

UNIVERSITI PUTRA MALAYSIA

ANNEALING EFFECTS ON THE MAGNETORESISTANCE CHARACTERISTICS- OF SPUTTERED FeNi-Cr GRANULAR MAGNETIC THIN FILMS

KHOO SUAT PHIN

FSAS 1999 10

ANNEALING EFFECTS ON THE MAGNETORESISTANCE CHARACTERISTICS OF SPUTTERED FeNi-Cr GRANULAR MAGNETIC THIN FILMS

KHOO SUAT PHIN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

1999

ANNEALING EFFECTS ON THE MAGNETORESISTANCE CHARACTERISTICS OF SPUTTERED FeNi-Cr GRANULAR MAGNETIC THIN FILMS

By

KHOO SUAT PHIN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

June 1999

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and sincere gratitude to my supervisor Prof. Madya Dr. Abdul Halim Shaari for his supervision, fruitful discussion, interest and constant encouragement during the course of this project and in the preparation of this report.

My thanks also go to Universiti Malaya and Universiti Kebangsaan Malaysia for giving permissions to use their X-ray diffraction facilities. Thanks are also due to Encik Azhari Ibrahim and Cik Zulina for help.

I would also like to convey my sincere thanks to the Ministry of Science and Technology of Malaysia and Assoc. Prof. Dr. Abdul Halim Shaari for funding this research through its IRPA programme.

Lastly, I would like to express my gratitude to members of the Physics Department and friends for their co-operations in this project.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	х
LIST OF PLATES	XV
LIST OF ABBREVIATIONS AND SYMBOLS	xvi
ABSTRACT	xix
ABSTRAK	xxi

CHAPTER

I	INTRODUCTION	1
	Magnetic Thin Film	1
	Introduction to Thin Films	1
	Multilayered Magnetic Thin Film	1
	Granular Magnetic Thin Film	2
	The Application of Magnetic Thin Film	2
	The Objectives of this Project	3
П	THEORY AND LITERATURE REVIEW	5
	General History of Magnetic Thin Film	5
	Giant Magnetoresistance (GMR)	6
	Introduction to Giant Magnetoresistance	
	(GMR)	6
	The Definition of Giant Magnetoresistance	
	(GMR)	7
	The Cause of Giant Magnetoresistance	8
	The Many Faces of GMR	9
	Spin-Dependent Electron Scattering	11
	Model Calculations	13
	Thin Film Growth Process	17
	Structural Consequences of the Growth Process	20
	Density	21
	Adhesion	21
	Mechanisms of Sputtering	22
	Classification of Deposition Process	22
	Materials and Device Technology	25
	Sputtering	25
	Sputtered Films Incorporated RF	
	Magnetron Sputtering	25
	DC Diode Sputtering / RF Diode Sputtering	26
	Thermal Process	26
	Resistive Heating	26
	Laser Deposition	27

Molecular Beam Epitaxy (MBE)	27
Ion Plating	27
Activated Reactive Evaporated (ARE)	28
Ionized Cluster Beam Deposition (ICBD)	28
Chemical Process - Chemical Vapor Deposition	28
Sputtering	29
Theories of Sputtering	29
Mechanism of Sputtering	29
Coulomb Scattering	30
Principles of Plasma Discharges	31
Plasma	31
DC Glow Discharge	33
Glow Discharge	34
Glow Discharge in a Magnetic Field	36
Plasma in a Glow Discharge	37
Plasma Sheaths	38
Magnetron Configuration	40
Main Advantages of Sputtering as a Thin Film	
Preparation Technique	41
X-Ray Diffraction	42
METHODOLOGY	44
Experimental Details	44
Magnetron Sputtering	45
The Experimental Setup of Sputter Deposition	46
Compound Target	47
SEM/EDX : Scanning Electron Microscopy with X-	
Ray Microanalysis - Technique Description	49
X-Ray Diffraction Analysis	51
Four Point Probe	51
RESULTS AND DISCUSSIONS	53
Ferum-Nickel Concentration	53
As-Deposited Samples	53
First Annealing	55
Comparison between Series A,B and C	65
Second Annealing	68
Results on Films Showing MR in the As-	
Deposited State and After the First and	
Second Annealing	7 6
Power	79
Series F : MR of As-Deposited FeNi-Cr Thin	
Films Prepared by Using different RF Power.	79
Series G: MR of Annealed FeNi-Cr Thin	
Films Prepared by Using Different RF Power	
and Annealed at 400°C for 1 hour	81
X-Ray Diffraction (XRD)	8 6
Scanning Electron Microscopy (SEM)	105

