Pyrene respectively. The maximum difference in 

removal rates between planted constructed wetland and unplanted constructed wetland 

was found to be 21% Phenanthrene, 13% Pyrene, and 30% Benzo[a]Pyrene. Both 

selected plants demonstrated high tolerance, uptake, and accumulation of PAHs in 

different proportions. The HSFCWs planted with Phragmites showed high removal 

capacity of PAHs than other HSFCWs. Under scanning electron microscopy some 

notable changes were observed in the internal composition of both plants. The mass 

balance calculations of the HSFCWs provided a clear picture of the key constructed 

wetland processes and helped to identify the components that are most important for 

PAHs treatment using HSFCW. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PENYINGKIRAN HIDROKARBON AROMATIK POLISIKLIK TERPILIH 

MENGGUNAKAN Phragmites DAN Vetiver DALAM TANAH BENCAH 

BUATAN ALIRAN SUBPERMUKAAN MENDATAR 

Oleh 

RABIA DAW ALI 

Julai 2020 

Pengerusi :   Profesor Madya Salmiaton binti Ali, PhD 

Fakulti :   Kejuruteraan 

Penyelidikan dan penyiasatan terhadap penyingkiran hidrokarbon aromatik polisiklik 

(PAH) dengan kepekatan tinggi (10000µg/L) dalam tanah bencah buatan dalam 

keadaan lapangan belum pernah diterokai secara mendalam sebelum ini. Oleh itu, 

dalam kajian ini, Tanah Bencah Buatan Aliran Subpermukaan Mendatar (HSFCWs) 

digunakan untuk menyingkirkan tiga hidrokarbon aromatik polisiklik. PAH sintetik 

yang digunakan dalam eksperimen ini termasuklah Phenanthrene, Pyrene, dan Benzo 

[a]Pyrene dalam peratusan yang mencerminkan kandungan sebenar dalam air sisa 

industri. Teknik rawatan lestari CW menggabungkan dua tumbuhan iaitu Phragmites 

Karka (Phragmites) dan Vetiveria Zizanioides (Vetiver) di mana tumbuhan tersebut 

digunakan diuji kemampuan mereka dalam toleransi PAH dan pengambilan PAH 

dalam eksperimen tanaman pasu selama 20 hari menggunakan dua kepekatan berbeza 

(2500 dan 10000µg/L). Proses ini diikuti dengan rawatan kepekatan PAH tinggi 

(10000µg/L) menggunakan lapan tanah bencah buatan aliran subpermukaan mendatar 

(HSFCWs), masing-masing dengan dimensi (panjang = 90cm x lebar = 30cm x 

kedalaman = 50cm) yang ditanam dengan Phragmites dan Vetiver. Dua belas tanah 

bencah buatan yang lain adalah lebih kecil ukurannya (panjang = 45cm, lebar = 15cm 

dan tinggi = 30cm) dan digunakan terutamanya untuk menggantikan tanaman di CW 

besar selepas penyampelan. Eksperimen pada CW dilakukan untuk mengukur 

pertumbuhan tanaman, kepekatan PAH dalam tanaman, kecekapan penyingkiran 

PAH, pengumpulan PAH di dalam tanah CW, dan kesan lipid ke atas pengumpulan 

PAH semasa hari penyampelan mengikut sela masa yang telah ditentukan (7, 14, 28, 

42, dan 72 hari). Analisis kuantitatif kepekatan PAH dilaksanakan oleh GC-FID. 

Teknik keseimbangan jisim dilakukan untuk menentukan laluan pengedaran PAH 

dalam HSFCWs. Kesan PAH terhadap struktur permukaan bahagian yang berbeza 

Phragmites and Vetiver disiasat dengan menggunakan mikroskopi pengimbas. 

