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What's the best toy one man can find? 

The mind, and its infinite possibilities. 
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Standard Integer Programming / Decision Related Integer Programming (SIP/DRIP) is a 

reduct searching system that finds the reducts in an information system. These reducts 

are the minimal attributes of the information system that are useful in classificatory task. 

They can describe the whole information system when implementing discernment. In 

effect, they are very useful in generating rules when solving the classification problem 

that is inherent in data mining. 

The thesis emphasizes mainly on the improvement of the original SIP/DRIP algorithm in 

term of performance. By using problem restructuring, the searching time and memory 

are minimized. Simultaneously the approach adheres to an essential criterion of the 

original method. That is, to improve performance without sacrificing the quality of the 

reduct. 
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Problem restructuring changes the input of the SIP/DRIP without losing any of inpufs 

essential properties. In other words, no lost of knowledge occurs with problem 

restructuring. Only the structural order changes, with the contents kept intact. This 

hypothetically ensures that no adverse distortion transpired within SIP/DRIP. 

Restructuring is done by speculating a promising structure for the input to SIP/DRIP 

based on the potentiality of the attributes in the information system. It uses a non­

expensive approach to predict potentiality. Simply, based on the total covering of each 

attributes within the information system. Although this measurement is just an 

approximation, it can be proven to work. 

To implement the experiment, five data sets were taken. They are gathered from the 

UCI machine learning repositories. Results are measured by comparing the 

performance of SIP/DRIP with and without problem restructuring. In addition, the length 

of reducts generated by both approaches are also compared to ensure that no quality 

deterioration occurred along the way. 

Experimental results have shown that problem restructuring generally improves 

SIP/DRIP for all the data sets. This means that on average, it would enhance the 

performance of SIP/DRIP. The consumption of time and space were minimized quite 

significantly. Furthermore, the quality of the solutions was also successfully maintained. 

There was no increase in reduct length when using it. 

The concept offered by the approach is an additional component to SIP/DRIP. It 

complements the process of searching done. By giving more consideration to the initial 
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problem space and not just the searching of the solution, the performance of SIP/DRIP 

has been humbly improved. 
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'Standard Integer Programming / Decision Related Integer Programming' (SIPIDRIP) 

adalah sejenis sistem pencarian reduksi yang mencari reduksi minimum dalam sistem 

maklumat. Reduksi -reduksi minimum ini merupakan atribut minimum yang berguna 

dalam aktiviti pengelasan. Mereka boleh menerangkan keseluruhan sistem maklumat 

semasa proses pembezaan. Oleh itu, mereka amat berguna untuk menghasilkan 

undang-undang pengkelasan semasa menyelesaikan masalah pengkelasan, yang 

sememangnya biasa dalam perlombongan data. 

Tesis ini menekankan kepada peningkatan prestasi algoritma SIP/DRIP. Dengan 

menggunakan penstrukturan masalah, masa carian dan penggunaan memori dapat 

diminimakan. Pendekatan ini tertakluk kepada kriteria utama SIP/DRIP, iaitu 

peningkatan prestasi tanpa menjejaskan kualiti reduksi minimum. 
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Penstrukturan masalah menstruktur semula input SIP/DRIP tanpa menghilangkan 

mana-mana sitat input yang penting. Dalam ertikata lain, tiada kehilangan maklumat 

yang berlaku dan hanya struktur urutan input yang berubah. Secara hipotesis, ini 

menjamin bahawa tiada kesan buruk akan berlaku ketika penggunaan SIP/DRIP 

bersama penstrukturan masalah. 

Penstrukturan dilakukan dengan menjana spekulasi mengenai struktur yang baik 

berpandukan kepada potensi atribut dalam sistem maklumat. la menggunakan kaedah 

yang tidak terlalu mahal dalam meramalkan potensi atribut. Ini dilakukan dengan 

mengira jumlah tutupan yang dirangkumi oleh atribut di dalam sistem maklumat. 

Walaupun pengiraan ini hanyalah suatu anggaran, kegunaannya boleh dibuktikan. 

Untuk menjalankan eksperiman, lima set data tetah diambil. Mereka dikumput daripada 

uel machine leaming repositories. Keputusan diukur dengan membandingkan output 

SIP/DRIP bersama penstrukturan masalah dan tanpanya. Sebagai tambahan, panjang 

reduksi yang dijanakan oleh kedua-dua pendekatan turut dibandingkan untuk 

mempastikan bahawa tiada penjejasan kualiti berlaku. 

