THERMOSTABILITY AND PROTEIN STUDIES OF NEWCASTLE DISEASE VIRUS

By

ZURIDAH HASSAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia.

October 1995
ACKNOWLEDGEMENTS

I am indebted to Assoc. Prof. Dr. Khatijah Mohd Yusoff for her guidance, advice, never-ending patience and many valuable discussions throughout the course of this work. I would also like to thank Assoc. Prof. Dr. Nor Aripin Shamaan for his technical support and comments and to Assoc. Prof. Dr. Norani Abdul Samad for constructive remarks and for access to use all the facilities in Lab 143.

I would also like to thank various individuals and institutions who have helped me during the actual study:

Dr. Bill Jordan (Victoria University, New Zealand) who during his visit to Malaysia had spent some time in Lab 143 together with Dr. Khatijah and Dr. Nor Aripin to introduce to me the 2D-PAGE systems;

En. Kamudin and his team from INTAN, Bukit Kiara who helped me to get through the INTAN/JPA Quantitative test;
En. Abdul Ghani of the Faculty of Science and Environmental Studies for all the photography work;

The Deputy Director, Dato Dr. Ahmad Tajuddin, Hospital Kuala Lumpur and the Director, Dr. G. Duraisamy, National Blood Services Centre, Hospital Kuala Lumpur for granting the study leave;

All lab-mates, staff of Lab 143 (En. Ariffin, En. Husin, Omar, Rohana, Izan, Mazidah, Chin Hoon, Wen Siang, Goh, Najah, Kri, Mages, Sudani, Suzila, Fizah, Ban Kim, Muhajir), Nona, En. Karim, Syarifah, Zaharah and staff of the Graduate School, UPM.

To my husband, Syed Abdul Razak, my children and parents whose love and understanding have greatly helped me in my studies, I dedicate this thesis and Syukur Alhamdullilah, God has given me the will, patience and health to finish this work.

This study was sponsored by Jabatan Perkhidmatan Awam, Malaysia and partly by IRPA.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Newcastle Disease</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Viral Structure</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>NDV Proteins</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>HN Protein</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>F Protein</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>M Protein</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>L Protein</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>P Protein</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>NP Protein</td>
<td>16</td>
</tr>
</tbody>
</table>
Thermostability of NDV Strains of Different Virulence
Separation of NDV Proteins by SDS-PAGE and 2D-PAGE
Peptide Mapping of NDV Polypeptides
Western Blot Analysis of NDV Proteins

III MATERIALS AND METHODS
Chemicals, Enzymes and Antibodies
Viruses
Virus Cultivation
Inoculation Technique
Harvest Technique
Clarification of Allantoic Fluid
Purification
Protein Assays
Haemagglutination Assay
Preparation of Red Blood Cells for HA and Hemolysis Assays
Hemolysis
Neuraminidase Assay
Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
Casting of Discontinuous Polyacrylamide Gels
Sample Preparation
Peptide Mapping ... 34

Two-Dimensional Analysis of NDV Proteins 35
 Sample Preparation for First-dimension (IEF) Run 36
 Preparation of IEF Gels 36
 Prefocussing of IEF Gels 37
 Second-dimensional Analysis by SDS-PAGE 38
 Western Blotting 40
 Preparation for Blotting of SDS-PAGE and 2D-PAGE 40
 Assembly of the Trans-Blot Semi-Dry Transfer Cell 40
 Immunological Detection of Protein on Nitrocellulose
 Membrane .. 41

IV RESULTS AND DISCUSSION 44

Thermostability of NDV Strains ... 44
 Stability of Haemagglutinating Activity 48
 Inactivation Constant for HA Activity 50
 Stability of Neuraminidase Activity 52
 Stability of Hemolytic Activity 56

Analysis of NDV Proteins by SDS-PAGE and 2D-PAGE 59
 Optimization of 2D-PAGE 64
 Computer Analysis 67
 Peptide Mapping 76
LIST OF TABLES