Ш

IV

	Energy Dispersive Analysis (EDAX)	107
V	CONCLUSIONS AND SUGGESTIONS	112
	Conclusions	112
	Suggestions for Future Research	113
BIBLIOGRAP	'НҮ	115
APPENDIX		
А	The Machines Used	120
В	The Experimental Data	123
С	X-Ray Diffraction Profiles of 99.9% Pure Iron (Fe)	
,	and Nickel (Ni) Foils	139
D	The Derivation of a Formula	142
Е	Published Paper	143
VITA		150

LIST OF TABLES

Table		Page
1.	Thin-Film Applications	3
2.	The Colors at the Cathode Layer, Negative Glow and Positive Column for Argon Gas	37
3.	Area of Each Element, Fe, Ni and Cr	51
4.	Area Ratio of Each Element, Fe, Ni and Cr	51
5.	Various Composition of Fe, Ni and Cr by Using Energy Dispersive Analysis (EDAX)	51
6.	The Composition of (FeNi) ₄₀ Cr ₆₀ by Using Energy Dispersive Analysis (EDAX)	112
7.	The Composition of (FeNi) ₄₂ Cr ₅₈ by Using Energy Dispersive Analysis (EDAX)	113
8.	The Composition of (FeNi) ₅₂ Cr ₄₈ by Using Energy Dispersive Analysis (EDAX)	114
9.	The Composition of (FeNi) ₅₅ Cr ₄₅ by Using Energy Dispersive Analysis (EDAX)	115
10.	The Composition of (FeNi) ₅₇ Cr ₄₃ by Using Energy Dispersive Analysis (EDAX)	116
11.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample, (FeNi) ₄₀ Cr ₆₀ . (Series A)	126
12.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample, (FeNi) ₄₂ Cr ₅₈ . (Series A)	126
13.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample, (FeNi) ₅₂ Cr ₄₈ . (Series A)	127
14.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample, (FeNi)55 Cr45. (Series A)	127

15.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample, $(FeNi)_{57} Cr_{43}$. (Series A)	127
16.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various FeNi Composition, 40% - 57% FeNi. (Series A)	128
17.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 450°C for 1 hour, (FeNi) ₄₀ Cr_{60} (Series B)	128
18.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 450°C for 1 hour, (FeNi) ₄₂ Cr ₅₈ (Series B)	128
19.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 450°C for 1 hour, (FeNi) ₅₂ Cr ₄₈ (Series B)	129
20.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 450°C for 1 hour, (FeNi) ₅₅ Cr ₄₅ (Series B)	129
21.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 450°C for 1 hour, (FeNi) ₅₇ Cr ₄₃ (Series B)	129
22.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various FeNi Composition, 40% - 57% FeNi. (Series B)	130
23.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 400°C for 1 hour, (FeNi) ₄₀ Cr ₆₀ (Series C)	130
24.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 400°C for 1 hour, (FeNi) ₄₂ Cr58 (Series C)	130