Kapasiti HSFCW dalam menangani air sisa tercemar dengan PAH dimodelkan 

menggunakan kaedah berperingkat regresi berganda. Hasil kajian menunjukkan 

bahawa parameter pertumbuhan sangat berbeza di antara kedua tanaman tersebut. 
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Kepekatan tertinggi tiga PAH didapati dalam sistem pucuk dan akar Phragmites 

dengan 229µg/g dan 192µg/g, untuk Phenanthrene, 69µg/g dan 59µg/g untuk Pyrene, 

dan 25µg/g dan 20µg/g untuk Benzo [a] Pyrene masing-masing. Manakala kepekatan 

yang paling hebat untuk kompaun yang sama pada sistem pucuk dan akar Vetiver 

adalah 88µg/g dan 64µg/g untuk Phenanthrene, 63µg/g dan 42µg/g untuk Pyrene, dan 

21µg/g dan 27µg/g untuk Benzo [a] Pyrene masing-masing. Perbezaan maksimum 

dalam kadar penyingkiran antara tanah bencah buatan dengan tanaman dan tanah 

bencah buatan tanpa tanaman didapati 21% Phenanthrene, 13% Pyrene, dan 30% 

Benzo [a] Pyrene. Kedua-dua tanaman terpilih menunjukkan toleransi yang tinggi, 

sementara pengambilan dan pengumpulan PAH pula dalam perkadaran yang berbeza. 

HSFCW yang ditanam dengan Phragmites menunjukkan kapasiti penyingkiran PAH 

yang tinggi berbanding dengan HSFCW yang lain. Di bawah mikroskopi elektron 

pengimbas, terdapat beberapa perubahan ketara dalam komposisi dalaman kedua-dua 

tumbuhan tersebut. Pengiraan keseimbangan jisim HSFCW memberikan gambaran 

yang jelas untuk proses tanah bencah buatan dan membantu dalam mengenalpasti 

komponen yang paling penting untuk rawatan PAH menggunakan HSFCW. 
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CHAPTER 1 

1       INTRODUCTION 

1.1 Background 

Industrialisation contributes towards negative environmental casualties such as 

pollution, global warming and many other adverse impacts. The rapid increase in 

industrialisation over the last century has led to elevated releases of anthropogenic 

chemicals into the environment. Consequently, there is a group of substances called 

polycyclic aromatic hydrocarbons (PAHs) which are the results of contamination in 

almost all environmental resources. Particularly, in the industrial zones where 

petrochemical and petroleum refinery industries are located, as these are the main 

sources of PAHs releases. In general, PAHs characteristics are very harmful as they 

are toxic, mutagenic and carcinogenic organic compounds, and will increase in 

ecotoxicity with increasing in molecular weight of PAHs (Liu et al., 2016), and hence 

must be remove from the environment.  

The PAH family pollutants have been found in different water bodies all over the 

world, and these compounds pose, even at very low concentrations, a great threat to 

ecological and human health due to their benzene structures (Muff & Søgaard, 2010). 

PAHs are listed as US-EPA and EU priority pollutants, and their concentrations, 

therefore, need to be controlled. However, only 16 are currently being monitored by 

US-EPA and the Environmental Commission of European Community (Manoli et al., 

2000). PAHs are hydrophobic compounds, which means that once they enter into the 

water systems it will be difficult to remove through conventional methods, as PAHs 

are persistent, and non-reactive in the water mainly due to their low water solubility 

and are part of numerous organic contaminants that are persistent in the environment. 

In addition, PAH are ubiquitous in the environment, have long transport potential and 

can cause adverse environmental effects (Abdel-Shafy et al., 2016). 

One of the major threats and main issue that is impacting the water quality today is 

chemical pollution, especially organic challenges which need to be addressed because 

it includes hundreds of compounds. Among those are hydrocarbon compounds, which 

are found mostly in industrial effluents, and they can impose a significant threat to the 

environment and humans. Due to the toxic, mutagenic and carcinogenic natures of 

PAHs, numbers of methods such as physical, chemical, thermal, biological, surfactant 

enhanced, phytoremediation and combined technology (constructed wetland) have 

been developed in order to remove PAHs from contaminated soil, sediment and water 

(Al-Sbani et al., 2016; He et al. 2014; Li et al.2014; Li et al., 2015; Peng et al., 2015; 

Sun et al., 2014; Wang et al. 2014; Xu et al., 2016; Yi et al.,2016; Zhou et al., 2013).  

