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Mixed surfactants of SDS-SCA at weight ratio of 2:3 in SDS-SCA/
CsHi30H/H;O system gives the largest inverse micelle region. This system is used
for further construction of the w/o microemulsion phase diagram where n-decane is
added into the system. The SDS-SCA-CH,;30H/C,0H2/H20O system shows a larger
w/o microemulsion region than the pure surfactants in surfactant/l1-hexanol/n-
decane/water system. Maximum water solubility is found at 65.0 weight percent of
n-decane and 35.0 weight percent of SDS-SCA-C¢H,;30H. Polymers, mPEG2,000
and PEGS8,000 are then added into the line above in the solution. The SDS-SCA-
C6H,30H-C,0H/H,O/mPEG2,000 system is observed to have a bigger isotropic

region than the SDS-SCA-Cg¢H,30H-C,oH,,/H,O/PEGS8,000 system. These two



systems are sensitive to temperature where the isotropic region change dramatically

as temperature is increased.

Nuclear Magnetic Resonance (NMR) is used to detect the interaction and the degree
of freedom of the molecules in the isotropic solution which consist of SDS, SCA,
CsH3s0H, CyoH;, and H,O. This instrument is able to detect the formation of the
inverse micelle and the w/o microemulsion in the SDS-SCA/C¢H;;OH/H,O and
SDS-SCA-C¢H,30H/CoH2,/H,O  systems. The only interaction between the
molecules are found in the SDS-SCA-CsH,30H-C,0H;2/H,O/mPEG2,000 and the

SDS-SCA-C¢H,;30H-C,,H»/H,O/PE G8, 000 systems.

The viscosity of the solution confirms that the inverse micelle and the w/o
microemulsion are formed i the SDS-SCA/C¢H;;OH/HO  and
SDS-SCA-C¢H,;30H/C,H;2/H,O systems. It is observed that the aggregations are
not geometrically packed together. The presence of the polymers, mPEG2,000 and
PEG8,000 in the SDS-SCA-C¢H;30H/C,oH22/H,O system can break the w/o

microemulsion.
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KAJIAN TERHADAP INTERAKSI POLI(ETILENE GLIKOL) ETER DI
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Campuran surfaktan SDS dan SCA pada nisbah berat 2:3 dalam sistem SDS-
SCA/C¢H;30H/H,O menghasilkan satu kawasan misel songsang yang luas. Nisbah
berat 2:3 ini digunakan untuk kajian selanjutnya dalam penghasilan w/o
mikroemulsi dengan menambah n-dekana yang bertindak sebagai minyak. Sistem
SDS-SCA-C¢H,30H/CoH,/H,O mempunyai kawasan w/o microemulsi yang luas
jika dibandingkan dengan sistem SDS-C¢H;;0H/CioH,/H,O dan sistem SCA-
CsH130H/C10H2/H,0. Kelarutan air yang maksimum didapati pada garis 65 berat
peratus n-dekana and 35  berat peratus SDS-SCA-CsH;30H. Polimer iaitu
mPEG2,000 dan PEG8,000 akan ditambahkan pada garis di atas. Kedua-dua sistem
ini, iaitu SDS-SCA-CsH,3;0H-CoH/H,O/mPEG2,000 and SDS-SCA-CsH,3;0H-

CioH22 /H;O/PEG8,000 sensitif terhadap suhu di mana kawasan isotropik berubah



dengan kenaikan suhu. Kawasan satu fasa bagi sistem SDS-SCA-C¢H;;OH-
Cio

C10H2,/H,O/PEG8,000.

