EFFECTS OF COCOA BUTTER, PALM FRACTION AND EMULSIFIER MIXTURES ON THE QUALITY PARAMETERS OF DIFFERENT CHOCOLATE FORMULATIONS

BAKTI KUMARA

FSMB 2003 20
EFFECTS OF COCOA BUTTER, PALM FRACTION AND EMULSIFIER MIXTURES ON THE QUALITY PARAMETERS OF DIFFERENT CHOCOLATE FORMULATIONS

BAKTI KUMARA

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2003
EFFECTS OF COCOA BUTTER, PALM FRACTION AND EMULSIFIER MIXTURES ON THE QUALITY PARAMETERS OF DIFFERENT CHOCOLATE FORMULATIONS

By

BAKTI KUMARA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

June 2003
Special Dedication

This Thesis is dedicated to
My beloved wife and son: Husna and Rifqi,
My affectionate parents: Papa & Mamah,
My brothers and sister: Budi, Nuki and Ina
For their patient, love and support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF COCOA BUTTER, PALM FRACTION AND EMULSIFIER MIXTURES ON THE QUALITY PARAMETERS OF DIFFERENT CHOCOLATE FORMULATIONS

By

BAKTI KUMARA

June 2003

Chairperson : Professor Jinap Selamat, Ph.D.
Faculty : Food Science and Biotechnology

The physico-chemical characteristics of cocoa butter (CB), palm mid-fraction (PMF) and palm kernel stearin (PKS) in fat-based chocolate formulation in the presence of sorbitan tristearate (STS) have been studied. Triacylglycerols (TAGs), fatty acid methyl esters (FAMEs), thermal behaviour, polymorphic form, solid fat content (SFC), hardness/texture properties, rheological behaviour, microstructure properties, bloom test, and sensory properties were determined to evaluate quality properties of palm-based chocolate. The results show that the addition of STS into fat system could significantly inhibit the polymorphic transformation during temperature transition. It is due to the significant influence in increasing the crystal stability.
This study showed that the melting profiles of fat mixtures with the presence of STS were different due to the rapid melting at room temperature (30°C), so resulting in the softness of chocolate products. Most of CB, PKS and STS mixtures have a strong tendency to produce two distinctive β and β' polymorphs. These results provide strong evidence to indicate incompatibility between those fats, which causes softness in chocolate and confectionery products. By using response surface methodology (RSM), it was found that a ratio of 90CB:10PMF:2.5STS was the optimum formulation for the best physical and chemical characteristics of fat system.

The concentrations of TAGs of chocolate's fat were changed, causing the polymorphic transformation to take place during storage. However, only the composition of the main TAGs (POP, POS, SOS) significantly influence the type of polymorphic form, whereas fatty acids composition determined the type of TAGs formed. Chocolate containing CB (control) consisted of only β crystals at all times. However, chocolates containing CB and PMF mixtures were found to strive both β' and β during storage period. The existing of two crystal forms (β' + β) and the transition of β' into the more stable β crystal had caused bloom formation. STS at 1.25% and 2.5% were found to
inhibit effectively bloom formation during storage. The sensory evaluation of palm-based chocolates showed that texture score was significantly affected by both PMF concentration and onset of melt, but STS did not have any significant effect on each sensory attribute.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN CAMPURAN LEMAK KOKO, FRAKSI MINYAK KELAPA SAWIT DAN PENGEMULSI TERHADAP CIRI KUALITI DALAM FORMULASI COKLAT YANG BERBEZA

