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ABSTRACT

In this paper, the implementation of one-step hybrid block method with
quadrature rules will be proposed for solving linear and non-linear �rst
order Volterra Integro-Di�erential Equations (VIDEs) of the second kind.
VIDEs have important applications in many branches of sciences and
engineering, such as analysing rhythmic biological data can be conducted
by utilizing a curve �tting technique based on solutions of the VIDEs.
The formulation of the hybrid block method is based on the Lagrange
interpolation polynomial. The approximation of the integral part in the
VIDEs will be estimated using the quadrature rules. The proposed hybrid
block method of order �ve will compute the numerical solutions at two
points simultaneously at each integration steps. The stability analysis
such as order of the method, consistency, zero stable and stability region
of the method are deliberated. The �xed step size is used to generate
the results and the code is written in C language. Numerical simulations
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are presented to show the e�ciency and accuracy of the hybrid method
when compared to the Runge-Kutta of order four and �ve in terms of
accuracy, total steps, and total function calls.

Keywords: Volterra integro-di�erential equations, hybrid block method,
quadrature rules, rhythmic biological data.
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1. Introduction

Nowadays, VIDEs become one of the important parts in solving real world
problems especially in science and engineering �elds. [Phipps and Jenner
(1977)] showed that a method of analysing rhythmic biological data can be con-
ducted by utilizing a curve �tting technique based on solutions of the Volterra
Integro-Di�erential Equation (VIDE). The technique involves the use of di�er-
ence equations together with the method of moments as the �tting criterion.
It is conjectured that combinations of Volterra integro-di�erential equations
can provide a more meaningful �t for such data rather than through harmonic
analysis.

The standard form of �rst order VIDEs are given below:

y′(x) = F (x) +

∫ x

0

K(x, s)y(s)ds,

y(x0) = y0, 0 ≤ s ≤ x,
(1)

where

F (x)= is a function,
K(x, s)=Kernel,
y(s)=solution of the function.

It is assume that F and K are uniformly continuous in all variables and that
the following Lipschitz condition are satis�ed:

|F (x, y1, z)− F (x, y2, z)| ≤ L1 |y1 − y2| ,
|F (x, y, z1)− F (x, y, z2)| ≤ L2 |z1 − z2| ,
|K(x, s, y1)−K(x, s, y2)| ≤ L3 |y1 − y2| .

Under these conditions equation (1) has a unique solution in 0 ≤ x ≤ a [Linz
(1969)].

Several researchers have discussed numerical method for solving �rst order
of VIDEs such as Chebyshev wavelets method [Biazar and Ebrahimi (2011)],
linear multistep method [Linz (1969)] and also analytical method for solving
�rst and higher order VIDEs as in [Arikoglu and Ozkol (2005)]. [Alahmadi et al.
(2018)] have investigated the qualitative analysis of solutions for the nonlinear
VIDEs. In the paper, the combination of Lyapunov functional with Laplace
transform will be used in order to obtain the boundedness and stability results
of VIDEs. Later, [Tunç and Tunç (2018)] have proposed the second method
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of Lyapunov for solving nonlinear scalar and system of �rst order VIDEs. The
results indicate that the technique used is suitable to solve VIDEs.

In general, VIDEs are very hard to solve using analytical methods compared
to numerical methods. Regarding (1), there are two cases of the kernel which
are K(x, s) equals to 1 and K(x, s) does not equals to 1. In [Filiz (2014a)] has
implemented the combination of Runge-Kutta method with di�erent quadra-
ture rules for solving an integral part of VIDEs. The quadrature rules such
as trapezoidal and Simpson's rule are applied in the papers. The concept was
then extended by [Mohamed and Majid (2015)], [Mohamed and Majid (2016)]
and [Majid and Mohamed (2019)] for solving VIDEs using block method.

2. Formulation

2.1 Derivation of the method

Derivation of the two-point block method with two o�-step point is dis-
cussed in this section that based on numerical integration. Figure 1 shows the
interval of [a, b] is divided within a block where every block carrying two values.

