

UNIVERSITI PUTRA MALAYSIA

STRUCTURES OF SURFACTANT SYSTEM STUDIED BY POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

ROSDI BIN HAJI IBRAHIM

FSAS 1996 3

STRUCTURES OF SURFACTANT SYSTEM STUDIED BY POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

Ву

Rosdi Bin Haji Ibrahim

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Pertanian Malaysia January 1996

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful

Be all for the Almighty Allah for giving me the utmost strength and courage to complete this project successfully.

It gives me much pleasure to acknowledge and thank many individuals and institutions for their significant contributions during the entire course of this study.

I would like to express my sincerest thanks, gratitude and appreciation to my chairman, Prof. Dr. Mohd Yusof Sulaiman for his original idea, helpful, advice, invaluable guidance, suggestion, encouragement, stimulating discussions and patience throughout this study.

I am particularly happy with and appreciate his approachable manner which made this exercise a pleasant one.

Similar appreciation is extended to members of my supervisory commitee, Assoc. Prof. Dr. Zainal Abidin Sulaiman, Assoc. Prof. Dr. Hamdan Suhaimi and Assoc. Prof. Dr. Elias Saion for their constructive comments on surfactant system.

ii

Field and laboratory work were assisted by research staff of the Physics Department of Universiti Pertanian Malaysia. They are En. Marzuki Ismail, En. Razak Harun, En. Saharuddin, En. Suhaimi Ibrahim and En. Nordin. Their earnestness and hardwork were the decisive factor in making this study a reality.

Last but not least, heartfelt appreciation and love are due to my parents, En. Ibrahim Sham and Puan Asiah Mat, my brothers, sisters and friends especially to En Shamsul Mohamad (UKM), I wish them every success in this world and hereafter under the guidance and in the path of Allah s.w.t wassalam.

TABLE OF CONTENTS

ACKN	OWLEGEMENTS	ii
LIST OF TABLES		
LIST C	OF FIGURES	viii
LIST C	FABBREVIATIONS	xiii
ABSTF	RACT	xvi
ABST	RAK	xix
CHAP	TER	
1	INTRODUCTION The Positron Method Phase Structures of Surfactant Determined from	1 1
	Positron Lifetime	5
II	SURFACTANT SYSTEM AND MICROEMULSION Introduction Surfactant and Change of Surface Tension-Critical Micelle Concentration	7 7 9
	Stability of Microemulsion Literature Review of Previous Work on	11
	Microemulsion Systems	30
III	POSITRONIUM FORMATION AND REACTION IN SURFACTANT SYSTEM. Diffusion-Recombination Model of Positronium	51
	Formation in Surfactant.	51
	Probability of Positronium	56
	Containing Aqueous Solution	60
	Micelle-Containing Solutions	71

IV	POSITRON LIFETIME METHODOLOGY	76
	Spectroscopy	76
	Positron Lifetime System and Preparation	10
	of Samples	78
	Instrumentation	83
	Plastic Detector	83
	Photomultiplier Tuboa	95
	Filotomultiplier Tubes	00
		91
	Time Pickoff Techniques	92
	Constant Fraction Differential Discriminator,	
	Ortec Model 583	102
	Delay	109
	Time to Amplitude Convertion	110
	Experimental Adjustment for Optimum	
	Performance	112
	Timing Calibration	112
	Effect of Dynamic Range on Timing	
	Resolution	114
	Measurement of Timing Resolution	
	Using Annealed Copper and ²² Na	118
	Source Preparation	119
	Source Correction	122
V.	POSITRON LIFETIME ANALYSIS	123
	Introduction	123
	The Fitting Programmes	123
	Positronfit	125
	Experience with the Lifetime Analysis	129
VI	EXPERIMENTAL PROCEDURE AND RESULTS	136
	DidodecylDimethylAmmonium Bromide-Water-	
	Octane System	136
	Experimental Section for DidodecylDimethyl	
	AmmoniumBromide / Water / Octane System	140
	Results for the DidodecyIDimethyIAmmonium	
	Bromide / Water / Octane System	141
	(TetradecylTrimethylAmmonium Bromide/Butanol)~2	
	/ Water / Octane System	153
	Results for the (TetradecylTrimethylAmmonium	
	Bromide /Butanol)~2 / Water / Octane System	158
	(Benzyl DimethylTetradecylAmmonium Chloride/	
	TetradecylTrimethylAmmonium Bromide) / Water /	
	Octane System	167

