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ABSTRACT

Elliptic net scalar multiplication (ENSM) is a recent trend in cryptogra-
phy. The �rst ENSM was constructed using short Weierstrass's division
polynomials over a prime �eld. However, the ENSM over binary �eld is
unknown. Hence, this study proposes a scalar multiplication via elliptic
net upon Koblitz curves over binary �eld. The objectives outlined in
this study are to investigate the relationships between division polyno-
mials, elliptic divisibility sequences, and two types of Koblitz curve over
binary �eld. Additionally, this study looked into the new relationship es-
tablished between elliptic net and its scalar multiplication. The explicit
formulae for ENSM are proposed and their computational costs of �eld
operations are evaluated and discussed.

Keywords: Binary �eld, elliptic net, point, scalar multiplication, Weier-
strass curve.
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1. Introduction

Since year 1948, the relations between linear and non-linear recurrences
have intrigued researchers. Some discrete logarithm-based cryptosystems can
be transformed into an analogue cryptosystem by using a linear recurrence
cipher for security reasons and break impasse. For instance, the ElGamal
cryptosystem was improvised to LUCELG by Smith and Skinner (1994), while
the Cramer-Shoup was upgraded to LUCCS by Muslim and Said (2009).

The elliptic net of rank one was de�ned by Ward (1948) as an elliptic di-
visibility sequence. After studying the non-linear recurrence theory by Shipsey
(2000), Stange (2008) introduced a mapping from a �nite rank Abelian group
to an integral domain R, which was then called an elliptic net. Since then,
elliptic net upon Weierstrass with its higher rank has been applied to compute
Tate and r-Ate pairing, see Ogura et al. (2011). The literature depicts the
ability of non-linear recurrence relations (also known as �elliptic divisibility se-
quence� in the elliptic net) to aid cryptographic pairing as a computation tool.
Furthermore, the same elliptic net method has been used to compute multiple
of points, see Kanayama et al. (2014) and Chen et al. (2017). Previous studies
have also discussed elliptic net upon short Weierstrass curve and its applica-
tion, including scalar multiplication in detail by Muslim and Said (2017, 2018a)
and Muslim and Said (2018c).

The primary purpose of this paper is to study ENSM upon Koblitz curves.
The study outcomes are meant to verify the correlations between elliptic net,
division polynomials, and Koblitz curves. These correlations, along with the
coordinates of multiple point P = (x, y) on the two types of Koblitz curves,
form an elliptic divisibility sequence that was used to construct ENSM.

Section 2 presents a review pertaining to the Weierstrass equation and its
division polynomials, followed by a review on elliptic net via Weierstrass. Sec-
tion 3 proposes the initial division polynomials and their relationships with the
two Koblitz curve forms. Then, the novel scalar multiplication via elliptic net
is depicted in Section 4, along with an analysis of the cost of �eld operations.
The �nal section concludes the study outcomes.

2. Preliminaries

This section presents several signi�cant concepts that had been applied
throughout this study.
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2.1 Elliptic Curve Weierstrass and Division Polynomials

The following Weierstrass equation Silverman (1986) was introduced as an
elliptic curve E for a set of algebraic solutions with y2 = x3+ax+ b, such that

E : y2 + b1xy + b3y = x3 + b2x
2 + b4x+ b6. (1)

Generally, Equation (1) has the expression of d2 = b21+4b2, d4 = 2b4+b1b3, d6 =
b23 + 4b6, d8 = b21b6 + 4b2b6 − b1b3b4 + b2b

2
3 − b24 and discriminant D = −d22d8 −

8d34 − 27d26 + 9d2d4d6, with several auxiliary polynomials denoted by

ϕn = xψ2
n − ψn+1ψn−1 (2)

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1. (3)

Note that Equations (2) and (3) are works for n ≥ 2.Meanwhile, the division
polynomials of ψn with n ≥ 2 will satisfy that

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 (4)

and for n ≥ 3,
2yψ2n = ψn

(
ψn+1ψ

2
n−1 − ψn−2ψ

2
n+1

)
. (5)

The set of division polynomials ϕn, ψn and ωn for short Weierstrass can be
written as coordinates pair as follows:

[n]P = (xn, yn) =

(
ϕn (P )

ψ2
n (P )

,
ωn (P )

ψ3
n (P )

)
. (6)

2.2 Elliptic Net upon Weierstrass

The following theorem represents a �nitely-generated free Abelian group,
see Zomorodian (2005).