NMR digunakan untuk mengesan interaksi dan darjah kebebasan molekul dalam
larutan ini yang mengandungi SDS, SCA, C¢H;50H, CoH;; dan H,O. Ia dapat
mengesan pembentukan misel songsang dan microemulsi air dalam minyak dalam
sistem SDS-SCA/C¢H;30H/H,O and sistem SDS-SCA-C¢H;30H/CioHz, /H>O.
Sistem SDS-SCA-C¢H;30H-C10H/H,O/mPEG2,000 dan sistem SDS-SCA-
C¢Hi30H-C)oH,, /H,O/PEG8,000 hanya menunjukkan interaksi berlaku (tiada

pembentukan misel songsang dikesan).

Kelikatan larutan menunjukkan bahawa misel songsang dan microemulsi air dalam
minyak terbentuk dalam sistem SDS-SCA/C¢H;3OH/H,O and sistem SDS-SCA-
CsH130H/ CioHy, /HyO. Aggregasi ini tidak disusun secara geometri dalam larutan
tersebut. Kehadiran polimer iaitu mPEG2,000 dan PEGS8,000 dalam sistem SDS-
SCA-Ce¢H;30H/C,0H2/H,O didapati memecahkan microemulsi air dalam minyak

dalam larutan.



CHAPTER 1

INTRODUCTION

If two immiscible liquids (usually water and oil) are shaken together, they
will naturally separate spontaneously into two distinct layers. Suppose instead of
merely shaking the two liquids together, a surfactant which often called an
emulsifying agent is added into it (Tadros, 1984; Rosen, 1978). The compounds are
vigorously mix in a homogeniser, then the milling together of the constituents causes
one to be dispersed (the inner phase) in the other (the continuous phase), where an
emulsion is produced (Becher, 1983; Vold and Vold, 1983; Shinoda and Friberg,
1986; Florence and Whitehill, 1982). This macroemulsion may be lsnetically stable
for a long period of time, but in the end, it will suffer the same fate as above, which
is phase separation, in order to attain a minimum interfacial free energy (although
effort can be made to decrease kinetic rate constants but the thermodynamic drive
force remains unchanged, that is to minimise the interfacial area of contact between
immiscible phase). A transparent or slightly bluish solution (because these particles
are much smaller than the wavelength of visible light) is formed when a suitable
composition of the system (contains surfactant, co-surfactant or oil and water) is

reached.
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This so-called microemulsion is formed when the chemical systems containing oil,
water or an aqueous salt solution, surfactant and sometimes a co-surfactant such as
alcohol (of an intermediate chain length) are mixed together (Prince, 1977; Mittal,
1976; Elworthy et al., 1968; Schulman ef al., 1959; Bourrel and Szhechter, 1988).
It appear to be thermodynamically stable compositions and it has an essentally
infinite lifetime, assuming that there are no changes in such factors as composition,
temperature, and pressure (Overbeek, 1978; Adamson, 1969; Van Vourst Vader,

1960).

The question is, does this transparent solution contain microemulsions or micelles?
Micelles do exist in clear solutions too (Elworthy et al., 1968; Rosen, 1978; Mittal,
1979). When one compares microemulsions and micelles, the demarcation line can
become quite blurred and, in some it does not even exist. Clearly there is some
disagreement as to the true definition of clear isotropic solution as microemulsions
[where some prefer the names “swollen micelles solutions™ or “solubilised micellar
solutions”] or micelles (Winsor, 1948). Some distinguish these microemulsions and
micelles solutions by the degree of arbitraries, especially in view of the continuity,
that one observes in the physical properties such as the increased of solubility. One
possible definition is to assert that a microemulsion is composed of bulk isotropic oil
and water regions separated by an anisotropic layer. The interior of a micelle, the oil
region, is composed entirely of the lipophilic portions of the amphiphile and is
probably not isotropic. But even a micelle containing a small quantity of solubilisate
has an isotropic interior. However, as the amounts of oil and water in the micellar

solution both become large and approximately of the same volume, it would be



3
anticipated that bulk isotropic oil and water regions would essentially at some point
both exist. However, a microemulsion is thought to be distinct and separate from a
micellar solution even though there is no existing technique to distinguish between

these two states of matter.

