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The method involves reduction of the partial derivatives of f that is f
and f, into polynomials with single variable and finding & the determinant
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CHAPTERI1
INTRODUCTION

Notation and Definition

As usual, we use the standard notation Z, Q, R and C to denote ring of
integers, field of rational numbers, field of real numbers and field of
complex numbers respectively. With p denoting a prime number, Z, will
denote the ring of p-adic integers, Q, the field of p-adic numbers and Q, the

completion of the algebraic closure of Q.

The lower case of Roman letters will represent elements in Z or Z, and

the Greek letter a always denotes the exponent of a prime p.

With x denoting n tuple of variable (x,,...,x,),n = 1, 2, 3,..., and F either a
ring or field, F[x] will mean the ring of polynomials with coefficients in F. In our

discussion F is either Z or Q, or field extensions of Q,



Let f=(f; ,....f, ) be m tuple of linear polynomials in F[x] . If f= Zayx,

1< i<m, 1 £j <n, we call the m x n matrix [a;], the matrix representing fand J

the Jacobian matrix | —+ |.

J

Suppose f = Zail e, xli‘ ...xnl" is a polynomial in F[x]. The degree

of f will be denoted by
deg()= max(i, +..+1,).

3] .“ln

Let p be any prime number. For any nonzero integer a, ord, a will be the

highest power of p which divides a, that is the greatest a such that a = 0 (mod

p*)-

If x = a/b is any rational number, we define ord, x to be ord, a - ord, b.

This resembles the property of logarithm.

Further define a map ||, on Q as follows:



1

ord , x

X, = p !
0

if x#0
if x=0

It can be shown that | |, is a non-Archimedean valuation on Q (Koblitz 1977).

A sequence {a;} of rational numbers is called Cauchy sequence if given €

> 0, there exists an N such that | a; — a. lp <€, for i, i > N. Two Cauchy

sequences {a;} and {b;} are equivalent if
lim [a;-by[,=0

i— o0

We define the field Q, to be the set of equivalence classes of Cauchy

sequences in Q, so Qp is the completion of Q with respect to | |,

We denote by Qp’ the algebraically closed field of Q, and €, the

completion of (J P with respect to | |,. It is found that the process of extending ||,

from Q, to J P and Q, is unique because €, is algebraically closed, as well as

complete.

With the above definitions, we define the Newton polygon for

polynomials in p-adic field as given by Koblitz (1977) as follows :



Let f(x) =1+ Z?:l a; X' be a polynomial of degree n with coefficients

in Q) and constant term 1. Consider the points (i, ord, a,), if a, =0, we omit that
point. The Newton polygon of f(x) is defined to be the "convex hull" of this set of
points which is constructed by taking a vertical line through (0, 0) and rotating
it about (0, 0) counterclockwise until it hits any of the points (i, ord, a; ) and

finally hits the point (n, ord, a,).

Background

The role of the Newton polygon in obtaining properties of zero of
polynomials in one variable is quite well known. For example, the Newton
polygon can be usefully applied in proving Puiseux's theorem (Walker, 1962).

A. Sathaye (1983) also consider generalise Newton-Puiseux expansion.

Koblitz (1977) discusses the Newton polygon in the p-adic case for
polynomials and power series in € [x]. Here estimates concerning zeros of
polynomials are derived from the properties of the associated Newton polygon.
In particular, if A is the slopc of a segment in the Newton polygon of a
polynomial f having length N, then there are N roots of f whose p-adic order is

-A.



For each prime p, let f = (f 4,...,f;) be an n-tuple of polynomials in the
p-adic ring Z, [x] where x = (Xi,...,X,). We consider the set

V(£;p*) = {umod p*: f(u) =0 mod p* }
and denote N(f ; p* ) the cardinality of V(f ; p*) where o >0 and u runs through a

complete set of residues modulo p* .

Loxton and Smith (1982) investigate the application of Newton polygon

technique but finally the following method is used to arrive at their result.