Page

VII	CONCLUSIONS	 175
REFE VITA	RENCES	 177 185

LIST OF TABLES

Table		Page
1	Picosecond Yield of the Positronium Reactions	66
2	Timing Calibation Data Obtained Using Experimental Set-Up	114
3	Data for the Dynamic Range Against Timing Resolution Experiment	118
4	Positron and SAXS Data for DDAB / Water / Octane	143
5	Data for Positron Master Plot of DDAB / Water / Octane	152
6	Data of The Ratio of The Oil Weight Fraction and Gradient of Positron Master Plot, Lattice Parameter, For Different Compositions of DDAB / Water / Octane	156
7	Positron Data for (TTAB/BUTANOL)~2/Water/ Octane	159
8	Data For Positron Master Plot of (TTAB/Butanol)~2 / Water / Octane System.	165
9	Linear Least Fit Data For The (TTAB/Butanol)~2 / Water / Octane System	166
10	Positron Data for (BDTAC/TTAB)/Water/Octane	171

LIST OF FIGURES

Figure		Page
1	The Vector Diagram of the Momentum	
	Annihilation Process	3
2	Schematic Diagram of Surface Active Agent	8
3	A Schematic Presentation for Micelle Formation (A Adsorption (B), Mixed Micelle Formation (C), Solibilization of Oil in Micelle (D), Polymer-Micelle Interaction (E) and Surfactant-Polymer Mixed Film at Interfaces (F) in Surfactant Solutions), 10
4	A Naive Steric Model Correlating the Shape of Amphiphile to the Spontaneous Curvature of the Interface	18
5	Schematic View of a Cross-Section through a Curved Bilayer Formed from a Water / Surfactant Mixture. Integrating the area of all parallel Surfaces from the Interface to the parallel Surface Traced out by the Head-Groups gives the Chain Volume (shaded region). The hatched Portion of the Interface Marks the Interfacial Area Occupied by each facing pair of Surfactant Molecules	s ice 1 22
6	Cross-Section through a Curved Reversed Bilayer formed by a Surfactant / Water Mixture. The Shaded Region Indicates the Volume Occupied by Water, Which, together with the Head defines the Polar Region that ies along the Minimal Surface (of total thickness 2t _p)	l-Group, 2 <u>4</u>

Figure	Figure I	
7	Cross-Section through a Hypothetical Cubic Phase of a Mixture of Surfactant and Water Consisting of a Monolayer of Surfactant. The Curved Interface Separates Polar from Paraffin Networks	26
8	Dimensions used to Calculate the Geometry of an Oil-Swollen Curved Bilayer, formed by a Ternary Mixture of Surfactant, Water and Oil	28
9	A Scheme of Fast Positron Track	52
10	The Positron Experiment. Positron from a Radioactive Isotope like ²² Na Annihilate in the Sample Material. Positron Lifetime is determined from the Delay between the Birth Gamma (1.28MeV) and the Two Annihilation Quanta. The Momentum of the Electron -Positron Pair is measured as an Angle deviation between the Two 511 KeV Quanta or as a Doppler Shift in the Energy of the Annihilation Radiation	77
11	The Output Signal is Processed in a Ortec 583 Constant Fraction Differential Discriminator (CFDD which Permit Only the Passage of Signals which Correspond to a Photon Energy in the 550-1200 KeV), 79
12	The Output Signal is Processed in a Ortec 583 Constant Fraction Differential Discriminator (CFDD which Permit Only the Passage of Signals which Correspond to a Photon Energy in the 200-511 KeV), 80
13	The Electronic Equipment of Positron Annihilation Lifetime Spectroscopy System	82

Figure		Page
14	Schematic Diagram of the Interior of a Photomultiplier	86
15	Two Dynode Arrangements in Commercial Phototubes (a) Model 6342 RCA, 1-10 are dynode, 11 is anode	
16	(b) Model 6292 Dumont Jitter and Walk in Leading-edge Time Derivation and Formation of the Constant Fraction Signal	90 96
17	Functional Representation of a Constant- Fraction Discriminator	97
18	System Interconnection to view Walk Adjustment	100
19	Monitor Signal when Triggered by the Constant- Fraction Discriminator Output Signal for (a) Passive Pulse Shaping (b) Active Pulse Shaping	101
20	Timing Resolution as a function of Dynamic Range for Two Constant Fraction Differential Discriminator in a Fast Timing Coincidence System	104
21	Simplified Block Diagram of the Constant Fraction Differential Discriminator	106
22	The Measurement Calibration System of Positron Annihilation Lifetime Spectroscopy System	113
23	The Measurement Dynamic Range of Positron Annihilation Lifetime Spectroscopy	116
24	Timing Spectrum of Annealed Copper	117