25.	Experimental Results of $R(0)$, $R(H)$ and Calculated Values of MR, $R(0)$ - $R(H)$ for Various Magnetic Field (T) of First Annealed Sample at 400°C for 1 hour, (FeNi) ₅₂ Cr ₄₈ (Series C)	131
26.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 400°C for 1 hour, (FeNi) ₅₅ Cr ₄₅ (Series C)	131
27.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of First Annealed Sample at 400°C for 1 hour, (FeNi) ₅₇ Cr ₄₃ (Series C)	131
28.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various FeNi Composition, 40% - 57% FeNi. (Series C)	132
29.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₄₀ Cr _{60.} (Series D)	132
30.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₄₂ Cr ₅₈ (Series D)	132
31.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₅₂ Cr_{48} (Series D)	133
32.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₅₅ Cr_{45} (Series D)	133
33.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₅₇ Cr ₄₃ (Series D)	133
34.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various FeNi Composition, 40% - 57% FeNi. (Series D)	134

35.	Experimental Results of $R(0)$, $R(H)$ and Calculated Values of MR, $R(0)$ - $R(H)$ for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₄₀ Cr ₆₀ (Series E)	134
36.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₄₂ Cr ₅₈ (Series E)	134
37.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₅₂ Cr ₄₈ (Series E)	135
38.	Experimental Results of $R(0)$, $R(H)$ and Calculated Values of MR, $R(0)$ - $R(H)$ for Various Magnetic Field (T) of Second Annealed Sample at 390°C for 2 hours, (FeNi) ₅₅ Cr ₄₅ (Series E)	135
39.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of Second Annealed Sample at 450°C for 2 hours, (FeNi) ₅₇ Cr ₄₃ (Series E)	135
40.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Variou s FeNi Composition, 40% - 57% FeNi. (Series E)	136
41.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample at RF Power, 40W. (Series F)	136
42.	Experimental Results of $R(0)$, $R(H)$ and Calculated Values of MR, $R(0)$ - $R(H)$ for Various Magnetic Field (T) of As-Deposited Sample at RF Power, 50W. (Series F)	136
43.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various Magnetic Field (T) of As-Deposited Sample at RF Power, 60W. (Series F)	137
44.	Experimental Results of R(0), R(H) and Calculated Values of MR, R(0)-R(H) for Various RF power, 40W-60W (Series F)	137

LIST OF FIGURES

Figure		Page
1.	Annealing Scheme	4
2.	GMR Nanostructures (Left) and Their Magnetoresistance Behaviour (Right) of Antiferromagnetically Coupled Multilayer	9
3.	GMR Nanostructures (Left) and Their Magnetoresistance Behaviour (Right) of Granular Alloy	10
4.	Giant Magnetoresistance in Terms of Spin-Dependent Electron Scattering (Top Diagrams) and Represented by an Equivalent Resistance Circuit (Bottom Diagrams)	11
5.	Three Modes of Thin Film Growth Process	20
6.	Thin Film Deposition Process	23
7.	Physical Sputtering Process	24
8.	The Processes That Lead to Large-Angle Coulomb Scattering : (a) Single Large Angle Event; (b) Cumulative Effec of Many Small-Angle Event	et . 31
9.	Schematic View of (a) a Plasma and (b) a Discharge	32
10.	Luminious Zones, Dark Spaces, Potential V, Electric Field Strength X, Discharge. (V_a : Anode Fall, V_c : Cathode Fall)	34
11	Cycloidal Motion of Electrons in a Magnetic Field	37
12.	 The Formation of Plasma Sheaths : (a) Initial Ion and Electron Densities and Potential; (b) Density, Electric Field, and Potential After Formation of the Sheath	38
13.	DC Discharges Used for Sputtering: Planar Magnetron Discharge where $r =$ The Gyration Radius $r_{1,r_2} =$ Radii of Magnetic Field Line w = Ring Width s = Sheath Width	40
14	Geometry of Bulk Diffraction from a Stack of x-y Atomic Planes: Real-Space Construction	42