Figure 1: Two-point one-step block.

The derivation of the formulae for solving �rst order VIDEs subject to the
initial value problem (IVP) will be discussed. The two values of yn+1 and yn+2

is approximated simultaneously at points xn+1 and xn+2. The �rst and second

point of the formulae will use the set of points
{
xn, xn+ 1

2
, xn+1, xn+ 3

2
, xn+2

}
.

The points of yn+1 and yn+2 is obtained by integrating y′ = F (x, y) at the
interval of [xn, xn+1] and [xn+1, xn+2] as follows,
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∫ xn+1

xn

y
′
(x)dx =

∫ xn+1

xn

F (x, y)dx,∫ xn+2

xn+1

y
′
(x)dx =

∫ xn+2

xn+1

F (x, y)dx.

(2)

The function, F (x, y) in (2) will be replaced by Lagrange polynomial. The
application of two-point hybrid block method with two o�-step point (2PHBM)
is based on predictor and corrector PE(CE) mode. To predict the initial values
of yn+1 and yn+2, the Euler method of order one is applied to calculate the
points at each block. The corrector formulae is as the following:

yn+1 = yn +
h

180

(
29Fn + 124Fn+ 1

2
+ 24Fn+1 + 4Fn+ 3

2
− Fn+2

)
,

yn+2 = yn+1 +
h

180

(
−Fn + 4Fn+ 1

2
+ 24Fn+1 + 124Fn+ 3

2
+ 29Fn+2

)
.

(3)

The o�-step point formulae is as follows,

yn+ 1
2
= yn +

h

24
(Fn + 4Fn+1 + Fn+2),

yn+ 3
2
= yn +

h

24
(3Fn + 9Fn+1 + 2Fn+2).

(4)

3. Stability Analysis

In this section, the order of the method will be discussed, and the stability
region was plotted.

3.1 Order of the method

A linear di�erence operator L is de�ned by

L [y(x);h] =

k∑
i=0

[αjy(x+ jh)− hβjy
′(x+ jh)− hβvjy′(x+ jh)] (5)

for any function y(x). Then, the right hand side in (5) will be expanded as
Taylor series and x gives

L [y(x);h] = C0y(x) + C1hy
1(x) + ...+ Cqh

qyq(x) + ..., (6)

Malaysian Journal of Mathematical Sciences 195



Janodi, M. R., et al.

where the Cq are constants.

De�nition 1 : The di�erence operator (5) and the associated linear multistep
method are said to be of order q if C0 = C1 = ... = Cq = 0 and Cq+1 6= 0
[Lambert (1973)].

De�nition 2 : The method is consistent if it possesses an order p ≥ 1[Lambert
(1973)].

The general formula for the order of the method is de�ned as follows:

C0 =

k∑
j=0

αj ,

C1 =

k∑
j=0

jαj −
k∑

j=0

βj −
k∑

j=1

βvj ,

.

.

.

Cq =
1

q!

 k∑
j=0

jqαj − q

 k∑
j=0

jq−1βj +

k∑
j=1

vjq−1βvj

 ,

(7)

where q = 2, 3, 4, ... The order of the method in (3) is determined by applying
the formula in (7).

For q = 0,

C0 =

[
−1
0

]
+

[
1
−1

]
+

[
0
1

]
=

[
0
0

]
.

For q = 1,

C1 =

[
−1
0

]
+ 2

[
1
−1

]
+ 3

[
0
1

]
−
([

29
180
− 1

180

]
+

[
24
180
24
180

]
+

[
− 1

180
29
180

]
+

[
124
180
4

180

]
+

[
4

180
124
180

])
=

[
0
0

]
.
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For q = 2,

C2 =
1

2

[( [ 0
0

]
+

[
1
−1

]
+ 4

[
0
1

])
− 2

([
24
180
24
180

]
+ 2

[
− 1

180
29
180

]
+

1

2

[
124
180
4

180

]
+

[
4

180
124
180

]) ]
=

[
0
0

]
.