Theorem 1. Let A be a nonzero free Abelian group of �nite rank n and K be
a nonzero subgroup of G. Then K is a free Abelian of rank s ≤ n and there
exists a basis {x1, x2, ..., xn} for A and d1, d2, ..., ds ∈ Z+ where di|di+1 for
i = 1, 2, ..., s− 1 such that d1x1, d2x2, ..., dsxs is a basis for K.

The de�nition of elliptic divisibility sequence was generalized by Stange (2008)
to the n-dimensional array, called elliptic net as follows:
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De�nition 1. Consider A as a �nitely-generated and free group of Abelians
with D be an integral domain. Any map Ŵ : A → D is an elliptic net where
Ŵ (0, 0) = 0 and such that for all j, k, t, u ∈ A,

Ŵ (j + k + u) Ŵ (j − k) Ŵ (t+ u) Ŵ (t) + Ŵ (k + t+ u) Ŵ (k − t)
Ŵ (j + u) Ŵ (j) + Ŵ (t+ j + u) Ŵ (t− j) Ŵ (k + u) Ŵ (k) = 0.

2.2.1 Properties of Elliptic Net Weierstrass

Consider a point P = (x1, y1) from a short Weierstrass in the form of
y2 = x3 + ax + b over a prime �eld Fp with initial values of Ŵ (0, 0) = 0 and

Ŵ (1, 0) = 1, wherein several essential properties of rank-one elliptic net can be
generated by

Ŵ (2, 0) = 2y1 (7)

Ŵ (3, 0) = 3x41 + 6ax21 + 12bx1 − a2 (8)

Ŵ (4, 0) = 4y1
(
x61 + 5ax41 + 20bx31 − 5a2x21 − 4abx1 − 8b2 − a3

)
. (9)

From the above formula, Equations (7) � (9) are required to initialise the rank-
one elliptic net. To calculate the next term of the elliptic net, i.e. Ŵ (5, 0) , we
use Equation (4) with n = z = 2 to arrive at the following equation:

Ŵ (5, 0) = Ŵ (4, 0) Ŵ 3 (2, 0)− Ŵ 3 (3, 0) Ŵ (1, 0) . (10)

Similarly, Equation (5) is required to calculate Ŵ (6, 0) such that n = z = 3
and the elliptic net is derived by

Ŵ (6, 0) =
Ŵ (3, 0)

(
Ŵ (5, 0) Ŵ 2 (2, 0)− Ŵ (1, 0) Ŵ 2 (4, 0)

)
Ŵ (2, 0)

. (11)

The methods applicable in Equations (10) and (11) are known as double and
double-add.

3. Methodology

3.1 Koblitz Curves and Division Polynomials

From Equation (1), Koblitz (1991) introduced two common types of curves
called non-supersingular and supersingular curves in F2m . These curves are
denoted in the following equations:

E : y2 + b1xy = x3 + b2x
2 + b6 (12)
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E : y2 + b3y = x3 + b4x+ b6. (13)

The non-supersingular Koblitz curve, as portrayed in Equation (12) has the
usual quantities of d2 = b21 + 4b2, d4 = 0, d6 = 4b6, d8 = b21b6 + 4b2b6 and
discriminant D = −d22d8 − 27d26, whereas, the division polynomials upon this
curve was derived from Silverman (1986) as shown below:

ψ1 = 1, ψ2 = b1x (14)

ψ3 = x4 + d2x
3 + b6 (15)

ψ4 = b1x
(
d2x

5 + xb6
)
. (16)

The usual quantities for Equation (13) are denoted by d2 = 0, d4 = 2b4,
d6 = b23 + 4b6, d8 = −b24, and discriminant D = −8d34 − 27d26. Meanwhile, their
division polynomials are as follow:

ψ1 = 1, ψ2 = b3 (17)

ψ3 = x4 + b23x+ b24 (18)

ψ4 = b53. (19)

Note that the division polynomials of non-supersingular in Equations (14)
� (16) and the division polynomials of supersingular curve in Equations (17) �
(19) satisfy the properties of Equations (4) and (5), hence, Equations (10) and
(11), respectively. Next, multiple points by Koblitz (1991) were implemented
to arrive at the set of division polynomials ϕn, ψn, and ωn upon the non-
supersingular curve as

[n]P =

(
x1 +

ψn−1 (P )ψn+1 (P )

