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The fundamental problem in data mining is whether the whole information available is 

always necessary to represent the information system (IS). The goal of data mining is to 

find rules that model the world sufficiently well. These rules consist of conditions over 

attributes value pairs called description and classification of decision attribute. However, 

the set of all decision rules generated from all conditional attributes can be too large and 

can contain many chaotic rules that are not appropriate for unseen object classification. 

Therefore the search for the best rules must be performed because it is not possible to 

determine the quality of all rules generated from the information systems. In rough set 

approach to data mining, the set of interesting rules are determined using a notion of 
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reduct. Rules were generated from reducts through binding the condition attribute values 

of the object class from which the reduct is originated to the corresponding attribute. It is 

important for the reducts to be minimum in size. The minimal reducts will decrease the 

size of the conditional attributes used to generate rules. Smaller size of rules are 

expected to classify new cases more properly because of the larger support in data and in 

some sense the most stable and frequently appearing reducts gives the best decision 

rules. 

The main work of the thesis is the generation of classification model that contains 

smaller number of rules, shorter length and good accuracy. The propositional 

satisfiability method in rough classification model is proposed in this thesis. Two 

models, Standard Integer Programming (SIP) and Decision Related Integer 

Programming (DRIP) to represent the minimal reduct computation problem were 

proposed. The models involved a theoretical formalism of the discemibility relation of a 

decision system (DS) into an Integer Programming (IP) model. The proposed models 

were embedded within the default rules generation framework and a new rough 

classification method was obtained. An improved branch and bound strategy is proposed 

to solve the SIP and DRIP models that pruned certain amount of search. The proposed 

strategy used the conflict analysis procedure to remove the unnecessary attribute 

assignments and determined the branch level for the search to backtrack in a non­

chronological manner. 

Five data sets from VCI machine learning repositories and domain theories were 

experimented. Total number rules generated for the best classification model is recorded 
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where the 30% of data were used for training and 70% were kept as test data. The 

classification accuracy, the number of rules and the maximum length of rules obtained 

from the SIPIDRIP method was compared with other rough set method such as Genetic 

Algorithm (GA), Johnson, Holte lR, Dynamic and Exhaustive method. Four of the 

datasets were then chosen for further experiment. The improved search strategy 

implemented the non-chronological backtracking search that potentially prunes the large 

portion of search space. The experimental results showed that the proposed SIPIDRIP 

method is a successful method in rough classification modeling. The outstanding feature 

of this method is the reduced number of rules in all classification models .  SIPIDRIP 

generated shorter rules among other methods in most dataset. The proposed search 

strategy indicated that the best performance can be achieved at the lower level or shorter 

path of the tree search. SIPIDRIP method had also shown promising across other 

commonly used classifiers such as neural network and statistical method. This model is 

expected to be able to represent the knowledge of the system efficiently. 
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Masalah utama dalam melombongi data ialah sarna ada keseluruhan maklumat yang ada 

sentiasa perlu untuk mewakili satu sistem maklumat. Matlamat melombongi data ialah 

mencari petua yang memodelkan alam dengan baik. Petua-petua ini mengandungi 

syarat-syarat ke atas pasangan nilai atribut yang dipanggil deskripsi dan pengelasan 

atribut kataputus. Walau bagaimanapun, set semua petua yang dijanakan dari semua 

atribut bersyarat boleh menjadi terlalu besar dan boleh mengandungi banyak petua yang 

berserabut yang tidak dipaerlukan untuk pengelasan objek baru. Oleh itu pencarian petua 

yang terbaik mesti dilaksanakan kerana adalah tidak mungkin untuk menentukan kualiti 

semua petua yang dijana daripada sistem maklumat. Dalam pendekatan set kasar ke atas 

perlombongan data, set petua yang menarik ditentukan menggunakan notasi reduksi. 

Petua dijana daripada reduksi dengan mengikat nilai atribut syarat kepada satu kelas 
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objek daripada reduksi yang diperolehi, keatas atribut berkaitan. Adalah penting untuk 

reduksi bersaiz minimum. Reduksi minima mengurangkan saiz atribut syarat yang 

digunakan untuk menjana petua. Saiz petua yang lebih keeil dijangka dapat mengelaskan 

kes-kes barn dengan lebih baik kerana sokongan yang lebih besar ke atas data. 

Kerja utama tesis ini ialah penjanaan model pengelasan yang mengandungi bilangan 

petua yang sedikit, petua yang lebih pendek dan ketepatan yang baik. Kaedah kepuasan 

usulan dalam pemodelan pengelasan kasar dicadangkan di dalam tesis ini. Dua model, 

Standard Integer Programming (SIP) dan Decision Related Integer Programming (DRIP) 

untuk mengira reduksi minimal dibineangkan. Model-model tersebut melibatkan satu 

formalisma teoritikal keatas hubungan ketaksamaan bagi satu sistem kataputus kepada 

satu model pengaturcaraan integer. Model yang dicadangkan kemudiannya di bina di 

dalam rangka kerja penjanaan petua lalai menghasilkam satu kaedah pengelasan kasar 

yang barn. Satu strategi cabang dan sempadan dicadangkan untuk menyelesaikan model­

model SIPIDRIP untuk mengurangkan sebilangan jumlah carian. Strategi yang 

dicadangkan menggunakan tatacara analisis knoflik untuk memangkas umpukan atribut 

yang tidak perIu dan menentukan paras cabang untuk carian jejak kebelakang dengan 

keadaan tidak bertertib. 