15.	Planar Magnetron Sputtering System : A, Anode; T, Target; P, Plasma; M, Magnet; E, Electric field; B, Magnetic field	45
16.	Typical Setups for Film Deposition Sputtering : Glow Discharge	47
17.	The Top View of a Planar Disk Target in a Magnetron Discharge	47
18.	Signals from Specimens	50
19.	Experimental Setup of XRD	51
20.	Schematic Diagram of a Four Point Probe for Measuring the Magnetoresistance Change of the Thin Films	52
21.	Magnetoresistance Curves of As-Deposited Samples for Various FeNi Concentration (Series A)	54
22.	The Changes in MR Ratio between Samples of 40% FeNi and 57% FeNi as a Function of Magnetic Field of As-Deposited Samples (Series A)	56
23.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of FeNi Concentration of As-Deposited Samples (Series A)	57
24.	MR Curves of Samples Annealed at 450°C for Various FeNi Concentration (Series B: First Annealing at 450°C for 1 hour)	58
25.	The Changes in MR Ratio between Samples of 40% FeNi and 57% FeNi as a Function of Magnetic Field (Series B: First Annealing at 450°C for 1 hour)	60
26.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function FeNi Concentration of Samples After First Annealing at 450°C (Series B: First Annealing at 450°C for 1 hour)	61
27.	MR Curves of Samples Annealed at 400°C for Various FeNi Concentration (Series C: First Annealing at 400°C for 1 hour)	63
28.	The Changes in MR Ratio between Samples of 40% FeNi and 57% FeNi as a Function of Magnetic Field (Series C: First Annealing at 400°C for 1 hour)	64
29.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of FeNi Concentration of Samples After First Annealing at 400°C (Series C: First Annealing at 400°C for 1 hour)	66

30.	MR Ratio as a Function of FeNi Concentration Under Various Annealings	67
31.	MR Curves of Samples After Two Annealings (Series D: First Annealing at 450°C for 1 hour and Second Annealing at 390°C for 2 hours)	69
32.	The Changes in MR Ratio between Samples of 40% FeNi and 57% FeNi Concentration as a Function of Magnetic Field (Series D: First Annealing at 450°C for 1 hour and Second Annealing at 400°C for 2 hours)	71
33.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of FeNi Concentration for Samples After Two Annealing (Series D: First Annealing at 450°C for 1 hour and Second Annealing at 400°C for 2 hours)	72
34.	MR Curves of Samples after Two Annealings (Series E: First Annealing at 400°C for 1 hour and Second Annealing at 390°C for 2 hours)	74
35.	The Changes in MR Ratio between Samples of 40% FeNi and 57% FeNi as a Function of Magnetic Field (Series E: First Annealing at 400°C for 1 hour and Second Annealing at 390°C for 2 hours)	75
36.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of FeNi Concentration for Samples after Two Annelings (Series E: First Annealing at 450°C for 1 hour and Second Annealing at 390°C for 2 hours)	77
37.	Magnetoresistance (MR) Ratio as a Function of FeNi Concentration after Various Annealings	78
38.	Magnetoresistance (MR) Ratio as a Function of FeNi Concentration after Various Annealings	80
39.	Magnetoresistance (MR) Curves for As-Deposited Samples (Series F) Prepared by Using Different RF Power	82
40.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of RF Power of As-Deposited Samples (Series F)	83
41.	MR curves for Various of Annealed Samples at 400°C for 1 hour (Series G). These Samples are Prepared by Using Different RF Power	84