For q = 3,

C3 =
1

6

[( [ 0
0

]
+

[
1
−1

]
+ 8

[
0
1

])
− 3

([
24
180
24
180

]
+ 4

[
− 1

180
29
180

]
+

1

4

[
124
180
4

180

]
+

[
4

180
124
180

]) ]
=

[
0
0

]
.

For q = 4,

C4 =
1

24

[( [ 0
0

]
+

[
1
−1

]
+ 16

[
0
1

])
− 4

([
24
180
24
180

]
+ 8

[
− 1

180
29
180

]
+

1

8

[
124
180
4

180

]
+

[
4

180
124
180

]) ]
=

[
0
0

]
.

For q = 5,

C5 =
1

120

[( [
0
0

]
+

[
1
−1

]
+ 32

[
0
1

])
− 5

([
24
180
24
180

]
+ 16

[
− 1

180
29
180

]
+

1

16

[
124
180
4

180

]
+

[
4

180
124
180

]) ]
=

[
0
0

]
.

For q = 6,

C6 =
1

240

[( [
0
0

]
+

[
1
−1

]
+ 64

[
0
1

])
− 6

([
24
180
24
180

]
+ 32

[
− 1

180
29
180

]
+

1

32

[
124
180
4

180

]
+

[
4

180
124
180

]) ]
=

[
17

3600
467
3600

]
,

where C6 6= 0. Here, we can conclude that the 2PHBM method is order �ve by

referring to De�nition 1 and the error constant for the method is ( 17
3600 ,

467
3600 )

T
.

Since the order of the method is �ve, therefore it was con�rmed that the method
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was consistent by referring to De�nition 2. The corrector formulae are one order
higher than the predictor formulae and the implementation is in PECE mode
where P is predictor, E is the evaluation and C is the corrector.

De�nition 3 : A block method is to be zero stable if and only if providing the
roots of Rj , j = 1(1)k of the �rst characteristic polynomial, ρ(R) speci�ed as

ρ(R) = det

 k∑
j=0

AiR(k−1)

 = 0, (8)

satis�es with |Rj | ≤ 1 and those roots with |Rj | = 1 [Fatunla (1995)].

Another way of representing formulae in (3) is of the form:[
1 0
−1 1

] [
yn+1

yn+2

]
=

[
0 −1
0 0

] [
yn−1
yn

]
+ h

[
0 29

180
0 − 1

180

] [
Fn−1
Fn

]

+h

[
124
180

24
180

4
180

24
180

] [
Fn+ 1

2

Fn+1

]
+ h

[
4

180 − 1
180

124
180

29
180

] [
Fn+ 3

2

Fn+2

]
,

which is equaivalent to the di�erence equations:

A0Y m −A1Y m−1 − h(B0Fm +B1Fm−1 +B2Fm−2) = 0, (9)

where

A0 =

[
1 0
−1 1

]
, A1 =

[
0 1
0 0

]
,

B0 =

[
4

180 − 1
180

124
180

29
180

]
, B1 =

[
124
180 − 24

180
4

180
24
180

]
, B2 =

[
0 29

180
0 − 1

180

]
,

and the matrix of Ym, Ym−1, Fm, Fm−1 and Fm−2 are given below:

Ym =

[
yn+1

yn+2

]
, Y m−1 =

[
yn−1
yn

]
,

Fm =

[
Fn+ 3

2

Fn+2

]
, Fm−1 =

[
Fn+ 1

2

Fn+1

]
, Fm−2 =

[
Fn−1
Fn

]
.

(10)

Regarding explanation in (5) and (6), it follows that:

ρ(R) = det
[
RA0 −A1

]
, det =

[(
R 0
−R R

)
−
(

0 1
0 0

)]
,
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det =

[
R 1
−R R

]
=
[
R(R− 1)

]
,

where R(R− 1) = 0 and R1 = 0, R2 = 1. Therefore, regarding De�nition 3 the
2PHBM is zero stable.