Oleh

BAKTI KUMARA

Jun 2003

Pengerusi : Profesor Jinap Selamat, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Sifat fiziko-kimia lemak koko (CB), fraksi tengah minyak kelapa sawit (PMF) dan kernel stearin minyak kelapa sawit (PKS) dalam formulasi coklat berasas lemak dengan kehadiran sorbitan tristearat (STS) telah dikaji. Triasilgliserol (TAGs), asid lemak metil ester (FAMEs), sifat termal, bentuk polimorfik, kandungan lemak pejal, ciri kekerasan/tekstur, sifat reologi, ciri mikrostruktur, ujian bloom dan ciri sensori telah ditentukan untuk menilai ciri kualiti coklat berasas minyak kelapa sawit. Hasil penyelidikan menunjukkan bahawa penambahan STS ke dalam sistem lemak telah menghalang perubahan polimorfik dengan ketara ketika perubahan suhu. Ini adalah disebabkan oleh pengaruh ketara dalam peningkatan kestabilan kristal.
Kajian juga telah menunjukkan bahawa profil melebur campuran lemak dengan kehadiran STS adalah berbeza disebabkan peleburan yang cepat pada suhu bilik (30°C), dan ini menyebabkan produk coklat menjadi lembik. Kebanyakan campuran CB, PKS dan STS mempunyai kecenderungan yang kuat untuk menghasilkan dua polimorf yang berbeza iaitu β dan β'. Keputusan ini memberikan bukti yang k kukuh tentang ketidak sesuaian di antara lemak tersebut, yang seterusnya menghasilkan produk coklat dan konfeksi yang lembik. Teknik “response surface methodology” (RSM), telah mendapatkan bahawa kombinasi 90CB:10PMF:2.5STS telah menghasilkan sifat fizikal dan kimia yang terbaik dalam sistem lemak.

Kepekatan TAGs dalam lemak coklat telah berubah dan itu mengakibatkan berlakunya perubahan polimorfik semasa penyimpanan. Walau bagaimanapun, hanya komposisi utama TAGs (POP, POS, SOS) didapati mempengaruhi dengan ketara jenis bentuk polimorfik dan komposisi asid lemak menentukan jenis TAGs yang terbentuk. Coklat yang mengandungi CB (kawalan) didapati hanya mengandung kristal β pada setiap masa. Sebaliknya, coklat yang mengandungi campuran PMF dan CB mempunyai kristal β' dan β. Kehadiran dua jenis kristal (β' + β) dan perubahan β' kepada kristal β
yang lebih stabil telah menyebabkan pembentukan bloom. STS pada 1.25% dan 2.5% didapati menghalang pembentukan bloom dengan berkesan. Penilaian sensori coklat berasas minyak kelapa sawit menunjukkan bahawa kepekatan PMF dan permulaan melebur yang cepat mempengaruhi dengan ketara skor untuk tekstur. Walau bagaimanapun, STS tidak menunjukkan kesan yang ketara terhadap setiap ciri sensori.
ACKNOWLEDGEMENTS

Alhamdulillah, first of all I would like to express my greatest thanks and gratitude to Almighty Allah SWT who has given me the will, strength and patience to complete this thesis, and Salawat and Salam to His righteous messenger, Prophet Muhammad SAW.

I wish to express my sincere gratitude to Professor Dr. Jinap Selamat, the Chairman of my Supervisory Committee, for her guidance, patience, understanding, encouragement and supervisions throughout the course of the study until the completion of this thesis. I am also very grateful to other members of the Supervisory Committee, Prof. Dr. Yaakob B. Che Man and Dr. Mohd. Suria Affandi Yusoff of Malaysian Palm Oil Board for their supervision, support and comments.

I would like to acknowledge the financial support provided by the Intensification of Research in Priority Areas (IRPA) fund no. 0102040268 for this research. My sincere appreciation is also extended to my colleagues and friends, Dr. Amin Ismail, Dr. Yusep Ikrawan, Dr. Misnawi, Syidah, Zaibunnisha, Chin Hui Han, Asep Kusnadi, and Tan Teng Ju of “Cocoa & Chocolate Research Groups, UPM” and Dr. Tan Chin Ping, Dr. Irwandi Jaswir, Dr. Mohammed El-Wathig, Gabby and Wanna of “Fats and Oils Research Groups, UPM”.

ix
Not the least but the most important, I wish to express my deepest appreciation to my parents, H. Eddy Sophian & Hj. Yeyeh Adawiyah, brothers, Wendy Setiabudi & Nuki Ardiansyah and sister, Hj. Ina Winarni for their moral support and understanding throughout my studies. I shall forever recognize their sacrifices that they have given, too. Finally, but first in my thoughts, I also owe my special thanks to my beloved wife, Husna Isnadiyah for her encouragement, understanding and patience, most of all, her care and love. I also always remember my little child, M. Rifqi Iskandarsyah for his hilarious in giving the fortitude in my life.
I certify that an Examination Committee met on 16th June 2003 to conduct the final examination of Bakti Kumara on his Master of Science thesis entitled “Effects of Cocoa Butter, Palm Fraction and Emulsifier Mixtures on The Quality Parameters of Different Chocolate Formulations” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azizah Abdul Hamid, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairperson)

