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Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia
in fulfillment of the requirements for the degree of Master of Science.

PRODUCTION AND CHARACTERISATION OF
THERMOSTABLE PROTEASE FROM Bacillus stearothermophilus
STRAIN F1
By
RAJA NOOR ZALIHA BT RAJA ABD. RAHMAN
MAY, 1994
Chairman :  Associate Professor Che Nyonya Abdul Razak, Ph.D.

Faculty :  Science and Environmental Studies.

Screening and isolation of thermophilic proteolytic bacteria
were carried outfrom composting areas, high temperature ponding
systems and areas surrounding palm oil mills. Twelve isolates were
positive on Skim Milk Agar (10%) of which 11 produced protease in
culture broth. A thermophilicand highly proteolytic isolate
identified as Bacillus stearothermophilus strain F1 isolated from
decomposed oil palm branch, was selected for further study. B.
stearothermophilus strain F1 could grow up to 80°C within a broad pH
ranges (pH 5 to 11) with an optimal growth temperature and pH at 70°C

and 9.5, respectively. The doubling time of this bacteria at 60°C was 70

min.

Maximum protease production was achieved after 24 h cultivation
when grown in 50 ml medium (pH 10.0) under shaking condition at
60°C. Static condition inhibited protease production but not growth.
Cultures grown on peptone (iv) generated the highestamount of
protease and lower production was observed when glucose or other

rapidly metabolized carbon sources were added. Ammonium salt (0.5%)

xii



and amino acids (0.5%) interfered with protease formation whenever they
were added to the medium. Although the protease production was
calcium independent, the presence of the ion at 4.5 mM enhanced the
yield by two-fold. Protease production occurred during the mid-
exponential growth phase of the bacterial growth and its onset coincided

with sporulation.

The protease was purified to homogeneity by heat treatment,
ultrafiltration and gel filtration chromatography with 128-fold increase in
specific activity and 75% recovery. The protease is a serine-type enzyme,
with a molecular weight of about 33,500 and 20,000 by SDS-PAGE and
gel-filtration chromatography, respectively. It hydrolysed many soluble
and insoluble protein substrates but exhibited no esterase, trypsin or
chromotrypsin-like activities. Metal ions such as Mn?* (5SmM) and Ca?*
(5mM) stimulated the enzyme activity while Co** and Hg?* markedly
inhibited it. The protease was very thermostable retaining 100% activity
for 9 h at 80°C. The stability at higher temperature was calcium
dependent. The protease was very stable in denaturing agents, with
minimal loss of activity (less than 10%) in the presence of 6 M urea, 1%

SDS or 10% Triton-X for 48 h and 1 h at 4° and 70°C, respectively.
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MEI, 1994
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Fakulti :  Sains dan Pengajian Alam Sekitar

Penyaringan dan pemencilan bakteria proteolitik termofilik
telah dijalankan di kawasan membuat kompos, sistem kolam bersuhu
tinggi dan kawasan persekitaran kilang memproses minyak kelapa sawit.
Dua belas pencilan memberikan keputusan positif di atas Agar Susu
Skim (10%) di mana 11 daripadanya berupaya menghasilkan protease
dalam media kaldu. Satu pencilan yang termofilik dan penghasil protease
tertinggi yang dikenalpasti sebagai Bacillus stearothermophilus strain F1,
yang dipencil daripada dahan kelapa sawit yang terurai telah dipilih
untuk kajian selanjutnya. B. stearothermophilus strain F1 ini berkeupayaan
untuk hidup sehingga ke suhu 80°C dalam julat pH yang luas (pH 5
hingga 11), di mana suhu dan pH optimum pertumbuhannya masing-
masing pada 70°C dan 9.5. Masa penggandaan bakteria ini pada suhu
60°C ialah 70 min.

Penghasilan protease pada aras maksimum diperolehi selepas 24
jam pengeraman, apabila dikultur dalam medium 50 ml (pH 10) dengan

goncangan pada suhu 60°C. Keadaan statik merencat penghasilan
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protease tetapi tidak mempengaruhi pertumbuhan bakteria. Penghasilan
protease tertinggi diperolehi apabila bakteria dikultur dalam media yang
mengandungi peptone (iv), manakala penghasilan yang rendah didapati
apabila glukosa atau sumber karbon yang mempunyai kadar metabolisma
yang cepat ditambah. Penambahan garam ammonium (0.5%) dan amino
asid (0.5%) ke dalam medium mengganggu pembentukan protease.
Walaupun pengeluaran protease bakteria ini tidak bergantung kepada ion
kalsium, namun kehadiran ion tersebut pada tahap 4.5 mM
meningkatkan penghasilan dua kali ganda. Penghasilan protease berlaku
pada pertengahan fasa eksponen pertumbuhan bakteria dan ini

bertepatan dengan sporulasi.