3.2 Stability region

In this part, the stability property of the 2PHBM with modi�ed composite
Boole's rule is considered. The test equation is given as:

y′(x) = ξy(x) + η

∫ x

0

y(t)dt. (11)

By setting ξ = λ + µ and η = −λµ hence, employed the following alternative
form of (11),

y′(x) = (λ+ µ)y(x) + (−λµ)
∫ x

0

y(t)dt, (12)

and all solutions of (12) tend to zero as x→ 0 if and only if,

λ < 0, µ < 0 when λ, and µ are real,
Re(λ) < 0, when λ(µ) is complex.

Then the stability polynomial of linear VIDEs [Brunner and Lambert (1974)]
can be considered as:

π(r, hξ, h2η) = ρ̃(r)[ρ(r)− hξσ(r)]− h2ησ̃(r)σ(r), (13)

by letting H1 = hξ and H2 = h2η, thus the stability polynomial of linear VIDE
of the second kind will be:

π(r,H1, H2) = ρ̃(r)[ρ(r)−H1σ(r)]−H2ησ̃(r)σ(r). (14)

De�nition 4 : The method is A-stable if and only if the region contains at the
quarter plane hξ < 0, h2η < 0 [Brunner and Lambert (1974)].

In this part, we will need to determine the characteristics polynomial ρ(r), σ(r), ρ̃(r)
and σ̃(r) as follows.
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The point at yn+1 of corrector formula:

ρ(r) = r2 − 1,

σ(r) = − 1

180
r4 +

4

180
r3 +

24

180
r2 +

124

180
r +

29

180
.

(15)

The point at yn+2 of corrector formula:

ρ(r) = r4 − r2,

σ(r) =
29

180
r4 +

124

180
r3 +

24

180
r2 +

4

180
r − 1

180
.

(16)

Boole's rule:

ρ̃(r) = r2 − 1,

σ̃(r) =
14

45
r4 +

64

45
r3 +

24

45
r2 +

64

45
r +

14

45
.

(17)

The stability polynomial is obtained via combination of 2PHBM and modi�ed
composite Boole's rule. Figure 2 illustrates the region and based on De�nition
4, the 2PHBM method is A-stable inside the shaded region. Thus, the region
of absolute stability obtained is plotted below:

Figure 2: Stability region for 2PHBM method

4. Implementation

In this section, the implementation of 2PHBM and Boole's rule [Filiz (2014b)]
to solve VIDE problems. Integrating equation (1) from xn to xn+h for s =
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1,2,..., we have:

y(xn+h) = y(xn) +

∫ xn+s

xn

F (x, y(x), z(x))dx,

z(x) =

∫ x

0

K(x, s, y(s))ds.

(18)

The implementation of corrector formulae for di�erential part is as the follow-
ing:

yn+1 − yn =
h

180

(
29F (xn, yn, zn) + 124F (xn+ 1

2
, yn+ 1

2
, zn+ 1

2
)

+ 24F (xn+1, yn+1, zn+1) + 4F (xn+ 3
2
, yn+ 3

2
, zn+ 3

2
)

− F (xn+2, yn+2, zn+2)
)
,

yn+2 − yn+1 =
h

180

(
− F (xn, yn, zn) + 4F (xn+ 1

2
, yn+ 1

2
, zn+ 1

2
)

+ 24F (xn+1, yn+1, zn+1) + 124F (xn+ 3
2
, yn+ 3

2
, zn+ 3

2
)

+ 29F (xn+2, yn+2, zn+2)
)
.

(19)

Then, the integration part will be calculated using modi�ed Boole's rule as
follows:

zn+1 = zn +
h

90
(7yn + 32yn+ 1

4
+ 12yn+ 1

2
+ 32yn+ 3

4
+ 7yn+1),

where

zn+1 − zn =
h

90

(
7K(xn+1, xn, yn) + 32K(xn+1, xn+ 1

4
, yn+ 1

4
)

+ 12K(xn+1, xn+ 1
2
, yn+ 1

2
) + 32K(xn+1, xn+ 3

4
, yn+ 3

4
)

+ 7K(xn+1, xn+1, yn+1)
)
,

(20)

and given n = 0, 1.