Figure	9	Page
25	The Arrangement of Annealed Copper Materials were Sandwiched between the Source of ²² Na	121
26	The Phase Diagram of the System DDAB / Water / Octane	139
27	Plot of Lifetime of Orthopositronium against Aqueous Weight Fraction of The Ternary DDAB / Water / Octane System	142
28	Plot of Intensity against Aqueous Weight Fraction of The Ternary DDAB / Water / Octane System	145
29	The Lifetime, Intensity and Weight Fraction of System DDAB / Water / Octane	146
30	Plot of Lifetime of Orthopositronium against Lattice Parameter for DDAB / Water / Octane System	147
31	Positron Master Plot for The D-Schwarz Surface of The DDAB / Water / Octane System	150
32	Positron Master Plot for The P-Schwarz Surface of The DDAB / Water / Octane System	151
33	Plot of Data from Table 6.3 for The D-Schwarz Surface of The DDAB / Water / Octane System	154
34	Plot of Data from Table 6.3 for The P-Schwarz Surface of The DDAB / Water / Octane System	155
35	Partial Phase Diagram For Tetradecyl Trimethyl Ammonium Bromide, Butanol and Octane	157

Figure	I	Page
36 Plot of Lif Aqueous / Water /	etime of Orthopositronium against Weight Fraction for (TTAB/Butanol)~2 Octane System	160
37 Plot of Int Aqueous / Water /	ensity of Orthopositronium against Weight Fraction for (TTAB/Butanol)~2 Octane System	161
38 Plot of Lif Different ~2 / Wate	fetime of Orthopositronium against Ratio of Water/Octane for (TTAB/Butanol) er / Octane System	162
39 Plot of Int Different ~2 / Wate	tensity of Orthopositronium against Ratio of Water/Octane for (TTAB/Butanol) er / Octane System	163
40 Positron / Water /	Master Plot of The (TTAB/Butanol)~2 / Octane System	164
41 Positron / Water / Fraction	Master Plot of The (TTAB/Butanol)~2 / Octane System for Aqueous Weight 0.2, 0.3, 0.4.	168
42 Positron / Water / Fraction	Master Plot of The (TTAB/Butanol)~2 / Octane System for Aqueous Weight 0.5, 0.6, 0.7.	169
43 Plot of Li Aqueous Water / 0	fetime of Orthopositronium Against Weight Fraction for (BDTAC/TTAB) / Octane System.	172
44 Plot of In Aqueous Water / 0	tensity of Orthopositronium Against Weight Fraction for (BDTAC/TTAB) / Octane System.	173
45 Plot of In Ratio of V Water / 0	tensity of Orthopositronium Against Water/Octane for (BDTAC/TTAB) / Octane System.	174

LIST OF ABBREVIATIONS

ABS	-	Alkyl Benzene Sulphonate
ACAR	-	Angular Correlation of Annihilation Radiation
ADC	-	Analog to Digital Converter
AOT	-	Dioctyl Sulfosuccinate
ARC	-	Amplitude and Rise Time Compensated
bcc	-	Body-Centred Cubic
BDTAC	-	BenzylDimethylTetradecylAmmonium Chloride
C ₁	-	Cubic Phase
C ₂	-	Cubic Phase
CFA	-	Zero-Crossing Pickoff
CF ckt	-	Constant Fraction Circuitry
CFDD	-	Constant Fraction Differential Discriminator
CMC	-	Critical Micelle Concentration
СТАВ	-	CetylTrimethylAmmonium Bromide
D	-	Diamond
DAC	-	Digital Analogue Converter
DAP	-	DodecylAmmonium Prepionate
DBS	-	Doppler Broadening Spectroscopy
DDAB	-	DidodecyIDimethyIAmmonium Bromide
DHBS	-	Podihexylbenzene Sodium Sulphonate
DVM	-	Digital Voltmeter
eV	-	Electron Volts
FWHM	-	Full Width at Half Maximum