Jinap Selamat, Ph.D.
Professor/Dean
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Yaakob Bin Che Man, Ph.D.
Professor/Deputy Dean
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Mohd. Suria Affandi Bin Yusoff, Ph.D.
Principal Research Officer
Products Development and Advisory Services
Malaysian Palm Oil Board
(Member)

GULAM RUSUI RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 SEP 2003
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of Supervisory Committee are as follows:

Jinap Selamat, Ph.D.
Professor/Dean
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairperson)

Yaakob Bin Che Man, Ph.D.
Professor/Deputy Dean
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Mohd. Suria Affandi Bin Yusoff, Ph.D.
Principal Research Officer
Products Development and Advisory Services
Malaysian Palm Oil Board
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 NOV 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

BAKTI KUMARA

Date: 26 SEP 2003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
</tbody>
</table>

CHAPTER

I GENERAL INTRODUCTION

II LITERATURE REVIEW

- Fats and Emulsifier in Chocolate and Confectionery 6
- Compatibility of Fats 11
- Cocoa Butter 13
 - Chemical Characteristics of Cocoa Butter 13
 - Physical Characteristics of Cocoa Butter 17
- Specialty Fats 25
 - Palm Fraction 25
 - Cocoa Butter Equivalent (CBE) 27
 - Cocoa Butter Substitute (CBS) 28
 - Lauric CBS 29
 - Non-Lauric CBS 32
- Emulsifiers 35
 - Sorbitan Esters 37
 - Polyglycerol Polyricinoleat (PGPR) 41
- Physical Properties of Chocolate 42
 - Rheological Behaviour 42
 - Hardness and Melting Properties 47
 - Texture and Microstructure Properties 49
- Sensory Evaluation of Chocolate Products 54
- Bloom Formation 56
 - Causes of Bloom Formation 57
 - Factors Affecting Bloom Formation 60
 - Prevention of Bloom 61
Results and Discussions 103
Chemical Characteristics of Lauric and Non-lauric Fats 103
Thermal Behaviour of Lauric and Non-lauric Fats 110
Polymorphic Transformation in Fats System 117
Eutectic Effect of Fats Mixtures 120

Summary 126

VI TRIACYLGLYCEROLS AND POLYMORPHIC CHANGES IN FAT BLOOM OF CHOCOLATE DURING STORAGE 127
Introduction 127
Materials and methods 131
Materials 131
Methods 131
Development of Fat Bloom 131
Colour Measurement using Hunterlab 132
Colour Measurement using Digital Image 133
Sample Preparation 136
Chemical Analysis 136
Polymorphic Form 136
Statistical Analysis 137
Results and Discussions 137
Comparison of Colour Measurement Techniques Used in Fat Bloom Studies 137
Chemical Composition of Fats upon Storage 143
Observation of Bloomed Surface 150
Polymorphism of Fats in Bloomed Chocolates 154

Summary 159

VII PHYSICAL CHARACTERISTICS, FAT BLOOM STABILITY, AND SENSORY PROPERTIES OF PALM-BASED CHOCOLATE 162
Introduction 162
Materials and Methods 164
Materials Preparation 164
Rheological Behaviour 165
Thermal Behaviour 167
Texture Analysis (Hardness) 167
Solid Fat Content (SFC) 168
Microstructure Analysis 168
Sensory Analysis 169
Statistical Analysis 170
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results and Discussions</td>
<td>170</td>
</tr>
<tr>
<td>Rheological Behaviour</td>
<td>170</td>
</tr>
<tr>
<td>Thermal Behaviour</td>
<td>175</td>
</tr>
<tr>
<td>Texture Analysis</td>
<td>176</td>
</tr>
<tr>
<td>Hardness vs. Solid Fat Content</td>
<td>178</td>
</tr>
<tr>
<td>Microstructure Analysis</td>
<td>179</td>
</tr>
<tr>
<td>Sensory Analysis</td>
<td>185</td>
</tr>
<tr>
<td>Summary</td>
<td>188</td>
</tr>
<tr>
<td>VIII GENERAL CONCLUSIONS AND</td>
<td>191</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td></td>
</tr>
<tr>
<td>General Conclusions</td>
<td>191</td>
</tr>
<tr>
<td>Recommendations</td>
<td>194</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>196</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>209</td>
</tr>
<tr>
<td>BIOGRAPHICAL SKETCH</td>
<td>232</td>
</tr>
</tbody>
</table>