ψ2
n (P )

, y1 + x1 +

(
ψn−1ψn+1

ψ2
n

)

+
(
x21 + y1

) ψn−1 (P )ψn+1 (P )

ψ2 (P )ψ2
n (P )

+
ψ2
n+1 (P )ψn−2 (P )

ψ2 (P )ψ3
n (P )

) (20)

while for supersingular curve, the set of division polynomials ϕn, ψn and ωn is
as given below:

[n]P =

(
x1 +

ψn−1 (P )ψn+1 (P )

ψ2
n (P )

, y1 + b3

+
(
x21 + b4

)(ψn−1 (P )ψn+1 (P )

ψ2 (P )ψ2
n (P )

)
+
ψ2
n+1 (P )ψn−2 (P )

ψ2 (P )ψ3
n (P )

)
.

(21)
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3.2 Polynomial Basis Representation in F2m

Consider m = 3 in F2m for both Equations (12) and (13). In Equation
(12), F23 is constructed using an irreducible polynomial f (x) = x3+x+1 and
Equation (13), used an irreducible polynomial f (x) = x3 + x2 + 1 with a root
of g = 010. The element g ≡ x mod

(
x3 + x+ 1

)
is a generator for Equation

(12) and the element g ≡ xmod
(
x3 + x2 + 1

)
is a generator for Equation (13).

Therefore, the number of elements in F23 is equal to 8. The powers of g are
listed in Table 1 as follows:

Table 1: Powers of generator g = 010.

Irreducible polynomial 0 g0 g1 g2 g3 g4 g5 g6

x3 + x + 1 000 001 010 100 011 110 111 101

x3 + x2 + 1 000 001 010 100 101 111 011 110

The addition among elements of F23 based on the irreducible polynomials x3+
x+ 1 or x3 + x2 + 1 is shown in Table 2 as follows:

Table 2: Addition among elements of F23 in irreducible polynomials x3 + x + 1 or x3 + x2 + 1.

+ 0 g0 g1 g2 g3 g4 g5 g6

0 0 g0 g1 g2 g3 g4 g5 g6

g0 g0 0 g3 g6 g1 g5 g4 g2

g1 g1 g3 0 g4 g0 g2 g6 g5

g2 g2 g6 g4 0 g5 g1 g3 g0

g3 g3 g1 g0 g5 0 g6 g2 g4

g4 g4 g5 g2 g1 g6 0 g0 g3

g5 g5 g4 g6 g3 g2 g0 0 g1

g6 g6 g2 g5 g0 g4 g3 g1 0

Table 3 represents the multiplication among elements of F23 based on the irre-
ducible polynomiasl x3 + x+ 1 or x3 + x2 + 1.
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Table 3: Multiplication among elements of F23 in irreducible polynomials x3+x+1 or x3+x2+1.

x 0 g0 g1 g2 g3 g4 g5 g6

0 0 0 0 0 0 0 0 0

g0 0 g0 g1 g2 g3 g4 g5 g6

g1 0 g1 g2 g3 g4 g5 g6 g0

g2 0 g2 g3 g4 g5 g6 g0 g1

g3 0 g3 g4 g5 g6 g0 g1 g2

g4 0 g4 g5 g6 g0 g1 g2 g3

g5 0 g5 g6 g0 g1 g2 g3 g4

g6 0 g6 g0 g1 g2 g3 g4 g5

Note that the multiplication among elements of F23 for both irreducible
polynomials are conducted based on Table 1.

4. Results and Discussion

4.1 New Elliptic Net Scalar Multiplication

Previous studies used the equivalence of Ŵ (n, 0) = cn
2−1W (n, 0) in elliptic

net upon short Weierstrass, see Shipsey (2000). The following proposition rep-
resents the equivalent reconsidered for elliptic divisibility sequences, proposed
by Muslim and Said (2018a) and Muslim and Said (2018b):

Proposition 4.1. Let p, u and v as proper elliptic divisibility sequences
and satisfy the nonlinear recurrence relations, pm+npm−np

2
1 = pm+1pm−1p

2
n −

pn+1pn−1p
2
m, um+num−nu

2
1 = um+1um−1u

2
n−un+1un−1u

2
m and vm+nvm−nv

2
1 =

vm+1vm−1v
2
n−vn+1vn−1v

2
m. Let c1, c2 and c3 be any constant integer and there

are equivalent elliptic divisibility sequences {jn} , {kn} , {ln} such that jn =

c1
n2−1pn, kn = c2

n2

un and ln = c3
nvn. Then, jm+njm−n = jm+1jm−1j

2
n −

jn+1jn−1j
2
m, km+nkm−n = km+1km−1k

2
n − kn+1kn−1k

2
m and lm+nlm−n =

lm+1lm−1l
2
n − ln+1ln−1l

2
m.