Н	-	Hexagonal Phase
H₂O	-	Water
I ₂	-	Intensity
I-WP	-	Monolayer Structure
keV	-	Kiloelectron Volts
LEAD	-	Leading Edge Arming Discriminator
MCA	-	Multichannel Analyzer
²² Na	-	Sodium-22 Radioactive
NaCI	-	Sodium Choride
NALS	-	Sodium Lauryl Sulfate
NIM	-1	Nuclear Instrumentation Modules
NMR	-	Nuclear Magnetic Resonance
O/W	-	Oil/Water
PAL	-	Positron Annihilation Lifetime
PAS	-	Positron Annihilation Spectroscopy
PATFIT		Positronium Fit
Ps	-	Positronium
PMT	-	Photomultiplier Tube
OPC	-	Ortho-Para Converter
o-Ps	-	Orthopositronium
p-Ps		Parapositronium
SANS	-	Small Angle Neutron Scattering
SAXS	-	Small Angle X-ray Scattering
S.C.	-	Single Cubic
SCA	-	Single Channel Analyzer
SDS	-	Sodium Dodecyl Sulfate

Surfactant	-	Surface Active Agent
ТАС	-	Time to Amplitude Converter
TTAB	-	Tetradecyl Trimethyl Ammonium Bromide
W/O	-	Water/Oil
τ2	-	Lifetime

Abstract of the thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the Degree of Master of Science.

STRUCTURE OF SURFACTANT SYSTEM STUDIED BY POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

by

Rosdi Bin Hj. Ibrahim

January 1996

Chairman	: Prof. Moh	d. Yusof	Sulaiman.	PhD
o na man		a. 1 a o o i	o arannan,	

Faculty : Science and Environmental Studies

Surfactant system has many applications in industry. Many investigations have been carried out on surfactants using various methods such as small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS), conductivity freeze-fracture electron microscopy and nuclear magnetic resonance (NMR). In the positron annihilation lifetime spectroscopy technique, the lifetime (τ_2)of positron that intracts with surfactant medium is measured using fast coincidence system. The intensity of formation of orthopositronium(I_2), when positron interact with aggregate of surfactant system are sensitive to phase changes. In amphiphilic system with

xvi

bicontinous character geometry of periodic phase can be explained using minimal surfaces. Factors influencing the topology includes the length of surfactant and cosurfactant tails and the aqueous volume fraction. Positron are readily attracted to these centres. Changes in the geometry of the interfacial layer thus will influence the lifetime and intensity of the orthopositronium atom formed. These parameters are obtainable using the POSITRONFIT programme.

In this study, three surfactant systems were investigated. Firstly, the intensity (I_2) and lifetime (τ_2) of the DidodecylDimethylAmmonium Bromide (DDAB) - Water - Octane system were measured at various amount of water content in the surfactant system in the diamond and body centred cubic phases. A symmetry transitions from diamond phase to body-centred cubic phase was observed in this system.

Secondly, the equivalent data were measured against ratio of (BDTAC/TTAB) of cubic phase area of BenzylDimethylTetradecylAmmonium Chloride (BDTAC) / TetradecylTrimethylAmmonium Bromide (TTAB) - Water - Octane system. Thirdly, for the TetradecylTrimethylAmmonium Bromide (TTAB) / Butanol ~ 2 - Water - Octane system, the

xvii

intensity (I_2) and lifetime (τ_2) were measured against different composition ratio of Octane/Water.

In all the three systems, an attempt was made to explain the behaviour of the positronium atom in the bicontinous phase of the surfactant.

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia bagi memenuhi syarat untuk memperolehi Ijazah Master Sains.

KAJIAN KE ATAS SISTEM SURFAKTAN DENGAN MENGGUNAKAN KAEDAH MASAHAYAT MUSNAHABISAN POSITRON

oleh

ROSDI IBRAHIM

Januari 1996

Pengerusi	: Prof. Mohd.	Yusof Sulaiman,	PhD

Fakulti : Sains dan Pengajian Alam Sekitar

Sistem surfaktan mempunyai pelbagai kegunaan dalam industri. Banyak kajian mengenai surfaktan telah dijalan dengan menggunakan pelbagai kaedah seperti kaedah serakan sudut kecil neutron (SANS), kaedah serakan sudut kecil x-ray (SAXS), spektroskopi pengaliran elektron "freeze-fracture" dan nuklear magnetik resonan (NMR). Dalam teknik spektroskopi masa hayat musnah-habisan positron (PALS), masa hayat positron yang berinteraksi dengan medium surfaktan diukur dengan menggunakan sistem kesekenaan. Perubahan Pembentukan Keamatan o-Ps (I₂) bila positron berinteraksi dengan sistem aggregat surfaktan adalah

