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Abstract of dissertation presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirements for the degee of Doctor of Philosophy.

DIELECTRIC PROPERTIES OF HEVEA RUBBER LATEX
By
JUMIAH HASSAN

FEBRUARY 1999

Chairman: Associate Professor Hj. Kaida bin Khalid, Ph.D.

Faculty:  Science and Environmental Studies

The dielectric properties of Hevea Rubber Latex have not been thoroughly
investigated and are, therefore, not well understood. It is a biological product
with a complex composition. A typical composition of freshly tapped natural
rubber is made up of 50-80% water, 18-45% rubber hydrocarbon and 2-5% non-
rubber constituents. The basic components of non-rubber constituent are
proteins, lipids, quebrachitol and inorganic salts. Measurements of the dielectric
properties at various moisture contents and temperatures -20 to -60°C in the low-
frequency region of 107 to 10° Hz were done using the Dielectric Spectrometer.
The results of the measurement in the low-frequency region are expressed using
the dielectric response model. For Hevea rubber latex, three distinct responses
have been indicated. These are the real relative permittivity at high frequency

(), the loss peak response &,, and the conductance G . The total losses are

Xxii



conductive losses which arise due to the conducting phases found in latex, and
dipolar losses which appear as loss peak responses due to the relaxation of the

water molecules.

The relaxation peak is shifted to a higher frequency as water content in the
latex decreases and as temperature increases. This phenomenon could be due to
the difference in the mechanism of polarisation relating to ion and the polarisation

relating to ice.

The activation energy for latex concentrate is 1.66 eV while for fresh latex
2.34 eV. Ice has a non-constant activation process. This is due to the existence
of two activation processes. The first activation process gives an activation
energy of 0.51 eV whilst the second activation process results in a much lower
activation energy. The high activation energy for fresh latex as compared to ice
could be due to latex particles being bonded by the water molecules which needs

more energy to dissociate.

In the microwave region of 0.2 to 20 GHz, dielectric measurements were
done using an open-ended coaxial sensor and an automated network analyser at
various moisture contents and temperatures from -30 to S0°C. Experimental

results in the microwave region show that in the liquid state a conductive loss due

xxiil



water molecules. However, at 10 GHz there is a good relationship between the
dielectric properties of hevea latex and moisture content and is almost unaffected
by the non-rubber constituents, presevatives and temperature Therefore, 10 GHz
is the most suitable frequency for the analysis and design of the microwave
moisture meter or latexometer There is a steep increase in the real relative
permittivity of about one order of magnitude and dielectric loss factor of about

two orders as the phase of latex changes from solid to liquid

The effect of temperature on the conductive losses and dipole orientation
can be clearly seen in the studies These results are compared with the values
predicted by the biphase dielectric mixture model recommended by Weiner,
Bruggeman and Krazewski All the measured values lie within the Weiner’s
boundaries and they are well below and close to the upper limit of the Weiner’s
model The study suggests that the dielectric properties of Hevea latex are mainly
due to the orientation of loosely bound water molecules and the shape of the

molecules is assumed to be ellipsoidal

The dielectric properties of Hevea latex will also be useful in estimating
microwave absorption during microwave heating, drying and curing operations

and to study the degree of binding of the water molecules.

AV



Abstrak dissertasi yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SIFAT DIELETRIK SUSU GETAH
Oleh
JUMIAH HASSAN
February 1999
Pengerusi: Profesor Madya Hj. Kaida bin Khalid, Ph.D.

Fakulti:  Sains dan Pengajian Alam Sekitar

Sifat-sifat dieletrik susu getah belum dikaji dengan begitu mendalam, maka
pemahaman megenainya amatlah kurang. Susu getah adalah hasil biologi yang
mempunyai komposisi kompleks. Kebiasaannya, komposisi bagi susu getah yang
baru ditoreh mengandungi 50-80% air, 18-45% hidrokarbon dan 2-5% bahan
bukan getah  Komponen asas bahan bukan getah adalah protein, lipid,
quebrachitol dan garam inorganik. Pengukuran sifat dielektrik pada kelengasan
yang berbeza dan suhu -20 ke -60°C pada rantau frekuensi-rendah 10” hingga 10°
Hz dibuat dengan menggunakan Spektrometer Dielektrik Keputusan pengukuran
dalam rantau frekuensi-rendah diungkapkan dengan menggunakan model
sambutan dielektrik. Bagi susu getah, tiga proses yang berbeza telah dikenalpasti

Ini adalah pemalar dielektrik pada frekuensi tinggi £(), sambutan kehilangan

puncak &, dan konduktans G. Jumlah kehilangan adalah kehilangan

konduktiviti yang di sebabkan wujudnya fasa kekonduksian di dalam susu getah
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