From Proposition 4.1, we can use either Ŵ (n, 0) = cn
2−1W (n, 0) or Ŵ (n, 0) =

cnW (n, 0) as the elliptic net sequences. However, cnW (n, 0) is in the gener-
alised form which later, will be used to proof the ENSM upon Koblitz curves.

In the next section, we consider ψn(P ) =W (n, 0) for any integer n.

Lemma 4.1. Let {W (n, 0)} be the proper elliptic divisibility sequences over
�nite �eld Fq with q elements with W (2, 0) 6= 0. Then there exists an elliptic
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net Ŵ (n, 0) over Fq which is equivalent to the sequence {W (n, 0)}.

Proof. Assume {W (n, 0)} is de�ned over Fq. We can �nd a square root c

of W (n, 0)−1 that lies in Fq. This means c2 = W (2, 0)−1. Let Ŵ (n, 0) =

cnW (n, 0) for any integer n. The sequence
{
Ŵ (n, 0)

}
is an elliptic net de�ned

over Fq since c and W (n, 0) belong to Fq. This completes the proof.

Theorem 4.1 represents the ENSM upon short Weierstrass based on Ŵ (n, 0) =
cnW (n, 0), see Muslim and Said (2018a) and Muslim and Said (2018b).

Theorem 4.1. Let {W (n, 0)} de�ned from Lemma 4.1 and Ŵ (2, 0) = 2c2y1.
If there is a point P = (x1, y1) on short Weierstrass for type y2 = x3 + ax+ b
over Fp, then the rank-one ENSM, [n]P = (xn, yn) , can be generated as follows:

xn = x1 −
Ŵ (n− 1, 0)Ŵ (n+ 1, 0)

Ŵ 2(n, 0)
(22)

yn =
Ŵ 2(n− 1, 0)Ŵ (n+ 2, 0)− Ŵ 2(n+ 1, 0)Ŵ (n− 2, 0)

4y1Ŵ 3(n, 0)
. (23)

Example 1.

Let P = (−3, 12 ) be a point on the short Weierstrass, y2 = x3 +6x+5 over F7,
then 3P is calculated.

Solution:

Note that, a = − 11
4 , b = 19, Ŵ (0, 0) = 0, Ŵ (1, 0) = 1, and c = 1. By using

Equation (7), Ŵ (2, 0) ≡ 2c2y1 ≡ 2
(
1
2

)
≡ 1mod 7.

Next, Ŵ (3, 0) was computed using Equation (8) such that

Ŵ (3, 0) ≡ 243− 297

2
− 684 +

121

16
≡ −9553

16
mod 7 ≡ 1mod 7.

The fourth term in the net, Ŵ (4, 0) was derived based on Equation (9) such
that

Ŵ (4, 0) ≡ 4

(
1

2

)(
729− 4455

4
− 10260− 5445

16
− 627− 8 (19)

2 −
(
−11

4

)3
)

≡ −926673

32
≡ 2mod 7.
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Then, x3 was calculated using Equation (22) such that

x3 ≡ x1 −
Ŵ (2, 0) Ŵ (4, 0)

Ŵ 2 (3, 0)

≡ −3− 1 (2)

12
≡ −5 ≡ 2mod 7.

The point y3 was computed with Equation (23) such that

y3 ≡
Ŵ 2(2, 0)Ŵ (5, 0)− Ŵ 2(4, 0)Ŵ (1, 0)

4y1Ŵ 3(3, 0)

≡ 12 (1)− 22 (1)

4
(
1
2

)
(13)

≡ −3

2
≡ 2mod 7.

Therefore, for P = (−3, 12 ), then 3P = (2, 2). Note that the point 3P is on the
short Weierstrass curve, and because y2 = x3−3x+4 implies that 22(mod7) =
23 + 6 (2) + 5(mod 7), so LHS = RHS.