42.	R(0), R(0)-R(H) and MR Ratio at 1 Tesla as a Function of RF Power of First Annealed Samples at 400°C for 1 Hour (Series G)	85
43.	X-Ray Diffraction Profiles for the 40% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 450°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	88
44.	X-Ray Diffraction Profiles for the 42% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 450°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	89
45.	X-Ray Diffraction Profiles for the 52% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 450°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	90
46.	X-Ray Diffraction Profiles for the 55% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 450° C, t = 1 hour; (b) Second Annealing: 390° C, t = 2 hours	91
47.	X-Ray Diffraction Profiles for the 57% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 450° C, t = 1 hour; (b) Second Annealing: 390° C, t = 2 hours	92
48.	X-Ray Diffraction Profiles for the 40% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 400°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	94
49.	X-Ray Diffraction Profiles for the 42% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 400°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	95
50.	X-Ray Diffraction Profiles for the 52% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing : 400° , t = 1 hour; (b) Second Annealing: 390° C, t = 2 hours	96
51.	X-Ray Diffraction Profiles for the 55% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 400° C, t = 1 hour; (b) Second Annealing: 390° C, t = 2 hours	97
52.	X-Ray Diffraction Profiles for the 57% FeNi-Cr Thin Films Annealed Under Various Conditions. (a) First Annealing: 400°C, t = 1 hour; (b) Second Annealing: 390°C, t = 2 hours	98
53.	X-Ray Diffraction Patterns of FeNi-Cr Thin Films After First and Second Annealings at 450°C and 390°C, Respectively for 2θ in between 2° and 70°	100

54.	X-Ray Diffraction Patterns of FeNi-Cr Thin Films After First and Second Annealings at: 450°C and 390°C, Respectively for 2θ in Between 40° and 65°	101
55.	X-Ray Diffraction Patterns of FeNi-Cr Thin Films After First and Second Annealings at 400°C and 390°C, Respectively for 2θ in Between 2° and 70°	102
56.	X-Ray Diffraction Patterns of FeNi-Cr Thin Films After First and Second Annealings at 400°C and 390°C, Respectively for 2θ in Between 40° and 65°	103
57.	X-Ray Diffraction Profiles of the Annealed FeNi-Cr Thin Films at 400°C Under Various RF Power	104
58.	Various Chemical Composition of Cr, Fe and Ni of the As- Deposited Sample, (FeNi) ₄₀ -Cr ₆₀ at Time Deposition, 60 Minutes and RF Power, 50W	10 7
59.	Various Chemical Composition of Cr, Fe and Ni of the As- Deposited Sample, (FeNi) ₄₂ -Cr ₅₈ at Time Deposition, 60 Minutes and RF Power, 50W	108
60	Various Chemical Composition of Cr, Fe and Ni of the As- Deposited Sample, (FeNi) ₅₂ -Cr ₄₈ at Time Deposition, 60 Minutes and RF Power, 50W	109
61.	Various Chemical Composition of Cr, Fe and Ni of the As- Deposited Sample, (FeNi) ₅₅ -Cr ₄₅ at Time Deposition, 60 Minutes and RF Power, 50W	110
62	Various Chemical Composition of Cr, Fe and Ni of the As- Deposited Sample, $(FeNi)_{57}$ -Cr ₄₃ at Time Deposition, 60 Minutes and RF Power, 50W	111
63	X-Ray Diffraction Profile of 99.9% Pure Iron (Fe) Foil	140
64	X-Ray Diffraction Profile of 99.9% Pure Nickel (Ni) Foil	141

LIST OF PLATES

Plate		Page
1.	The Morphology of the Second Annealed (FeNi) ₅₈ Cr ₄₂ Thin Film	105
2.	The Morphology of the Second Annealed (FeNi) ₄₀ Cr ₆₀ Thin Film	106
3	Radio Frequency (RF) Sputtering System	120
4	Electromagnet	121
5	Furnace	121
6	Scanning Electron Microscopy (SEM) Machine	122

LIST OF ABBREVIATIONS AND SYMBOLS

R ₀	The resistance in the zero field
R _H	The resistance in the magnetic field
ΔR	The difference between $R_{\rm 0}$ and $R_{\rm H}$
U(r)	Coulomb potential
3	Relative dielectric constant
R	Radius
q	Charged particle
x	FeNi composition
ε	The energy of ions bombarding the walls
V	Potential
V _a	Anode fall
V _c	Cathode fall
Х	Electric field strength
ρ	Space charge densities
j	Current densities
Φ	Electric potential
T _e	Temperature of electron
e	elementary charge
m	Mass of electron
М	Mass of ion
E	Electric field