Constructed wetland (CW) treatment systems are eco-friendly technologies that mimic 

the function of natural wetland to improve water quality together with cost-effective 
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method, simple operation guide and more sustainable technique (Chen et al., 2014; 

Vymazal, 2013; Wu et al., 2013). These eco-technologies offer direct and indirect 

potential benefits to society such as improving the controlling point and non-point 

water pollution, cleaning water to acceptable discharge levels, and protecting abiotic 

and biotic source as well as ecological balance in the ecosystems (Vymazal and 

Kropfelova, 2008). Therefore, there is little surprise that the research applications of 

wastewater purification by CWs have dramatically increased in the recent years in the 

scientific literatures (Wu et al., 2014). Moreover, there are a number of successful 

applications of CWs for the removal of PAH (Cottin & Merlin, 2008; Kang et al., 

2018; Warężak et al., 2015). 

The Horizontal Subsurface Flow Constructed Wetland (HSFCWs) beds are the most 

widely applied CW systems due to its strong advantages which uses simple 

technology, reliable operating conditions and excellent potential to remove moderate 

loads of pollutants. The removal rates and performance of HSFCW may vary over 

time and space and are dependent on multiple factors such as influent wastewater 

characteristics and wetland plants. Wetland plants are an integral part of those systems 

and the literature is rich with reports suggesting that plants have a positive role in the 

removal of pollutants in constructed wetlands through sophisticated interaction of 

plants with water body, media and microorganism (Chen et al., 2014; Leto et al., 2013; 

Mesquita et al., 2013; Türker et al., 2016). 

The presence of vegetation in CWs has several functions in relation to the treatment 

process such as the provision of substrates for the growth of attached bacteria, the 

release of oxygen and exudates, uptake of nutrients, surface insulation and wind 

velocity reduction ( Vymazal, 2013). Overall, there is plenty of evidence indicating 

that planted CWs are more efficient to remove hydrocarbon compounds with low 

concentrations as compared with unplanted CWs (Al-Baldawi et al., 2014; 

Braeckevelt et al., 2008; Mothes et al., 2010).  

1.2 Problem Statement 

The presence of polycyclic aromatic hydrocarbons in the environment (air, soil, and 

water) with concentrations higher than the required environmental standards poses a 

significant risk to the ecosystem and human health (Yang et al., 2015). Many 

researchers had reported that the concentrations of PAHs in wastewater of several 

industries had exceeded permissible limits which was set by the environment 

standards (Al Zarooni and Elshorbagy, 2006; Oh et al., 2016; Sponza and Oztekin, 

2010). Regardless of the sources of these pollutants, whether they are pyrogenic or 

petrogenic, these problems need to be overcome at their sources.  

In many countries, modern sewage treatment systems have been used successfully for 

pollution control (Li et al., 2014). However, application of these techniques for 

wastewater treatment that include membrane separation, adsorption material, solvent 

extraction incineration, photocatalysis, and ultrasonic is rather expensive and requires 
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sophisticated heavy machinery, high energy consumption and could cause massive air 

pollution (Zheng et al., 2013). Nevertheless, other treatment approaches are still 

limited and insufficient to comply with stringent water and sanitation standards (Wu 

et al., 2013).  

Therefore, other sustainable methods are urgently required in order to remove a high 

concentration of PAHs from wastewater which include methods like natural or 

constructed wetlands. There are many advantages associated with using constructed 

wetlands (CWs) such as low construction and maintenance costs, environmentally 

friendly, sustainable, and easy to operate when compared to the conventional 

wastewater treatment technologies (Puigagut et al., 2008). Constructed wetlands for 

treating polycyclic aromatic hydrocarbon have been investigated by a large number of 

studies such as (Anderson, 2013; Fountoulakis et al., 2009; Terzakis et al., 2008; Wang 

et al., 2014), however, the effectiveness of constructed wetlands in treating industrial 

wastewater with only low PAHs concentrations by using wetland plants were limited.  

