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Abstract of the dissertation submitted to the Senate of Universiti Putra Malaysia in
fulfilment of the requirements for the degree of Doctor of Philosophy.
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Runge-Kutta methods for the solution of systems of ordinary differential
equations (ODEs) are described. To overcome the difficulty in implementing fully
implicit Runge-Kutta method and to avoid the limitations of explicit Runge-Kutta
method, we resort to Singly Diagonally Implicit Runge-Kutta (SDIRK) method,
which is computationally efficient and stiffly stable. Consequently, embedded
SDIRK methods of fourth order five stages in fifth order six stages are constructed.
Their regions of stability are presented and numerical results of the methods are

compared with the existing methods.

Stiff systems of ODEs are solved using implicit formulae and require the use

of Newton-like iteration, which needs a lot of computational effort. If the systems
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can be partitioned dynamically into stiff and nonstiff subsystems then a more
effective code can be developed. Hence, partitioning strategies are discussed in
detail and numerical results based on two techniques to detect stiffness using

SDIRK methods are compared.

A brief introduction to delay differential equations (DDEs) is given. The
stability properties of SDIRK methods, when applied to DDEs, using Lagrange

interpolation to evaluate the delay term, are investigated.

Finally, partitioning strategies for ODEs are adapted to DDEs and numerical

results based on two partitioning techniques, intervalwise partitioning and

componentwise partitioning are tabulated and compared.
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PENYELESAIAN BERANGKA BAGI PERSAMAAN
PEMBEZAAN BIASA DAN LENGAH
MENGGUNAKAN KAEDAH
RUNGE-KUTTA
Oleh
FUDZIAH BT ISMAIL

April 1999

Pengerusi:  Profesor Mohamed bin Suleiman, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Kaedah Runge-Kutta untuk penyelesaian sistem persamaan pembezaan biasa
(PPB) diterangkan. Untuk mengatasi kerumitan dalam melaksanakan kaedah
Runge-Kutta sepenuh tersirat dan untuk menghindarkan kekurangan yang ada pada
kaedah Runge-Kutta tak tersirat, kami menumpukan sepenuh perhatian terhadap
kaedah Runge-Kutta pepenjuru tunggal tersirat yang lebih efisien serta stabil kaku.
Justeru itu, kaedah terbenam Runge-Kutta pepenjuru tunggal tersirat (RKPTT)
peringkat empat tahap lima dalam peringkat lima tahap enam diterbitkan. Rantau
kestabilannya diberikan dan keputusan berangka bagi kaedah tersebut dibandingkan

dengan keputusan berangka bagi kaedah yang sedia ada.

Sistem persamaan pembezaan biasa kaku biasanya diselesaikan dengan

kaedah tersirat dan melibatkan lelaran Newton serta memerlukan pengiraan yang

XV



banyak. Andainya sistem tersebut boleh dipetakkan kepada sistem kaku dan tak

kaku, maka suatu kod penyelesaian yang lebih efektif dapat dibentuk. Oleh itu
strategi pemetakan dibincangkan secara mendalam dan keputusan berangka kaedah

RKPTT berdasarkan dua teknik mengesan kekakuan dibandingkan.

Pengenalan ringkas kepada persamaan pembezaan lengah (PPL) diberikan
dan sifat kestabilan kaedah RKPTT bila digunakan keatas PPL menggunakan

interpolasi Lagrange untuk mengira sebutan lengahnya dikaji.

Akhir sekali strategi pemetakan bagi PPB diadaptasikan kepada PPL dan

keputusan berangka berdasarkan dua teknik pemetakan, iaitu pemetakan berselang

dan pemetakan berkomponen, dijadualkan dan dibandingkan.
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CHAPTER 1

INTRODUCTION AND OBJECTIVES

Introduction

Many important and significant problems in engineering, the physical
sciences and the social sciences can be formulated in terms of differential
equations. The problems of the bending of a thin beam clamped at both ends, the
steady state flow of viscoelastic fluid parallel to an infinite plane surface with
uniform sunction and some problems in control theory can be formulated in terms
of differential equations. Differential equations also appear naturally in the field of
medicine. For example, the blood glucose regulatory system can be modeled into
differential equations to obtain a fairly reliable criterion for the diagnosis of
diabetes. A system of differential equations also govern the spread of epidemic in a
population, this model enables researchers to prove the famous “ threshold theorem
of epidemiology” which states that an epidemic will occur only if the number of

people susceptible to the disease exceeds a certain threshold value.

Very often, mathematical problems cannot be conveniently solved using

exact formulae, hence numerical methods are used as an alternative. This is the



technique widely used by scientists and engineers to solve their problems.
Analytical methods usually give a result in the form of mathematical functions that
can then be evaluated for specific instances, hence the behaviour and properties of
the functions are often apparent. However results from numerical methods can be
plotted to show some of the behaviour of the solution. Though results from

numerical methods are approximations, they can be made as accurate as desired.

In the following sections, we give a brief review on differential equations

and also numerical methods to solve them.

The Initial Value Problem

Consider the initial value problem (IVP) for a system of s first order

ordinary differential equations (ODEs), defined by
y'=fxy), y@) =1, [1.1]
where  y=[y,(x), y,(x),, ¥, (0]
fOY) =1H06Y)en £, xela,b]

and 77 = [771,.”,%]1 is a known vector.

Theorem ( Existence and Uniqueness )
For (IVP) [1.1], let

(1) f(x,y) be continuous in a domain D, where

D ={(x,y)|a < x <b,|y| < o}



(2) There exists L>0 such that
If () - f(x.2)| < Ly-2] forall(x,y)eD
and (x,z) e D.

Then there exists a unique function y(x), which satisfies the (IVP) [1.1].