$\Phi(\mathbf{x})$	Potential profile
ſœ	The gyration radius
r _{1,} r ₂	Radii of magnetic field line
θ	Scattering angle
w	Ring width
S	Sheath width
Δ2θ	The width of the peak
V _p	Plasma potential
r	Radius
RF	Radio frequency
RT	Room temperature
LN ₂	Liquid nitrogen
Ar	Argon
W	Tungsten
Мо	Molybdenum
Ta	Tantalum
ρ(†)	Spin-up resistivity
ρ (↓)	Spin-down resistivity
М	Magnetic layer
NM	Non-magnetic Layer

- H_c Coercive field
- λ_s Mean-free path
- $f(V_{\alpha})$ Distribution function for the size of the granules magnetic moments of the granules
- ρ Conductivity
- n The number of conduction electron per unit volume
- CPP Current perpendicular to the plane of the layers
- c The concentration of the granules
- a₀ The lattice constant of the granules
- Δ^{σ} Imaginary part of the self-energy of the conduction electrons due to impurity scattering
- M_{α} Magnetic moments of the granules
- H_a Anisotropic field

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science.

ANNEALING EFFECTS ON THE MAGNETORESISTANCE CHARACTERISTICS OF SPUTTERED FeNi-Cr GRANULAR MAGNETIC THIN FILMS

By

KHOO SUAT PHIN

June 1999

Chairman: Associate Professor Abdul Halim Shaari, Ph.D.

Faculty : Science and Environmental Studies

The effect of the magnetic field and annealings on the magnetoresistance (MR) of two series of FeNi-Cr granular magnetic thin films deposited by radio frequency magnetron sputtering system in vacuum on a glass substrate is discussed. The first series consist of $(\text{FeNi})_{40}\text{Cr}_{60}$, $(\text{FeNi})_{42}\text{Cr}_{58}$ $(\text{FeNi})_{52}\text{Cr}_{48}$, $(\text{FeNi})_{55}\text{Cr}_{45}$ and $(\text{FeNi})_{57}\text{Cr}_{43}$ whereas the second series consist of FeNi-Cr granular magnetic thin films prepared at various radio frequency power (40W, 50W and 60W). The first series of samples were annealed at 400°C and 450°C for one hour. These films were annealed again at 390°C for two hours to obtain larger MR values. The films of the second series of the samples were annealed at 400°C only. The structure, microstructure and percentage of composition of the films were characterized by using x-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Analysis (EDAX) while the MR of the samples under the influence of the magnetic field was studied by a standard four point probe technique.

The structure of all the samples has been characterized by x-ray diffraction. The as-deposited and first annealed samples appear to be metastable where the halo pattern is prominent in all the graphs. After the so-cond annealing, some prominent peaks are observed for certain samples. For the samples that have undergone two stages of annealings, after two annealings at 450°C for 1 hour and at 390°C for 2 hours, the peak of Ni [200] shifted to Ni [111] and Fe [110] at higher concentration of FeNi, resulting in further increase of MR.

However the MR does not saturate at 1 Tesla, the maximum field available in the laboratory, for all samples. When the FeNi concentration is increased, the MR is also increased. The maximum of MR, -0.63%, has been observed in the film with 57% FeNi after two annealings at 450°C for 1 hour and at 390°C for 2 hours.

The magnitude of MR is affected by the size and density of the magnetic entities which can be controlled by varying the composition and the preparation conditions. For application such as for the MR heads, a large MR ratio of about 2% due to a small applied field is desirable.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

KESAN SEPUHLINDAPAN PADA CIRI-CIRI MAGNETORINTANGAN BAGI SAPUT TIPIS "GRANULAR" MAGNET FeNi-Cr DISEDIAKAN SECARA PERCIKAN

Oleh

KHOO SUAT PHIN

Jun 1999

Pengerusi: Profesor Madya Abdul Halim Shaari, Ph.D.