For the next block, values of zn+1 and zn+2 are computed by applying modi-
�ed composite Boole's rule with interpolation schemes. Given n = 2, 4, 6, ...,it
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follows that:

zn+1 =
2h

45

n∑
i=0

ωs
iK(xn+1, xi, yi) +

h

90

(
7K(xn+1, xn, yn)

+ 32K(xn+1, xn+ 1
4
, yn+ 1

4
) + 12K(xn+1, xn+ 1

2
, yn+ 1

2
)

+ 32K(xn+1, xn+ 3
4
, yn+ 3

4
) + 7K(xn+1, xn+1, yn+1)

)
,

zn+2 =
h

90

n+2∑
i=0

ωs
iK(xn+2, xi, yi),

(21)

where ωs
i are Boole's rule of weights 7, 32, 12, 32, ..., 32, 12, 32, 7.

Here, yn+ 1
4
, yn+ 1

2
and yn+ 3

4
are unknown values and they can be formulated

using Lagrange interpolating polynomial at points {xn, xn+1, xn+2}. Hence we
obtain:

yn+ 1
4
= 3Fn + Fn+1 + 6Fn+2,

yn+ 1
2
= Fn + 4Fn+1 + Fn+2,

yn+ 3
4
= 6Fn + Fn+1 + 3Fn+2.

(22)

202 Malaysian Journal of Mathematical Sciences



Numerical Solution of VIDEs by Hybrid Block with Quadrature Rules Method

5. Algorithm

The following is the algorithm on the detail approach of our method.

Algorithm:

1. INPUT: endpoint a, b; value of N ; initial condition y(a) = α, z(0) =
0.

2. OUTPUT: approximation y at N, values of x.

3. Set h = b−a
N ;x0 = a; y0 = α; z0 = 0; OUTPUT (x0, y0, x0).

4. Set x+ ih.

5. For i = 1; for i = 2, .., (N/2), do step 6-8.

6. Calculate for predictor formulae yn+1, zn+1 and yn+2, zn+2; calculate

for off-step point yn+ 1
2
, zn+ 1

2
and yn+ 3

2
, zn+ 3

2
.

7. Compute the solution (corrector formulae) for yn+1, zn+1 and yn+2, zn+2.

8. OUTPUT: (x, y, z) and calculate |y(x0)− y(x)|.

9. STOP.

6. Numerical Results

Four problems of VIDEs have been solved and the results will be compared
with the existing method. The following notations are used in Tables 1-4:

h Step size used

MAXE Maximum error

TFC Total function calls

TS Total of step

Time (s) Execution time in second

2PHBM Two-point hybrid block method with two o�-step point method

RK4 Runge-Kutta method of order four [Filiz (2013)]

RK5 Runge-Kutta method of order �ve [Hossain et al. (2017)]
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Problem 1: The linear of VIDE

y′(x) = 1 + 2x− y(x) +
∫ x

0

x(1 + 2x)et(x−t)y(t)dt,

y(0) = 1, 0 ≤ x ≤ 1.

Exact solution: y(x) = ex
2

.
Source: Agbolade and Anake (2017).

Table 1: Comparison between RK4, RK5 and 2PHBM for Problem 1

h METHOD MAXE TFC TS Time (s)

0.1

RK4 3.5549E-05 40 10 0.0888
RK5 1.3355E-06 50 10 0.0915

2PHBM 7.3365E-06 35 5 0.0695

0.01

RK4 4.3656E-06 400 100 0.1669
RK5 7.9659E-07 500 100 0.1733

2PHBM 1.2033E-07 350 50 0.1101

0.001

RK4 8.6655E-07 4000 1000 1.8667
RK5 2.0366E-07 5000 1000 2.0114

2PHBM 4.3365E-08 3500 500 1.6336

Problem 2: The nonlinear of VIDE

y′(x) = 2x− 1

2
sin(x4) +

∫ x

0

x2tcos(x2y(t))dt,

y(0) = 0, 0 ≤ x ≤ 1.