xvii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lipid compositions (wt %) of cocoa butter</td>
</tr>
<tr>
<td>2</td>
<td>Fatty acids distribution (wt %) of cocoa butter</td>
</tr>
<tr>
<td>3</td>
<td>Triacylglycerol compositions (%) of cocoa butter</td>
</tr>
<tr>
<td>4</td>
<td>Nomenclature and assignment of polymorphs</td>
</tr>
<tr>
<td>5</td>
<td>Classification and temperature (°C) of cocoa butter crystallization forms</td>
</tr>
<tr>
<td>6</td>
<td>Types of specialty fats and their acylglycerol compositions</td>
</tr>
<tr>
<td>7</td>
<td>Fatty acids compositions (wt %) of palm fractions</td>
</tr>
<tr>
<td>8</td>
<td>Triacylglycerol compositions (wt %) of palm fractions</td>
</tr>
<tr>
<td>9</td>
<td>Emulsifier functions</td>
</tr>
<tr>
<td>10</td>
<td>Flow characteristics of plain chocolate with added surface-active lipids at 50°C</td>
</tr>
<tr>
<td>11</td>
<td>Appearance, causes, and prevention of bloom formation in chocolate surface</td>
</tr>
<tr>
<td>12</td>
<td>Combination ratios of cocoa butter, palm mid-fraction and sorbitan tristearate</td>
</tr>
<tr>
<td>13</td>
<td>Fatty acids and triacylglycerols compositions (wt %) of cocoa butter and palm mid-fraction</td>
</tr>
<tr>
<td>14</td>
<td>Partial melting enthalpy (ΔH_{r}) of fats and emulsifier mixtures combinations at different heating rate variations using DSC</td>
</tr>
<tr>
<td>15</td>
<td>Transitions temperature (T_1 and T_2) of fats and emulsifier mixtures combinations at different heating rate variations using DSC</td>
</tr>
<tr>
<td>16</td>
<td>Regression coefficients, R^2 and P of F values for $%\Delta H-\beta'$ form, T_0, T_1 and T_2 of fats and emulsifier mixtures at different heating rates</td>
</tr>
</tbody>
</table>
17 Effect of fats and emulsifier mixtures on polymorph transitions at heating rate of 10°C as reflected by regression coefficients and R² for %ΔHₐ, %ΔH₉, T₀, T₁ and T₂

18 Solid fat content (SFC) of cocoa butter, palm mid-fraction and emulsifier mixtures at different temperature

19 Combination ratios mixtures of cocoa butter, palm fraction and sorbitan tristearate

20 Fatty acids and triacylglycerols compositions (wt%) of CB, PMF and PKS

21 Triacylglycerols compositions of non-lauric fat (PMF), cocoa butter and emulsifier mixtures

22 Regression coefficients for triacylglycerols of cocoa butter, palm mid-fraction and emulsifier mixtures in fat system

23 Melting enthalpy and temperature transition of polymorphic form of CB, PMF and STS mixtures measured by DSC

24 Melting enthalpy and temperature transition of polymorphic form of CB, PKS and STS mixtures measured by DSC

25 Effect of lauric, non lauric fats and emulsifier mixtures on polymorph transitions as reflected by regression coefficients and R² for %ΔH₉

26 X-ray diffraction pattern of CB, PMF and STS mixtures measured by X-ray diffractor after stabilization (at 26°C for 40 h)

27 X-ray diffraction pattern of CB, PKS and STS mixtures measured by X-ray diffractor after stabilization (at 26°C for 40 h)