For proof, see Henrici (1962). In this work, we shall assume the problem in [1.1]

satisfies the conditions of the Existence and Uniqueness theorem.

The Discrete Variable Methods

The exact solution of the (IVP) [1.1] can be approximated using a numerical

method, that is, the method will yield a sequence of approximations y, = y(x,) on

the set of points x,,, = x,

The simplest way of advancing the solution from the point x,to x,,, is by
Taylor series.

Y(x,) = y(x,)+hA(x,,y,:h),

3

h
where A(x, y;h) = y'(x)+ %y"(x)+? y"(x)+ O(h*).

If the series is truncated and y(x,) is replaced by y, further approximation can be
obtained

yn+1 zy,,"”hq)(xn»y,,;h), n=0,1,2,...



h he!
where ®(x,y,h) = f(x,y)+ Ef’(x, y)+,...,+—'f“””(x, y).
p!

For p=1, we have the formula
yn+1 = yn +hf(xn’yn)

which is the well known Euler method, and if p=2,

Vet = Y +h[f(x,.,y,,)+§(fx(xn,yn)+fy oy ) ().

Runge (1895), Heun (1900) and Kutta (1901) introduced an idea which is
equivalent to constructing a formula for @ which agrees with A as closely as
possible, without involving derivatives of f. This process of “matching” the Taylor
series can be illustrated by setting

D(x,y,h) =b, f(x,y)+b, f(x+hc,,y +a, f(x,y)),
where b,,b,,c, and a, are constants to be determined. Expanding both @ and

A in powers of h, we obtained

D(x, y,h) = (b, +b,) f (x, 9) + hb,[c, (%, ) +ay, f, (x, ) f (£, M1+ OR*)  [1.2]

AR = £ )+ UL () + £, (5 ) ]+ OUR),

yielding equation

1 1
b]+b2=1, bzcz =—2-, b2a2,=§

The expression [1.2] and the above matching process can be extended to involve m
equations of f yielding the general m-stage explicit Runge-Kutta method. Kutta
(1901) completely characterized the set of Runge-Kutta methods of order 4 and

proposed the first method of order 5.



When y,,, is obtained by the Runge-Kutta method, the approximation y,

is then discarded. The method which makes direct use of some of the previously

computed values of y, is the multistep method. A linear multistep method of

stepnumber k or k-step method is a computational method for determining the
sequence {y, } which takes the form of a linear relationship between y, . and f, .

J =0,1,...,k. The general linear multistep method may be written as

k

k
Zoajynw‘ = hZﬁffn+,~ :
-

j=0
The method is explicit if 4, =0 and implicit otherwise. Euler method is an explicit
linear one-step method.

Taylor series for y(x,_,

’ h2 " h3 m 4
yx, ) ) R ” ) . O h
Subracting it from the Taylor series for y(x,,,
h3
V(X —y"(x,) +...

3

replacing y(x,) by y,, yielding

yn+l =yn~l +2hfn

or in standard form, it can be written as

yn+2 = yn +2hfn+l'
. . . . . . 1 " .
This is the Mid-point rule, which local truncation error is i§h3 y"(x,)and it is an

explicit 2-step method. In order to generate a sequence { y, } it is necessary to



obtain two starting values y, and y,. Other methods used are the block methods

and the hybrid methods. Further information on all the methods can be obtained
from Lambert (1973) and Hall and Watt (1976). The details of the literature review

will be given at the beginning of the relevant chapters namely Chapter II, III, V and

VL

Runge-Kutta Method

A number of different approaches have been used in the analysis of Runge-
Kutta methods, but the commonly used is the one developed by Butcher (1963),

following on the work of Gill (1951) and Merson (1957), and it is as follows.

Let ¢t denote the set of all rooted trees (f), where the trees are drawn with the
root at the bottom. Refer to certain particular trees whose names are designated as
t,, t* andt,,, where

k-1
——

= q/. (k vertices)




Foreach !€T form a quantity £(1)(¥,.1) which is given by associating

: (n) i . (
each vertex of ¢, the nth linear operator " (¥a1) which is written as f

the number of upward growing branches from this vertex. Thus

Ft),) =" (fr )
h_v_—._l

k-1

FU')y,)=(f")'F,

One further example is for the tree

for which F(t)(y,.,)=f"(f"(f.f' N f"(f F. ).
For each of the trees defined three numbers, they are
r(t) ~ the number of vertices in ¢
o(t) ~ the order of the symmetry group of ¢
y(t) ~the product of r(u) over u, where for each vertex ¢, u is the sub tree
formed from that vertex and all vertices can be reached from it following
upward growing branch.

With this terminology, the formal Taylor series for y(x,) can be written

as follows.

hr(l)
YO R =Y G) D S OG)

=y, +hf +gf’(f)+h3(%f”(f,f)+%f’(f’(f)))+O(h“)



With each tree ¢ associate a polynomial ®(¢), by attaching labels ijk,.. to
each of the vertices of ¢ , where i is the node. Form the product of b, and of a,

for each upward growing branch from j to &, and then sum over each label.

For example for the tree

@) = Zbiaijajlajkakmakn but ¢, = ;aﬂ‘

Therefore @(¢) = Zba‘.c a,c;

i gk

To obtain the value of y(¢) for a particular ¢, associate a value 1 to all the

terminal vertices and a value i +1 with all vertices for which i is the sum of the
numbers attached to vertices which branch outwards from this one. The value of

y(t) is simply the product of the integers associated with each vertex. For the

above tree, we have

y(t)=90

The necessary and sufficient condition for the order of the method to be q is

that @(t) = % for all ¢+ with no more than g vertices. This approach will be
y(t

explained further in Chapter II.