Fakulti : Sains dan Pengajian Alam Sekitar

Kesan medan magnet dan sepuhlindapan pada magnetorintangan (MR) bagi dua siri saput tipis "granular" magnet FeNi-Cr , yang dimendapkan pada substrat kaca di dalam vakum dengan menggunakan sistem magnetron frekuensi radio dibincangkan. Siri pertama sampel itu terdiri daripada (FeNi)₄₀Cr₆₀, (FeNi)₄₂Cr₅₈, (FeNi)₅₂Cr₄₈, (FeNi)₅₅Cr₄₅ dan (FeNi)₅₇Cr₄₃, sedangkan siri kedua sampel itu terdiri daripada FeNi-Cr saput tipis "granular" magnet yang disediakan pada kuasa frekuansi radio yang berlainan (40W, 50W dan 60W). Siri pertama sampel disepuhlindap pada 400°C dan 450°C untuk satu jam. Selepas itu, saput tipissaput tipis ini disepuhlindap sekali lagi pada 390°C untuk dua jam supaya memperolehi nilai-nilai MR yang lebih besar. Sementara, saput tipis siri kedua disepuhlindap pada 400°C sahaja. Struktur, mikrostruktur dan peratus komposisi saput tipis dicirikan dengan menggunakan pembelauan sinar-x (XRD), mikroskopi imbasan elektron (SEM) dan analisis serakan tenaga (EDAX)

manakala MR sampel itu di bawah pengaruh kesan medan magnet, dikaji dengan menggunakan teknik penduga empat titik.

Struktur untuk semua sampel telah dicirikan dengan menggunakan serakan sinar-x. Sampel yang tersedia mendap dan yang telah melalui sepuhlindapan yang pertama, saput tipis-saput tipis "granular" itu adalah metastabil di mana corak "halo" adalah menonjol untuk semua graf. Selepas sepuhlindapan yang kedua, terdapat puncak- puncak yang menonjol untuk sampel-sampel yang tertentu. Bagi sampel-sampel yang melalui dua peringkat sepuhlindapan, iaitu selepas sepuhlindapan pada 450°C untuk satu jam dan 390°C untuk dua jam, puncak Ni[200] beralih ke Ni[111] dan Fe[110] pada komposisi FeNi yang lebih tinggi, seterusnya menyebabkan penambahan MR.

Walau bagaimanapun, untuk semua sampel, MR adalah tidak tepu pada 1 Tesla, iaitu medan magnet maksimum yang diperolehi di makmal. Apabila komposisi FeNi meningkat, MR juga bertambah. Bagi filem dengan 57% FeNi yang melalui dua sepuhlindapan, iaitu pada 450°C untuk satu jam dan 390°C untuk dua jam, MR yang maksimum adalah -0.63%.

Magnitud MR dipengaruhi oleh saiz dan ketumpatan entiti magneti yang boleh dikawal dengan membezakan komposisi dan keadaan penyediaan. Untuk penggunaan seperti penduga MR, MR yang besar sebanyak 2%, di bawah kesan medan magnet yang kecil adalah diperlukan.

CHAPTER I

INTRODUCTION

Magnetic Thin Film

Introduction to Thin Films

A thin film is a structure whose dimensions are such that it has a substantially large surface-to-volume ratio. For example, while the structure may be macroscopically large in length and width, it may have a thickness that is only on the order of a micron or less. Thin films do not have to be planar. The properties of such thin film structures are strongly influenced by the surface properties and may be very different from that of the same material in bulk form. The thin film may consist of a pure material, or a composite or a layered structure, and several of the thin films may be present in a more complex device (W. Kiyotaka, 1992).

Multilayered Magnetic Thin Film

Giant magnetoresistance (GMR) was first observed in transition metal multilayers, in which antiferromagnetically coupled ferromagnetic layers are separated by non-magnetic interlayers (A. Tsoukatos, 1993). Theoretically the