Table	Description	Page
1 | Functions of NDV Coded Proteins | 11
2 | Examples of Some Applications of Protein Analysis by 2D-PAGE | 21
3 | Stability of Hemagglutinating Activities of NDV Strain in 30 min of Heat Stress | 46
4 | Stability of Hemagglutinin of NDV Strains at 50°C | 49
5 | Comparison of Inactivation Constant (k per min) for the Haemagglutinating Activity in Various NDV Strains | 53
6 | Neuraminidase Activities of NDV Strains at 50°C | 54
7 | Hemolytic Activities of Various NDV Strains at 50°C | 57
8 | Summary of Protein Spots' x-coordinate Position on Nitrocellulose Membrane | 74

viii
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Newcastle Disease Virion and Genome Structure</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Inoculation of Chick Embryo via the Allantoic Cavity</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Hemagglutinating Activities in NDV Strains at Different Temperature</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Hemagglutinating Activities of Different NDV Strains at 50°C ...</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Neuraminidase Activities of NDV Strains at 50°C</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Hemolytic Activities of NDV Strains</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrophoretic Pattern of NDV Proteins Stained With Coomassie Brilliant Blue</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Polypeptides of NDV Separated by SDS-PAGE</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>Polypeptides of NDV Separated by SDS-PAGE, Blotted and Detected Using Anti-F Monoclonal Antibodies</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>Polypeptides of NDV Separated by SDS-PAGE, Blotted and Detected Using Anti-P Monoclonal Antibodies</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Two-Dimensional Gel Electrophoresis of NDV Strain V4 Stained by Silver Stain</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>Nitrocellulose Sheets Following Western Blotting of 2D-PAGE Gel Developed With Anti-HN Monoclonal Antibodies</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>Nitrocellulose Sheets Following Western Blotting of 2D-PAGE Gel Developed With Anti-HN Monoclonal Antibodies (Duplicate Set)</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Nitrocellulose Sheets Following Western Blotting of 2D-PAGE Gel Developed With Anti-NP Monoclonal Antibodies</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Nitrocellulose Sheets Following Western Blotting of 2D-PAGE Gel Developed With Anti-F Monoclonal Antibodies</td>
<td>72</td>
</tr>
</tbody>
</table>
Peptide Map of HN Proteins Digested With *Staphylococcus aureus* V8-Protease

Peptide Map of NP/P/F\textsubscript{1} and M Proteins Digested with *Staphylococcus aureus* V8-Protease

Peptide Map of HN Protein Digested With *Pseudomonas fragi* Endopeptidase Asp-N in Various NDV Strains

Peptide Map of HN Proteins Digested With *Lysobacter enzymogenes* Endopeptidase Lys-C

Mini Protean II Dual Slab Cell

Mini Protean II 2-D Cell

View of the Trans-Blot SD Cell
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>Newcastle disease</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease virus</td>
</tr>
<tr>
<td>2D-PAGE</td>
<td>two-dimensional polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>ts</td>
<td>temperature-sensitive</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>Kbp</td>
<td>kilobase pair</td>
</tr>
<tr>
<td>pI</td>
<td>isoelectric point</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Mab</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Pertanian Malaysia</td>
</tr>
<tr>
<td>JPA</td>
<td>Jabatan Perkhidmatan Awam</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>HA</td>
<td>hemagglutinating activity</td>
</tr>
<tr>
<td>HL</td>
<td>hemolytic activity</td>
</tr>
<tr>
<td>NA</td>
<td>neuraminidase activity</td>
</tr>
<tr>
<td>NANA</td>
<td>N-acetylneuraminic acid</td>
</tr>
</tbody>
</table>
RBC red blood cells
DTT dithiothreitol
CHAPS cholamidopropyldimethylhydroxypropanesulfonate
IEF isoelectric focusing
TEMED tetramethylethylenediamine
ncm nitrocellulose membrane
NBT nitrobluetetrazolium
BCIP 5-bromo-4-chloro-3-iodolyl-phosphate
EDTA Ethylenediaminetetraacetic acid disodium salt
R_f relative mobility
v volt
Vh volt-hour
v/v volume/volume
Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of Master of Science.

THERMOSTABILITY AND PROTEIN STUDIES OF NEWCASTLE DISEASE VIRUS PROTEINS

By

ZURIDAH HASSAN

October 1995

Chairman: Assoc. Prof. Dr. Khatijah Mohd Yusoff
Faculty: Science and Environmental Studies

The heat stability of four strains of Newcastle disease virus (NDV) belonging to three different pathotypes were studied. The strains were the lentogenic V4 and its heat stable variant V4-UPM, the mesogenic S strain and the velogenic strain AF2240. Analyses of their haemagglutination and neuraminidase activities (which are the functions of the HN protein) and the hemolytic activities at various temperatures showed that strains AF2240, V4 and V4-UPM were heat stable compared to strain S.

There were no differences observed in the mobilities of the various NDV proteins on sodium
dodecyl sulphate-polyacrylamide gel electrophoretic (SDS-PAGE) studies. However, analysis of the various peptides with *Staphylococcus aureus* protease showed that the digested HN proteins of strain V4-UPM was different from the strains V4, AF2240 and S. The peptide analysis was repeated using *Pseudomonas fragi* Endoproteinase Asp-N and *Lysobacter enzymogenes* Lys-C and found to be similar except in strain V4-UPM.