28 Fatty acids compositions (wt %) changes of extracted fat from chocolate surface at different days of storage

29 Triacylglycerols compositions (wt %) changes of extracted fat from chocolates surface at different days of storage
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Pearson correlation coefficient (n=3) and kinetic movement (k) between triacylglycerols composition and storage time</td>
<td>148</td>
</tr>
<tr>
<td>31</td>
<td>X-ray diffraction pattern of fat mixtures and emulsifier addition. Measured by X-ray diffractor after stabilization (at 26°C for 40 h) at different days of storage</td>
<td>155</td>
</tr>
<tr>
<td>32</td>
<td>Two-way ANOVA: F values and significance level for the effect of fat mixtures and STS on triacylglycerols and whiteness index of chocolates during storage</td>
<td>160</td>
</tr>
<tr>
<td>33</td>
<td>Casson viscosity and yield values at different temperature treatments and activation energy (E_a) of chocolate samples</td>
<td>171</td>
</tr>
<tr>
<td>34</td>
<td>Hardness value of chocolate samples at different storage time</td>
<td>177</td>
</tr>
<tr>
<td>35</td>
<td>Solid fat content (SFC) of palm-based chocolates at different temperatures</td>
<td>180</td>
</tr>
<tr>
<td>36</td>
<td>Microstructure analysis and fat-bloom stability of chocolate samples after 21 days at temperature cycles during storage</td>
<td>184</td>
</tr>
<tr>
<td>37</td>
<td>Sensory characteristics of palm-based chocolates</td>
<td>186</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic Orientations of α, β', and β Forms of the Saturated-monoacid Triacylglycerol Packed in Double-chain-length Fashion (α plane), Hydrocarbon Close Packing (ba plane) and the Difference in Chain Direction (cb plane)</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Micrographs Illustrating the Crystals of Cocoa Butter from Ivory Coast at Different Absorbance</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Isosolid Phase Diagram for Cocoa Butter and Cocoa Butter Equivalent (CBE; e.q. Coberine)</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Isosolid Phase Diagram for Cocoa Butter and Lauric CBS</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Isosolid Phase Diagram for Cocoa Butter and Non-lauric CBS</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Chemical Formula of Sorbitan Tristearate</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>Different Type of Rheogram: (1) Newtonian; (2) Bingham; (3) Pseudoplastic (e.g. Chocolate)</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>Melting Profile of Hard butters (e.q. Cocoa Butter)</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Scanning Electron Micrographs of Milk Chocolate after Fat has been Solvent-extracted</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>Polymorphic Transitions of CB (Cocoa Butter) and PMF (Palm Mid-fraction) at Different Heating Rate Variations Using DSC</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>Kinetic Rate of Polymorphic Transition (α-form) of Cocoa Butter and Palm Mid-fraction, with and without the Presence of Sorbitan Tristearate at Different Heating Rate Variations Using DSC</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Kinetic Rate of Polymorphic Transition (β'-form) of Cocoa Butter and Palm Mid-fraction, with and without the Presence of Sorbitan Tristearate at Different Heating Rate Variations Using DSC</td>
<td>86</td>
</tr>
</tbody>
</table>
13 Paths for $\alpha - \beta'$ Transformation During Heating Treatments

14 Contour Maps of $\%\Delta H_\alpha$ and $\%\Delta H_\beta'$ of Fats and Emulsifier Mixtures Treated at Heating Rate of 10°C/min Using DSC

15 Contour Maps of T_1 and T_2 of Fats and Emulsifier Mixtures Treated at Heating Rate of 10°C/min Using DSC

16 Contour Maps of SFC Values of Fat and Emulsifier Mixtures at Temperatures of 20 and 25°C

17 Contour Maps of SFC Values of Fat and Emulsifier Mixtures at Temperatures of 30 and 35°C

18 Scattering Diagram of Triacylglycerols (TAGs) Distribution of Cocoa Butter (CB), Palm Mid-fraction (PMF), Sorbitan Tristearate (STS) and Their Various Combination Mixtures

19 Scattering Diagram of Triacylglycerols (TAGs) Distribution of Cocoa Butter (CB), Palm Kernel Stearin (PKS), Sorbitan Tristearate (STS) and Their Various Combination Mixtures

20 Contour Maps of The Effect of PMF and STS on Concentration of POO, POP, POS and SOS

21 Melting Thermogram and Polymorphic Form of Cocoa Butter (CB), Palm Mid-fraction (PMF) and Palm Kernel Stearin (PKS) at Heating Rate of 10°C/min of Unstabilized Sample

22 Melting Thermogram and Polymorphic Form of Cocoa Butter (CB), Palm Mid-fraction (PMF) and Palm Kernel Stearin (PKS) at Heating Rate of 10°C/min of Stabilized Sample

23 A Contour Map of $\%\Delta H_\beta'$ of Lauric Fat (PKS), Cocoa Butter and Emulsifier Mixtures Treated at Heating Rate of 10°C/min Using DSC

24 Isosolid Diagram Showing Solid Fat Content (SFC) for Mixtures of Cocoa Butter (CB), Palm Mid-fraction (PMF) and Various Combinations without the Presence of Sorbitan Tristearate (STS)