Figure 1 shows the difference between inverse miceﬂe, w/0 microemulsion and w/o
emulsion. The term microemulsion was coined in 1958 by Schulman and workers to
describe a fairly specific class of colloidal system (Schulman et al., 1959). Various
experimental approaches have been used in an attempt to ascertain all of the details
of their thermodynamic and structural characteristics (Prince, 1977; Mittal, 1976;
Bourrel and Szhechter, 1988). It was found that this transparent or translucent
system formed spontaneously when oil and water were mixed with relatively large
amounts of combined surfactant with co-surfactant. As a result, new theories of the
formation and stability of these complex systems were developed, depend on their
preparation and the relationships among the chemical structure of the oil phase, the
compositions of the aqueous phase, and the structure of the surfactant and co-

surfactant (Bourrel and Szhechter, 1988).

A microemulsion normally has droplet diameters of 100 nm or less (up to 5 nm). It
is slightly larger than micellar systems because microemulsion is much smaller than
the wavelength of visible light. The formation of a microemulsion must have a very
specific compositions and chemical structures of various components, that the

nomenclature for this separate class of dispersed species has developed. Many
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Figure 1: Structures of (a) Inverse micelle (b) w/o microemulsion and (c) w/o
emulsion.



5
microemulsion systems have been described in which the dispersed phase to
surfactant (and co-surfactant) ratio exceeds 100, and the high additive to surfactant
ratio requires that there be a core of dispersed material that is essential to the bulk
phase of the additive (Tadros, 1984). Therefore continuous transitions occur from
molecular solution via swollen micelles (or inverse micelle) to microemulsion where
the transition from swollen micelles to microemulsions can only be located

arbitrarily at a radius of the order of 3 nm.

If one constructs a spectrum of the possible situations for the dispersion of one
liquid phase in another, oil in water (o/w), for instance, the possible sizes of the
dispersed phase units range from the molecular dispersed solution where “droplet”
sizes are on the order of a few nanometers to macroemulsion with droplets of
hundreds or thousands of nanometers, as shown in Figure 2. These classifications as

shown are certainly arbitrary in their ranges and some overlap inevitably occurs.

Mixed Surfactants

All in all, the formation of micelle or inverse micelle to w/o (water in oil) or
o/w (oil in water) microemulsion and emulsion (whether w/o or w/0) is due to the
presence of an active compound namely surfactant (Ottewil, 1983). A surfactant or
surface active agent, is a substance that when present at low concentration in a
system has the property of absorbing onto the surfaces or the interfaces of the

system, and thus altering to a marked degree of the surface (or interface) free
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Figure 2 : Approximate size ranges for surfactant assemblies and related structures.
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energies of those surfaces or interfaces (Arthur, 1990). It also can be defined as a
group of chemical compounds, which usually constitute a hydrocarbon portion and a
polar or ionic portion (Benson, 1967; Lucassen, 1981) as illustrated in Figure 3. The
term interface denotes a boundary between any two insoluble (or immiscible)

phases, the term surface indicates an interface where one phase is a gas, usually air.

In terms of classification, surface active agents are categorised into four types,
depending on the nature of the head group. They are cationic, anionic, nonionic and
zwittetionic, as shown in Figure 4. Due to their amphiphatic structure, surfactants
absorb strongly onto the surface or the interface of air/water or oil/water systems
thus altering the properties of these surface or interface. The hydrocarbon portion
(tail) or lyophobic group, which can be linear or branched interacts very weakly with
the solvent (aqueous solution) molecules in the aqueous environment. The strong
interactions of the head group with the solvent is called the lyophilic group. When a
surface active agent is dissolved in a solvent, the presence of the lyophobic group in
the interior of the solvent will cause a distortion of the solvent liquid structure (the
molecules at a surface have higher potential energies than those in the interior). This
is because of the stronger interaction with the molecules in the interior of the

substance than the widely spaced gas molecules above it, increasing the free energy

of the system.