Hasit eksperimen menunjukkan bahawa penstrukturan masalah secara kasamya 

meningkatkan prestasi SIP/DRIP bagi kesemua set data. Ini bermaksud bahawa secara 

purata, ia meningkatkan prestasi SIP/DRIP. Penggunaan masa dan ruang memori bagi 

proses carian tetah dikurangkan dengan signifikannya. Tambahan pula, kualiti reduksi 

tetah berjaya dikekalkan. Tiada penambahan panjang reduksi berlaku semasa 

menggunakan penstrukturan masalah. 
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Konsep yang diutarakan oleh pendekatan ini adalah sebagai komponen tambahan 

kepada SIP/DRIP. la membantu proses carian dengan mempertimbangkan ruang asal 

masalah dan bukan hanya kepada proses carian. Dengan rendah diri, prestasi 

SIP/DRIP telah berjaya ditingkatkan. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

In this era of technology, the production of data is growing tremendously even as we 

speak. To note, data is made and processed everywhere. From computers to credit 

cards, the mass production of digital data is likely inevitable. 

In largely produced data, could there be important information hiding within it? If there 

is, how can we find it and use it? These are the questions that experts are trying to 

answer (Cabena et al. 1998). Having information means having power. So, there is no 

need to explain the motivation that lies behind this quest for information. 

Data is usually stored and organized in a database. Figuratively, the attempt of 

discovering information within data can be related to mining gOld. Hence, the phrase 

data mining refers to the effort of finding information in a vast amount of data. 

Information is usually represented in the form of relationship between elements of data. 

That is, it answers the question of how things are related with one another. Knowing the 

underlying relationship within elements of data is very useful as we can then predict its 

effects. Consequently, the information can be put to use in real lite situation, like in e­

commerce applications (Buchner et a\. 1998). 
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The importance of data mining has gained popularity in the business world (Srivastava 

et al. 2000). Collected data carries many hidden information on opportunities. By using 

data mining, better speculations on profits are made possible. Not just that, information 

gathered from data mining can also help in identifying the factors that can lead to 

business failure. This way, it allows proper actions to be taken before it is too late. 

Due to the increasing demand for data mining, many researchers have devoted their 

time to studying it. Among its many uses, one of the most popular one is classification. 

It is simply the act of knowing the class and decision of an object given all its attributes. 

This trait is natural for human beings. For example, when the sky is dark, it might rain, 

so we decide to carry an umbrella along. 

In business process however, the required classification is not as simple. To speculate 

the successfulness of a loan for instance, there are numerous factors that interact with 

one another simultaneously. Furthermore there might be thousands of loans to be 

processed in a short period of time. So, classification must be done intelligently to make 

all this doable. 

Many classification systems have been developed. Most of them are based on 

statistical analysis. The problem with this method is the vast amount of processing that 

must be done. It also requires the help of an expert to give appropriate merits to certain 

values of the factors. To solve this problem, a more novel approach is proposed by 

using the rough sets theory. 
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The theory (Pawlak 1982) proposes that within any knowfedge, there exists a minimum 

amount of information needed to enable classification. If the minimum knowledge were 

found, processing of data into information would be more efficient. Plus, this approach 

does not require any additional information like the statistical approach. As a result, it is 

hypothetically more preferable. 

From the eyes of the rough sets theory. this minimum knowfedge is known as the 

reduct. Searching for it is called the reduct searching problem. The advent of rough sets 

theory is beginning to materialize the hope for a better way of doing classification. As 

such. it is the focus of this research. 

1.2 Problem Statement 

The classification problem is a well-known problem in data mining. The problem states 

that given a set of attributes for an object, the class of the object is to be found. There 

are numerous ways to solve the problem. The method of interest is the application of 

the rough sets theory in developing a solution. One of the requirements of applying the 

rough sets theory is the finding of reducts. The SIP/DRIP algOrithm (Bakar, 2002; 

Bakar et al. 2000, 2001(a). 2001(b» fulfills this requirement. It finds the reducts in an 

information system. Employing the branch and bound searching technology, the 

SIP/DRIP algorithm consumes exponential time and considerable space. It naturally 

assumes that the value of each attribute is the same. As such, no attention is given to 

its ordering. This assumption might be the cause of the inherent weakness in the 

algorithm. 
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