In CWs, plants play an important role in treatment processes and polishing the quality 

of treated wastewater (Ko et al., 2011; Liu et al., 2012 and Al-Sbani et al., 2016). 

However, no information was available in regards to the plant's tolerance and uptake 

in CWs that are subjected to high concentrations of PAHs. The effects of wastewater 

contaminated with PAHs on wetland plant morphologies such as Phragmites and 

Vetiver were found missing in the literature. The mass balance technique for analyzing 

the distribution of PAHs concentrations in various components of the constructed 

wetland systems is one of the gaps that was identified from the literature. In addition, 

there is lacking in the mathematical model for predicting the concentrations of various 

PAHs components in the effluent of the constructed wetland that is used for treating 

high strength industrial wastewater. 

In this study, the synthetic wastewater with low and high concentrations (2500 and 

10000µg/L) of three compounds of PAHs will be treated using constructed wetland 

models. These concentrations were selected to reflect the actual concentrations in the 

industrial wastewater effluent from petroleum refineries and petrochemical industries. 

Synthetic industrial wastewater which contain PAHs is prepared based on their 

presence in actual industrial wastewater with ratios of 74.61% for Phenanthrene, 

17.11% for Pyrene and 8.28% for Benzo[a]Pyrene (Lu et al., 2013; Sponza & Oztekin, 

2010). The investigation will be done to find out the removal efficiency of PAHs, plant 

uptake, PAHs accumulation in CWs soil, and lipid effect on PAHs accumulation in 

horizontal subsurface flow constructed wetlands (HSFCWs). The effects of PAHs on 

the surface structure of different parts of Phragmites and Vetiver as wetland plants 

will be evaluated using SEM and EDX. The contributions of different PAHs removal 

pathways in CWs will be quantified based on the mass balance technique. While, the 

multiple regression stepwise method will be used for modeling the capacity of the 

constructed wetland to address the contaminated wastewater with high PAHs 

concentration (10000µg/L). Initial hypothesis outlined that constructed wetland with 

the horizontal subsurface flow and presence of the plants would significantly treat a 

high concentration of PAHs in contaminated wastewater. While, the null hypothesis 
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was that constructed wetland with the horizontal subsurface flow would not address a 

high concentration of PAHs  

1.3 Research Objectives 

The main objective of the current study is to assess the performance of a horizontal 

sub-surface flow constructed wetland system with two plants (Phragmites and 

Vetiver) used for treating polycyclic aromatic hydrocarbons (PAHs) that exist in 

industrial wastewater. While, the specific objectives of this study are outlined as 

follows:  

1. To examine in detail the two wetland plants, namely Phragmites Karka and

Vetiver Zizanioides for their ability to tolerate and uptake low and high

concentrations (2500 and 10000µg/L) of PAHs in industrial wastewater.

2. To evaluate the capability of horizontal sub-surface flow constructed

wetlands (HSFCWs) in treating contaminated wastewater with a high

concentration (10000µg/L) of PAHs using two plants, Phragmites and

Vetiver.

3. To investigate the pathway of PAHs in constructed wetlands based on the

components of constructed wetlands using mass balance calculations, the

PAH's effect on the surface structure of different parts of Phragmites and

Vetiver, and the capacity model of the constructed wetland.

1.4 Significance of the Study 

This study will help tremendously in addressing the issue of wastewater contaminated 

with high concentration of polycyclic aromatic hydrocarbons (PAHs) through the use 

of eco-friendly method of constructed wetlands. The significance of the study can be 

summarized as:  

1. In this study, low and high concentrations of PAHs (2500 and 10000µg/L)

were used in early-stage pot experiments to test two species of wetland plants

namely, Phragmites and Vetiver for their ability to tolerate and uptake of

PAHs from synthetic wastewater to used in the constructed wetland models.