sensitif terhadap perubahan fasa. Dalam sistem amfifilik dengan geometri bersifat "bicontinuous", fasa berkala dapat diterang dengan menggunakan perkalaan permukaaan terkecil. Faktor yang mempengaruhi topologi adalah panjang surfaktan dan ekor kosurfaktan dan fraksi isipadu akuas. Positron adalah tersedia tertarik kepusat ini. Perubahan geometri lapisan antara muka akan mempengaruhi masahayat dan keamatan pembentukan atom orthopositronium. Parameter-parameter diperolehi dengan menggunakan program POSITRONFIT.

Dalam kajian ini , tiga sistem surfaktan akan digunakan. Pertama, keamatan (I₂) dan masahayat (τ₂) diukur untuk sistem DidodecylDimethyl Ammonium Bromide (DDAB) - Air - Oktana, bagi kandungan air yang berbeza-beza dalam sistem surfaktan yang berada pada fasa intan sehingga terjalin transisi fasa intan kepada kubus berpusat jasad.

Keduanya, keamatan (I₂) dan masahayat (τ₂) diukur terhadap nisbah (BDTAC/TTAB) dalam kawasan fasa kubus didalam sistem BenzylDimethyl TetradecylAmmonium Chloride (BDTAC) / TetradecylTrimethylAmmonium Bromide (TTAB) - Air - Oktana, dan akhir sekali, sistem yang

XX

ketiga adalah TetradecylTrimethylAmmonium Bromide / Butanol ~ 0.2 - Air - Oktana. Keamatan (I_2) dan masahayat (τ_2) diukur terhadap perubahan komposisi Oktana/Air.

Bagi ketiga-tiga sistem surfaktan diatas, usaha telah dibuat untuk menjelaskan pemerhatian secara teori.

CHAPTER I

INTRODUCTION

The lepton, positron, is the antiparticle of the electron. Its existence was predicted by Dirac (1930). In condensed matter, initially fast positron annihilates after having reached equilibrium with the surroundings. The characteristics of the quantum electrodynamic annihilation process depend almost entirely on the state of the positron-electron system of the medium. Discoveries of new features in the positron interaction with matter have maintained continuous interest and increasing activity in the field. A striking feature is thus the great diversity of the fields in which positron annihilation method is now applied. In addition to solidstate and material physics, there are intensive activities in atomic physics and radiation chemistry, the latter extending even into biochemistry and biology.

The Positron Method

The positron method can be established by discussing the annihilation process of free positrons. The positron - electron annihilation is a relativistic

process where the particle masses are converted into electromagnetic energy the annihilation photons. From the invariance properties of quantum electrodynamics, several selection rules can be derived. Firstly, one-gamma annihilation is possible only in the presence of a third body absorbing the recoil momentum and its relative probability is negligible. The main process is the twogamma annihilation, since the spin-averaged cross section for the three-gamma annihilation is 0.27% of that for the two gamma annihilation. The three-gamma annihilation is important only in a spin-correlated state like orthopositronium, where the selection rules forbid the two-quantum process.

From the non relativistic limit of the two gamma annihilation cross-section derived by Dirac (1930), one obtains the annihilation probability per unit time or the annihilation rate

$$\lambda = \pi \Gamma_o^2 c \Omega_o \qquad [1.1]$$

which is independent of the positron velocity. Here, r_o is the classical electron radius, c the velocity of light and n_o is the electron density at the site of the positron. By measuring the annihilation rate λ , the inverse of which is the mean lifetime t, one directly obtains the electron density n_o encountered by the positron.

The kinetic energy of the annihilating pair is typically a few electron volts. In the centre-of-mass frame the photon energy is exactly $m_oc^2 = 511$ keV and the photons are moving into opposite directions. Because of the non zero momentum of the pair, the photons deviate from collinearity in the laboratory frame. As illustrated in Figure 1, the momentum conservation yields a result,

$$\theta \approx p_T/m_o c^2$$
 [1.2]

where 180° - θ is the angle between the two photons in the laboratory frame and p_{T} is the momentum component of the electron-positron pair transverse to the photon emission direction.

Figure 1 : The Vector Diagram of the Momentum Conservation in the Two Gamma Annihilation Process.

Usually θ is very small ($\theta < 1^{\circ}$) and equation 1.2 is valid. Because the momentum of the thermalised positron is almost zero, the measured angular