Lima set data dari Uel machine learning repositories and domain theories diuji. Jumlah 

petua yang dijana untuk model pengelasan terbaik direkod iaitu 30% daripada data 

digunakan untuk latihan dan 70% lagi disimpan sebagai data ujian. Ketepatan 

pengelasan, bilangan petua dan panjang maksimum petua yang diperolehi daripada 

kaedah SIPIDRIP dibandingkan dengan kaedah set kasar yang lain seperti kaedah 

vii 



algoritma genetik, Johnson, HoltelR, Dynamic dan Exhaustive. Empat daripada set data 

kemudian dipilih untuk eksperimen seterusnya. Set data latihan kemudiannya 

dieksperimen ke atas strategi carian yang dicadangkan. Strategi pembaikan carian 

tersebut melaksanakan carian jejak kebelakang tak tertib yang berpotensi mengurangkan 

sebahagian besar ruang carian sambi! mengekalkan carian lengkap. Hasil eksperimen 

menunjukkan kaedah SIPIDRIP merupakan kaedah yang berjaya dalam memodelkan 

pengelasan kasar. Satu fitur yang terbaik ialah bilangan petua yang minimum dalam 

semua model pengelasannya. Kaedah SIPIDRIP juga menjana petua yang terpendek 

dalam kebanyakan set data. Strategi carian yang dicadangkan menunjukkan pencapaian 

yang terbaik boleh diperolehi pada paras carian pohon yang lebih bawah atau laluan 

yang lebih pendek. Kaedah SIPIDRIP juga menunjukkan hasil yang setanding dan lebih 

baik berbanding dengan kaedah pengelasan yang biasa digunakan iaitu rangkaian neural 

dan kaedah statistik. Model ini dijangka dapat mewakili pengetahuan sistem secara 

cekap. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

As the amount of information in the world is steady increasing, there is a 

growing demand for tools for analyzing the information with the aim of finding patterns 

in terms of implicit dependencies in data. Realizing that much of the collected data will 

not be handled or even seen by human beings, systems that are able to generate 

summaries from large amount of information will be important currently. Although 

several statistical techniques for data analysis were developed long ago, advanced 

techniques for intelligent data analysis are not yet mature. As a result, there is a growing 

gap between data generating and data understanding. On a high level, different 

formalisms for machine learning that uses the notion of knowledge are expected to be 

able to extract interesting and useful patterns from large collection of data. Several 

different paradigms have been developed over the years. 

The concept of knowledge discovery has recently been brought to attention of the 

business community. One main reason for this is the need of the general recognition that 

perform the nontrivial extraction of implicit, previously unknown, and potentially useful 

information from data. The term data mining is used to denominate the process of 

automatic extraction of information in knowledge discovery process. In this thesis, the 

extracted knowledge is represented as a set of propositional rules that that can be 
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formally defined as a relationship between a set of attribute values and a decision. Rules 

are the easiest pattern for human interpretation and understandings. A set of 

propositional rules forms a model, which explains how different values for the attribute 

lead to different decisions. Two main tasks for which the model is useful are prediction 

and classification. Basically prediction involves using some variables or fields in the 

database to predict unknown or future values of other variables of interest. Classification 

is the process of finding the common properties among different objects and classifying 

the objects into classes. 

Classification is probably the most well known data mining problem. It has been 

widely studied by researchers in the artificial intelligence (AI) field. The database 

community focuses on searching efficient classification algorithms. Their work involves 

either developing new and efficient classification algorithms (Agrawal et aI., 1 992; 1 993) 

or further advancing the existing AI techniques for example extracting rules in "if . . .  

then . . .  " form that can be applied to large database. In the real world applications, the 

number of attributes of a dataset could be very large. It is common for a class label of an 

object depends only on the values of a few attributes. In such cases, presenting the 

original data with all the attributes into a classifier may confuse the classifier to generate 

unnecessary complex classification rules. The knowledge extraction in the classification 

context is the process of selecting the most important attributes from the information 

systems or a dataset. 

There are few advantages if a small set of attributes can be determined before the 

actual objects are fed into a classifier. First, the time required to extract rules is reduced 
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because a smaller input data set compared to the original one. For example, if neural 

networks are used for classification, less number of attributes means less number of 

nodes at the input layer and less training time required. For decision tree based 

classifiers, less number of attributes means less computation required for classification 

criteria and less comparison is made. Secondly, as the attributes that do not contribute to 

the classification are removed, the rules generated by the classifiers are expected more 

concise than the original dataset used (Lu et aI. ,  1995). 

With a number of the classification algorithms available, a natural task is 

developed appropriate performance metrics that can be used to compare the goodness of 

these algorithms. Classification accuracy is the most important performance metric of a 

classification method. It is defined as the ratio between the number of correctly 

classified objects and the total number of objects in the test set. However when two 

different methods are applied to the same classification problem, they most likely will 

extract different set of rules. Certain criteria need to be introduced to compare the 

goodness of the extracted rules. An ideal rule set has a minimum number of rules and 

each rule is as short as possible. In practice, it is quite often that a rule set contains fewer 

rules but they usually have more conditions. Therefore, shorter rules should rather be 

generated although they will not be perfect on the known cases there are good chances 

of good classification quality when classifying new cases. 