The concentrations were selected based on a literature review that examined

wastewater sources for PAHs compounds. Three compounds were

specifically selected in these concentrations in different proportions (74.61%,

for Phenanthrene, 17.11% for Pyrene and 8.28% for Benzo[a]Pyrene), owing

to their high presence in wastewater and each represented a group of

polycyclic aromatic hydrocarbons with different properties.

2. The models of the horizontal sub-surface flow constructed wetlands

(HSFCWs) with two selected plants were examined for their efficiency in

treating contaminated wastewater with high concentrations of PAHs.
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3. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) 

were used to examine the effects of the PAHs on the surface structure of 

different parts of Phragmites and Vetiver.   

4. The contributions of different PAHs removal pathways in CWs were 

quantified by using the multiple regression stepwise method, the model of 

constructed wetlands that gave the best removal of three PAHs compounds 

was recommended. 

 

 

1.5 Scope and Limitation of Research 

This study mainly focuses on achieving the stated objectives by addressing the 

sustainable treatment of wastewater contaminated with high concentration of 

polycyclic aromatic hydrocarbons (PAHs) (10000µg/L) using constructed wetlands. 

The main limitations of the study are: 

1. The effects of microorganisms as earlier documented in other researchers 

(Al-Baldawi et al., 2015; Al-sbani et al., 2016), and also the volatilization of 

PAH studied by Nesterenko-Malkovskaya et al. (2012) are not covered. 

2. The plants' density and the aeration effects that were studied earlier by (Al-

Baldawi et al., 2013; Liu et al., 2014) are not being considered. The 

horizontal subsurface flow constructed wetlands (HSFCW) is the only 

system being considered for the treatment in this study, with two wetland 

plants, namely Phragmites and Vetiver and unplanted system.  

3. In this study, Phragmites and Vetiver were selected based on specific 

justifications such as resistance to contaminants, tolerance to environmental 

conditions, large biomass, fibrous root system, and a large root surface area. 

4. This study had utilized eight plant pots for the first experiments and 20 pilots 

(HSFCW) for the second experiments, where two days theoretical hydraulic 

retention time was considered with hydraulic loading rate of 9.87 L/d, while 

the soil type was loamy. 

5. The loading rate of three PAHs was 10000µg/L, percentage of the three 

compounds  in the synthetic wastewater were 74.61% for Phenanthrene, 

17.11% Pyrene and 8.28% Benzo[a]Pyrene and the percentages of these 

components were  prepared according to the recommendations of earlier 

researchers  (Lu et al., 2013; Sponza & Oztekin, 2010). 
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1.6 Organization of Thesis 

This thesis was structured and arranged into five chapters 

Chapter One entails the introduction and overview of the research study, the 

background information on the removal of PAHs from wastewater using constructed 

wetlands, research objectives, significance of research, and the scope and limitations 

of the study. 

Chapter Two enumerates recent related works from the reviewed literature that relates 

to polycyclic aromatic hydrocarbons (PAHs), constructed wetland (CW), wetland 

plants, SEM for plants, the mass balance of PAHs in CWs, and multi regression with 

a stepwise method for models of CW. 

Chapter Three contains the methodology of the research procedures, starting with the 

measurement of plants growth parameters, PAHs extraction analysis, removal 

efficiency, statistical analysis, scanning electron microscopic studies, PAH mass 

balance in CWs equation, and stepwise multiple regression to predict the dissipation 

of PAHs in CWs. 

Chapter Four includes the results and discussions from the experiments and the 

implication divulged accordingly. 

Chapter Five presents the conclusions of the research study by highlighting the novelty 

of the research study as well as considering the implication of the achieved result on 

the proposed objectives and recommend some potential future researches areas. 
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