The following theorem depicts the novel ENSM upon non-supersingular Koblitz
curve:

Theorem 4.2. Let {W (n, 0)} be de�ned from Lemma 4.1 and Ŵ (2, 0) =
c2b1x1. If there is a point P = (x1, y1) on non-supersingular curve for type
y2+b1xy = x3+b2x

2+b6 over F2m , then the rank-one ENSM, [n]P = (xn, yn) ,
can be derived as

xn = x1 +
Ŵ (n− 1, 0)Ŵ (n+ 1, 0)

Ŵ 2(n, 0)
(24)

yn = y1 + x1 +

(
b1 + x1 +

y1
x1

)(
Ŵ (n+ 1, 0) Ŵ (n− 1, 0)

b1Ŵ 2 (n, 0)

)

+
c2Ŵ 2(n+ 1, 0)Ŵ (n− 2, 0)

Ŵ (2, 0) Ŵ 3(n, 0)
.

(25)

Proof. Since working in the binary �eld, then an additive inverse was applied
to Equation (6), to arrive at the following:

ϕn (P )

ψ2
n (P )

=
xψ2

n (P ) + ψn+1 (P )ψn−1 (P )

ψ2
n (P )

.

Let P = (x1, y1) and the recurrence ψn (P ) can be transformed to equivalent
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sequences of W (n, 0) by Proposition 4.1, which can be expressed as

xn = x1 +
ψn−1 (P )ψn+1 (P )

ψ2
n (P )

= x1 +
W (n+ 1, 0)W (n− 1, 0)

W 2 (n, 0)

and because Ŵ (n, 0) = cnW (n, 0), then

xn = x1 +
c−(n+1)Ŵ (n+ 1, 0) c−(n−1)Ŵ (n− 1, 0)[

c−nŴ (n, 0)
]2

= x1 +
c−(n+1)−(n−1)Ŵ (n+ 1, 0) Ŵ (n− 1, 0)

c−2nŴ 2 (n, 0)

= x1 +
Ŵ (n− 1, 0)Ŵ (n+ 1, 0)

Ŵ 2(n, 0)
.

Referring to yn in Equation (20) with ψn(P ) = W (n, 0) and Ŵ (n, 0) =
cnW (n, 0), then

yn = y1 + x1 +

(
W (n− 1, 0)W (n+ 1, 0)

W 2 (n, 0)

)
+
(
x21 + y1

)(W (n− 1, 0)W (n+ 1, 0)

(b1x1)W 2(n, 0)

)
+
W 2 (n+ 1, 0)W (n− 2, 0)

(b1x1)W 3 (n, 0)

= y1 + x1 +
W (n− 1, 0)W (n+ 1, 0)

(
b1 + x1 +

y1

x1

)
b1W 2(n, 0)

+
W 2 (n+ 1, 0)W (n− 2, 0)

W (2, 0)W 3 (n, 0)

= y1 + x1 +
c−(n−1)Ŵ (n− 1, 0)c−(n+1)Ŵ (n+ 1, 0)

(
b1 + x1 +

y1

x1

)
b1c−2nŴ 2(n, 0)

+
c−2(n+1)Ŵ 2 (n+ 1, 0) c−(n−2)Ŵ (n− 2, 0)

c−2Ŵ (2, 0) c−3nŴ 3 (n, 0)
.

Finally, we can rearrange the above equation to the following:

yn = y1 + x1 +

(
b1 + x1 +

y1
x1

)(
Ŵ (n+ 1, 0) Ŵ (n− 1, 0)

b1Ŵ 2 (n, 0)

)

+
c2Ŵ 2(n+ 1, 0)Ŵ (n− 2, 0)

Ŵ (2, 0) Ŵ 3(n, 0)
.
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Example 2. In this instance, the non-supersingular Koblitz curve was selected
for rapid implementation. If P = (g3, g2) is a point on the elliptic curve,
y2 + xy = x3 + g3x2 + 1 over F23 , then 2P can be calculated.

Solution:

Note that, b1 = 1, P = (x1, y1) = (g3, g2), and Ŵ (0, 0) = 0. First, the initial
values of elliptic net were obtained from Equation (14) such that Ŵ (1, 0) = 1
and Ŵ (2, 0) ≡ 1

(
g3
)
≡ g3 mod

(
x3 + x+ 1

)
.

From Equations (15) and (16), the terms Ŵ (3, 0) and Ŵ (4, 0) were calculated
as

Ŵ (3, 0) ≡ g12 + g9 + g0 ≡ g mod
(
x3 + x+ 1

)
.