Exact solution: y(x) = x2.
Source: Majid and Mohamed (2019).

Table 2: Comparison between RK4, RK5 and 2PHBM for Problem 2

h METHOD MAXE TFC TS Time (s)

0.1

RK4 4.3696E-04 40 10 0.0888
RK5 7.8133E-05 50 10 0.1051

2PHBM 4.2217E-05 35 5 0.0833

0.01

RK4 1.2558E-05 400 100 0.1297
RK5 9.3345E-06 500 100 0.1995

2PHBM 4.1200E-05 350 50 0.1351

0.001

RK4 4.9249E-06 4000 1000 1.9191
RK5 4.0030E-06 5000 1000 2.1131

2PHBM 1.3369E-07 3500 500 1.7995
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Problem 3: The nonlinear of VIDE

y′(x) = 1 + y(x)− xe−x
2

+ 2

∫ x

0

xte− y2(t)dt,

y(0) = 1, 0 ≤ x ≤ 1.

Exact solution: y(x) = ex.
Source: Makroglou (1982).

Table 3: Comparison between RK4, RK5 and 2PHBM for Problem 3

h METHOD MAXE TFC TS Time (s)

0.1

RK4 8.5779E-04 40 10 0.0918
RK5 3.4494E-04 50 10 0.0991

2PHBM 4.6697E-05 35 5 0.0829

0.01

RK4 7.6695E-05 400 100 0.1447
RK5 7.6655E-06 500 100 0.1911

2PHBM 9.1200E-06 350 50 0.1031

0.001

RK4 2.6468E-05 4000 1000 1.9787
RK5 1.0032E-06 5000 1000 2.0933

2PHBM 3.2219E-07 3500 500 1.7787

Problem 4: The nonlinear of VIDE

y′(x) = 1− xe−x
2

+ y(x) +

∫ x

0

−2xte−y
2(t)dt,

y(0) = 1, 0 ≤ x ≤ 1.

Exact solution: y(x) = ex.
Source: Hashemi et al. (2018).

Table 4: Comparison between RK4, RK5 and 2PHBM for Problem 4

h METHOD MAXE TFC TS Time (s)

0.1

RK4 4.6697E-04 40 10 0.0977
RK5 4.8886E-05 50 10 0.1003

2PHBM 4.3364E-05 35 5 0.0844

0.01

RK4 7.6655E-05 400 100 0.1299
RK5 1.3795E-05 500 100 0.2011

2PHBM 2.2213E-05 350 50 0.1231

0.001

RK4 1.6655E-05 4000 1000 2.0048
RK5 3.3321E-06 5000 1000 2.1011

2PHBM 1.1133E-07 3500 500 1.8000
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The 2PHBM is compared with RK4 and RK5 in terms of maximum error,
total function calls and execution times. Based on the numerical results ob-
tained in Tables 1-4, the maximum error became smaller when the step size
decrease and we conclude that 2PHBM is better in terms of accuracy compared
to RK4 and RK5. The total steps taken and the number of function calls of
2PHBM are much lesser than RK4 and RK5. The proposed method needs a
smaller number of function evaluations because for each step taken it produced
two approximate solutions. While for the existing methods, each step taken
will produce one approximate solution. In terms of execution time, it is clearly
shown that the time taken for 2PHBM is less than RK4 and RK5 as in Tables
1-4. It is obvious that the 2PHBM is applicable in solving VIDEs as it gives
advantage in decreasing the cost per step. In general, we can conclude that
when h is reduced the approximate solutions are more accurate.

7. Conclusion

The main objective of this research is to solve the �rst order linear and non-
linear VIDEs using 2PHBM with modi�ed composite Boole's rule. Numerical
results have shown that the 2PHBM of order �ve gave comparable results in
term of accuracy but smaller number of total steps and function evaluations.
The 2PHBM is faster in terms of timing compared to RK4 and RK5. The
numerical computation reveal that the 2PHBM is more e�cient and less costly
than RK4 and RK5.
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