These proteins were further analysed by the two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The gels were then Western blotted and protein spots were identified using HN, NP and F, Mabs and then analysed by the UVP GDS Gel Documentation System (United Kingdom). It was observed that in the heat stable V4 strain the isoelectric point (pI) of the HN protein was in the acidic region, strains V4-UPM and AF2240 in the neutral/weak basic regions and in the thermolabile strain S, the HN protein was shifted to the basic end of the isoelectric focussing run. The pI changes in the NP protein was seen in strain S only. The F protein was at the basic region for all strain except strain V4-UPM. In strain S it was seen that the HN, NP and F proteins were in the basic region and this basic pI could be responsible for the different biological characteristics seen in the thermostable strains compared to the thermosensitive strain.
Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia untuk memenuhi keperluan Ijazah Master Sains.

KESTABILAN SUHU DAN KAJIAN PROTIN VIRUS NEWCASTLE DISEASE

Oleh

ZURIDAH HASSAN

Oktober 1995

Pengerusi: Prof. Madya Dr. Khatijah Bt Mohd Yusoff
Fakulti: Sains dan Pengajian Alam Sekitar

Kajian keatas empat strain virus Newcastle disease (NDV) terdiri daripada tiga jenis patotip telah dijalankan. Strain tersebut adalah strain lentogenik V4 dan varian rintang suhu V4-UPM, strain mesogenik S dan strain velogenik AF2240. Analisis aktiviti haemagglutinasi dan neuraminidase (iaitu fungsi protein HN) dan aktiviti hemolitik pada berlainan suhu menunjukkan strain AF2240, V4 dan V4-UPM rintang kepada suhu berbanding dengan strain S.

Tidak ada perbezaan yang dapat diperhatikan di dalam pergerakan protein NDV dalam kajian elektroforetik sodium dodesil sulfat-gel poliakrilamida (SDS-PAGB).

xvi
Walau bagaimanapun, analisis peptida menggunakan protease *Staphylococcus aureus* menunjukkan protein HN yang terhadam bagi strain V4-UPM berbeza daripada strain V4, AF2240 dan S. Analisis peptida ini telah diulang menggunakan *Pseudomonas fragi* Endoproteinase *Lys-C* dan *Lysobacter enzymogenes* Lys-C tetapi tidak menunjukkan sebarang perbezaan melainkan strain V4-UPM.

xvii
CHAPTER 1

INTRODUCTION

Newcastle disease virus (NDV) is an economically important avian paramyxovirus which causes a highly contagious and fatal disease in poultry known as Newcastle disease (ND). Its genome is a negative-stranded RNA which encodes six major proteins: the nucleocapsid (NP) protein, the phosphoprotein (P), matrix (M) protein, fusion (F) protein, haemagglutinin-neuraminidase (HN) protein and the large (L) protein (Samson, 1988). Several non-structural proteins (36,000 dalton and 33,000 dalton) have also been detected in NDV-infected cells (Inuma and Simpson, 1974; Moore and Burke, 1974).

The severity of the disease depends on several factors, namely, (i) biological properties of the viral strain, (ii) species and age of the host, (iii) presence of other organisms and (iv) environmental factors. NDV strains can be classified into three major pathotypes: (a) velogenic, with sudden death and very high mortality; (b) mesogenic, with respiratory signs but low mortality and (c) lentogenic, with mild
infections. In addition, some strains are avirulent and cause no disease at all.

Poultry has a unique role in the livestock sector of the countries in the Asia-Pacific region. It is the only livestock species that is widely accepted by people from a variety of cultural background. Although ND in commercial poultry is effectively controlled by vaccination, the use of conventional ND vaccination in village poultry has been an unsatisfactory process. The chickens which are of multi ages, are scattered over the villages and are difficult to catch for formal vaccination. Moreover, many live ND vaccines are heat-labile (Lomniczi, 1975) and are thus not suitable in the Tropics. A new approach is therefore required to control ND in the village poultry.