Ŵ (4, 0) ≡ g18 + g6 ≡ g3 mod
(
x3 + x+ 1

)
.

Then, x2 was calculated using Equation (24) such that

x2 ≡ x1 +
Ŵ (1, 0) Ŵ (3, 0)

Ŵ 2 (2, 0)

≡ g3 + g0g

g6
≡ g3g5 + g0

g5
≡ g8 + g0

g5
≡ g5 mod

(
x3 + x+ 1

)
≡ g5.

The point y2 was computed with Equation (25) such that

y2 ≡ y1 + x1 +

(
1 + x1 +

y1
x1

)(
Ŵ (1, 0)Ŵ (3, 0)

Ŵ 2(2, 0)

)
+
Ŵ 2 (3, 0) Ŵ (0, 0)

Ŵ (2, 0)Ŵ 3 (2, 0)

≡ g2 + g3 + (1 + g3 +
g2

g3 )

(
g0g1

(g3)
2

)
+
g2(0)

g3g9

≡ g2 + g3 + g−5 + g−2 + g−6

≡ g4 mod
(
x3 + x+ 1

)
≡ g4.

Therefore, when P = (g3, g2), then 2P =
(
g5, g4

)
. To validate 2P, we may

substitute
(
g5, g4

)
into y2 + xy = x3 + g3x2 + 1 and derive that LHS = RHS

such that (
g4
)2

+ g5g4 =
(
g5
)3

+ g3
(
g5
)2

+ 1

g8 + g9 = g15 + g13 + g0

g1 + g2 = g1 + g6 + g0

g4 = g4.
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The following theorem presents the novel ENSM upon supersingular Koblitz
curve:

Theorem 4.3. Suppose that {W (n, 0)} is de�ned from Lemma 4.1. If there
exists a point P = (x1, y1) on supersingular curve for type y2 + b3y = x3 +
b4x + b6 over F2m , then the rank-one ENSM, [n]P = (xn, yn), can be derived
as

xn = x1 +
Ŵ (n− 1, 0)Ŵ (n+ 1, 0)

Ŵ 2(n, 0)
(26)

yn = y1 + b3 +
(
x21 + b4

)(Ŵ (n+ 1, 0) Ŵ (n− 1, 0)

Ŵ (2, 0) Ŵ 2 (n, 0)

)

+
Ŵ 2 (n+ 1, 0) Ŵ (n− 2, 0)

Ŵ (2, 0) Ŵ 3 (n, 0)
.

(27)

Proof. Note that the point xn in Equation (26) is identical to that found in
Equation (24). In the attempt to determine yn, again Ŵ (n, 0) = cnW (n, 0)
and we make use yn in Equation (21) to arrive at the following:

yn = y1 + b3 +
(
x21 + b4

)(W (n+ 1, 0)W (n− 1, 0)

b3W 2 (n, 0)

)
+
W 2 (n+ 1, 0)W (n− 2, 0)

b3W 3 (n, 0)

= y1 + b3 +
(
x21 + b4

)c−(n+1)Ŵ (n+ 1, 0) c−(n−1)Ŵ (n− 1, 0)

Ŵ (2, 0)
[
c−nŴ (n, 0)

]2
+

[
c−(n+1)Ŵ (n+ 1, 0)

]2
c−(n−2)Ŵ (n− 2, 0)

Ŵ (2, 0)
[
c−nŴ (n, 0)

]3
= y1 + b3 +

(
x21 + b4

)(c−2nŴ (n+ 1, 0) Ŵ (n− 1, 0)

Ŵ (2, 0) c−2nŴ 2 (n, 0)

)
+

c−3nŴ 2 (n+ 1, 0) Ŵ (n− 2, 0)

Ŵ (2, 0)c−3nŴ 3 (n, 0)

= y1 + b3 +
(
x21 + b4

)(Ŵ (n+ 1, 0) Ŵ (n− 1, 0)

Ŵ (2, 0) Ŵ 2 (n, 0)

)
+
Ŵ 2 (n+ 1, 0) Ŵ (n− 2, 0)

Ŵ (2, 0) Ŵ 3 (n, 0)
.
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Example 3.

Let P = (g5, g0) be a point on the supersingular curve of the type y2 + y =
x3 + x+ 1 over F23 . Then, 3P is calculated.