With K as the algebraic number field generated by the roots &;, 1 £i<m
of the polynomial f(x)in Z[x], Loxton and Smith showed that

N(f; p®) = m p - @e
if o > 8, where m is the number of distinct roots of f(x) and 6 = ord, D(f), where

D(f) denotes the intersections of the functional ideals of K generated by the

number

FE(&)

et e BRI
e !

and e = max e;, with e; as the multiplicity of the roots &; .

By using a version of Hensel's Lemma, Chalk and Smith (1982)

obtain a result of similar form with & = max; ord, fi where f; is the Taylor

coefficient



f(ei)(éi)

e !

at the distinct roots &,

Loxton and Smith (1982) show that for f= (f,,...,f,)

na

if a<26

N(; p) < .
(Deg f)p" i a>25

where & = ord, D(f) and D(f) denotes the discriminant of f, and Deg f means the

product of the degrees of all the components of {.

Mohd. Atan and Loxton (1986) extend the Newton polygon idea in the
p-adic case to polynomials in two variables and call it Newton polyhedron
method. Mohd. Atan (1986) investigates the relationships between roots of a
polynomial in €, [x,y] and its Newton polyhedron by considering the

combinations of the associated indicator diagrams.

He conjectures that to every simple point of intersection in the
combination of the indicator diagrams there exists common zero of both

polynomials whose p-adic order corresponds to this point. He then proves that if



(A,u) is a point of intersection of the indicator diagrams associated with
polynomials f and g in Z_ [x,y], which is not a vertex of either diagram and

suppose that the edges through (A, ) do not coincide, then there are§ and 1 in

Q, satisfying f(§,n) = g(&,m) =0 and ord, § = A, ord, 1 = p.

Let A be the matrix representing f the linear polynomials with coefficients

in the p-adic ring Z, and o > 0, Mohd. Atan (1988) shows that

p"e if a<é

N(£; p%) < :
p(n—-r)a+r5 lf a>o

where 6 indicates the minimum of the p-adic orders of r X r non-singular

submatrices of A. He also shows that

pza if a<d

N(f;g;p")< )
p25 if a>0

where f and g are linear polynomials in Z, [x,y] with a >0 and 6 = ord, J, , the p-

adic order of the Jacobian of f and g.



Mohd. Atan (1988) considers in particular, the non-linear polynomial
f=(f..f,) where f , f y are the usual partial derivatives with respect to x and
y respectively of the polynomial

fix,y) =ax®> +bx’y +cx+dy+e

in Z, [x,y] and give the estimate for N(f,; f ; p

p-adic orders of the coefficients of f(x,y) as follows :

P i a<s

N(f, s £, 5 p) < .

where & = max {ord, 3a, 3/2 ord, b}.

Mohd. Atan and Abdullah (1992) consider a cubic polynomial of the
form

f(x,y)=ax® +bx*y + cxy? +dy> +kx + my +n
and obtained a result of similar form with & = max {ord 3a, ord, b}. In both
cases, the method is first to reduce both polynomials f, , f, to polynomials in one
variable and next to consider combination of indicator diagrams associated with

the p-adic Newton polyhedrons of each polynomial to determine the common

zeros of the polynomials.



Mohd. Atan and Abdullah (1993) consider the same cubic polynomials
and obtain a result of similar form with 6 = {ord 3a, ord, b, ord, ¢, ord 3d}.
They have found that the value of the determining factor & is in fact dependent
on the dominant terms of f. This gives a more symmetric result than the previous

one.

Organization of The Study

In this thesis we consider the set of solutions of congruence equations
modulo a prime power p associated with the polynomial

fx,y) =ax* +bx’y +cx’ y* +dxy’ +ey’ +mx+ny+k
and its cardinality is then estimated by examining the Newton polygon

analogue for polynomials in Z [x,y].

We begin in the next chapter by discussing the polynomial rings,
illustrate the arithmetic operations of two polynomials and the degree for
polynomial in one variable as well as polynomial with multi-indeterminates.
Then we examine the relationship between the roots of polynomial and the

derivatives of the same polynomial.