Through a cloning technique, an immunogenic and heat tolerant vaccine of NDV lentogenic strain V4 designated as V4-UPM was isolated (Ideris et al., 1989). The thermostabilities of infectivity and haemagglutinin of V4-UPM were found to be greater than those of the parent V4. It took at least 5 h for the HA (haemagglutinating activity) titre of strain V4-UPM to decrease by 2 logarithms (base 2) compared to only 2 h for strain V4. In the case of
thermostability of infectivity, the time required for a decrease in titre 2 logarithmic orders (base 10) was within 1 h for strain V4 and 3 h for V4-UPM. This new vaccine is used to coat feed pellets which are readily eaten by the chickens. It is currently being commercialised by a joint venture between Universiti Pertanian Malaysia and a private vaccine company Remee Holdings Sdn. Bhd.

Very little work has been done on the thermostabilities of the NDV proteins. Studies on temperature sensitive (ts) mutants at the molecular level of the mesogenic Beaudette C strain have shown an altered isoelectric point in the P protein of mutant ts172 (Samson et al., 1981) and the HN and M proteins of mutant ts53 (Harper et al., 1983). Sequence analysis of the latter has identified sites in the HN protein which may be important in folding and function (Hughes et al., 1991). These studies suggests that the pathotype of the NDV strain may not be directly related to thermostability since the two temperature sensitive mutants (ts172 and ts53) and the heat stable mutant V4-UPM were from different pathotypes. However, these studies were done in separate experiments. Therefore, the thermostabilities of NDV strains representatives of the three major pathotypes will be determined to
confirm the hypothesis that there is no direct relationship between pathogenicity and thermostability.

Examination of the viral proteins in gel electrophoresis may reveal minute difference in the proteins of the various NDV strains. It is possible to correlate these differences to the thermostability.

This study was undertaken
(1) to determine whether the NDV strains of varying pathotypes have different response to heat based on their biological activities;
(2) to examine these differences at the molecular level using several types of gel electrophoretic techniques; and
(3) to determine the proteins which may be directly involved in thermostability.
CHAPTER II

LITERATURE REVIEW

Newcastle Disease

Newcastle disease (ND) was first reported in 1926 in Jakarta, Indonesia, by Doyle and Kraneveld (Allan, 1971) but the origin and epidemiology of ND may be obscure (Hanson, 1978). In the following year it was recognised in other parts of Asia and later in Europe and America (Allan et al., 1973). In England the disease was centred in Newcastle-upon-Tyne hence the name of the disease (Spradbrow, 1987).

ND is one of the most important viral disease in the poultry industry. It causes severe economic losses due to death of chickens and lowered production of eggs, increased cost of purchasing vaccines and running of eradication and quarantine programmes during an outbreak (Lancaster, 1981; Spradbrow, 1987). In some countries vaccination programmes were adopted as the control measure with
varying successes (Biggs, 1982). The requirement of immunization also varies with each programme depending on the levels of protection needed, the immune status of the birds, the type of field virus occurring in each locality and the relationship between poultry diseases and the administration of the ND vaccines (Lancaster, 1964).

Newcastle disease virus (NDV) which is the causative agent of ND, is a member of the genus paramyxovirus within the family Paramyxoviridae which includes the mumps, Sendai and parainfluenza viruses (Compans and Choppin, 1967). Three distinct pathotypes of NDV have been described viz. lentogenic, mesogenic and velogenic (Hanson and Brandly, 1955) and on the basis of tissue tropism, they can be grouped as viscerotropic, pneumotropic and neurotropic (Allan et al., 1973).

The severity of infection is highly strain dependent (Alexander, 1988a). Velogenic strains cause severe disease with high mortality even in adult birds. Mesogenic ones are of moderate virulence, causing mortalities of up to 50% and seriously reducing egg production. The lentogenic strains are of low virulence causing little mortality except in young
chicks but affected egg production (Hanson, 1978; Spradbrow, 1987, Waterson et al., 1967).

The disease can spread either naturally or due to factors associated with the transportation of eggs, birds, carcasses, poultry offal, vaccinating crew and their movements or even by frozen poultry meat or contaminated vaccines (Hanson, 1978; Alexander, 1988a, 1988b).

Viral Structure

NDV is an enveloped, negative stranded RNA virus (Compans and Choppin, 1967). The RNA is complementary to the viral mRNAs and are generated during transcription in infected cells (Davies et al., 1976). The virion contains approximately 67% by weight of protein, 1% RNA, 24% lipid and 7% carbohydrate (Blough and Lawson, 1968; Haslam et al., 1969). Under negative electron-microscopy, the viral particles are pleomorphic in shape with a diameter of 100-500 nm (Hosaka et al., 1966; Kingsbury, 1974, 1990).

The envelope is covered with spikes of glycoprotein, the hemagglutinin-neuraminidase (HN) protein and the fusion (F) protein, of 8 to 12 nm long. The nonglycosylated matrix protein (M) forms a shell on