Solution:

Note that b3 = b4 = b6 = 1 are applied to Equation (13). First, set Ŵ (0, 0) = 0
and from Equation (17), we have Ŵ (1, 0) ≡ Ŵ (2, 0) ≡ 1 ≡ g0mod

(
x3 + x2 + 1

)
.

The terms Ŵ (3, 0) and Ŵ (4, 0) were calculated by referring to Equations (18)
and (19) as

Ŵ (3, 0) ≡
(
g5
)4

+ g5 + g0 ≡ g6 + g5 + g0 ≡ g2 mod
(
x3 + x2 + 1

)
.

Ŵ (4, 0) ≡ 1 ≡ g0 mod
(
x3 + x2 + 1

)
.

Next, x3 was generated from Equation (26) such that

x3 ≡ x1 +
Ŵ (2, 0) Ŵ (4, 0)

Ŵ 2 (3, 0)

≡ g5 + g0g0

g4
≡ g5 + g−4 ≡ g6 mod

(
x3 + x2 + 1

)
≡ g6.

The point y3 was computed with Equation (27) such that

y3 ≡ y1 + b3 +
(
x21 + b4

)( Ŵ (4, 0)Ŵ (2, 0)

Ŵ (2, 0)Ŵ 2(3, 0)

)
+
Ŵ 2 (4, 0) Ŵ (1, 0)

Ŵ (2, 0)Ŵ 3 (3, 0)

≡ g0 + g0 +
((
g5
)2

+ g0
)(g0g0

g0g4

)
+
g0g0

g0g6
≡ g−6 + g6 + g−4

≡ g0 mod
(
x3 + x2 + 1

)
≡ g0.

Therefore, for P = (g5, g0), the multiple 3P =
(
g6, g0

)
. To verify the point of

3P, plug in
(
g6, g0

)
into y2 + y = x3 + x + 1 to show that LHS = RHS such

that (
g0
)2

+ g0 =
(
g6
)3

+ g6 + g0

g0 + g0 = g18 + g6 + g0

g0 + g0 = g4 + g6 + g0

000 = 000.
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4.2 Complexity Analysis

This section evaluates the cost of �eld operations in the ENSM over Fp and
F2m . On evaluating the �eld operations, the cost of addition �eld or subtraction
�eld can be neglected since this cost of operation is small compared to squaring,
multiplication, and inversion. Let S denotes the number of squaring, M as the
number of multiplication and I be the number of inversion. The number of
�eld operations without repetition in the ENSM via elliptic net are given in
Table 5.

Table 4: Computational cost of �eld operations in ENSM upon di�erent curves and �elds.

Curve Formula xn Formula yn Total
Short Weierstrass in Fp
(refer to Equations (22)

and (23))
1S + 1M + 1I 2S + 4M + 1I 3S + 5M + 2I

Non-supersingular
Koblitz in F2m

(refer to Equations (24)
and (25))

1S + 1M + 1I 1S + 5M + 2I 2S + 6M + 3I

Supersingular Koblitz
in F2m

(refer to Equations (26)
and (27))

1S + 1M + 1I 2S + 5M + 2I 3S + 6M + 3I

The experiments indicate that the x -coordinate for ENSM in Fp and F2m

have equal cost of �eld operations. However, a slight di�erence was noted for
the y-coordinate. In prime �eld, the squaring cost is 80% from the multiplica-
tion cost, thus indicating that 1S=0.8M. This can be reduced by considering
modulo to 1S=0.6M. However, in binary �eld, the cost of squaring can be ne-
glected, see Ciet et al. (2006). Therefore, the overall cost of ENSM for (a)
short Weierstrass over prime �eld is 6.8M+2I ; (b) nonsupersingular Koblitz
over binary �eld is 6M+3I ; and (c) supersingular Koblitz over binary �eld is
6M+3I.

5. Conclusion

The ENSM upon short Weierstrass over prime �eld has been reviewed to-
gether with an experimental value. This paper presented Koblitz curves of the
type non-supersingular and supersingular and discussed their division poly-
nomials, along with their properties. Based on the Koblitz curves' division
polynomials and non-linear recurrence properties, the study was extended to
develop rank-one ENSM. The cost of �eld operations in ENSM was evaluated
based on the prime and binary �elds. The presence of ENSM using division
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polynomials may yield other possible applications. In other words, the the-
ory of ENSM can be applied to other suitable cryptographic curves, including
Twisted Edwards curve for type ax2 + y2 = 1 + dx2y2.
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