Protease dapat ditulenkan hingga homoginiti melalui pelakuan
haba, turasan ultra dan penurasan gel kromatografi, dengan peningkatan
aktiviti spesifik sehingga 128 kali ganda dan pulangan aktiviti sebanyak
75%. Protease ini adalah jenis serina dengan berat molekul sekitar 33,500
dan 20,000 masing-masing melalui kaedah SDS-PAGE dan penurasan
gel. Enzim ini berkeupayaan menghidrolisiskan berbagai jenis protein
larut dan tidak larut tetapi tidak menunjukkan aktiviti jenis esterase,
tripsin atau kromotripsin. Ion logam seperti Ca** (5 mM) dan Mn?* (5
mM) merangsang aktiviti enzim, manakala kehadiran Co?* dan Hg?*
merencatkannya. Protease ini amat termostabil dengan pengekalan 100%
keaktifan pada suhu 80°C selama 9 jam. Kestabilan pada suhu tinggi
ini bergantung kepada kehadiran ion kalsium. Protease inijuga amat
stabil dalam agen denaturasi, di mana pendedahan dalam 6 M urea, 1%
(w/v) SDS atau 10%(v/v) Triton-X selama 48 jam dan 1 jam masing-
masing pada suhu 4°C dan 70°C, mengakibatkan pengurangan aktiviti

minimum (kurang dari 10%).
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CHAPTER 1
INTRODUCTION

Proteases classified as hydrolases (EC 3.4), are enzyme that play
a central role in the degradation of protein by hydrolysing peptides
bonds. Under modern unified scheme, proteases are divided into two
classes namely, endopeptidases (EC 3.4.21-99) and exopeptidases (EC
3.411-19) (Barrett and McDonald, 1986). Endopeptidases are proteases
that initiate degradation of proteins by cleaving internal peptide bonds,
whereas exopeptidases degrade peptide chains from their ends, removing
one, two or three amino acids at a time. In general, proteases are
classified by their origin, behaviour against inhibitors, or pH optimum.
Based on their pH optimum, they are normally categorised into three
groups, namely acid (pH 2-4), neutral (pH 7-9) and alkaline (pH 9-11)
proteases. In view of the potential biotechnological applications, the
exploitation of these proteases will lead to various products since most of

the bioconversion processes are pH dependent.

Although proteases can be obtained from animal, plant and
microbial sources, due to various technological and economical reasons,
microbial proteases are superseding the other sources. Among the
outstanding attributes that contributed to their achievement are, firstly,
the microbes have shorter generation time, thus they can be grown
vigorously and rapidly in large quantities by established fermentation
techniques. Secondly, they can be easily manipulated to improve the
productivity by genetic engineering. Thirdly, their secretion mechanisms

can be further controlled by various factors governing their growth



and enzyme production. In addition, the purification of microbial
proteases to homogeneity is possible with the recent technical advances

through chromatographic and electrophoretical methods.

Microbial proteases are probably the most widely and
commercially used enzymes with 48 percentage of sales on the world
market (Kula et al., 1987). They are becoming increasingly important
in medicine, food processing, timber preservation, leather and detergent
industries. Detergent proteases account for approximately 25% of total
worldwide enzyme production which exemplify a successful commercial

product.

Microbial proteases have been studied in a wide variety of
microorganisms which include bacteria, yeast and fungus. Within the
bacteria, protease production in various species have been investigated,
this include Bacillus spp. (Shimogaki et al., 1991; Takami et al., 1989;
Manachini et al., 1988), Vibrio sp. (Fukasawa et al., 1988a), Chromobacterium
sp. (Dainty et al., 1978), Aeromonas sp. (Schalk et al., 1992), Pseudomonas sp.
(Azcona et al., 1989), Lactococfus spp- (T an et al., 1991; Bosman et al., 1990),
Lactobacillus sp. (Miyakawa et al., 1991), Clostridiun spp. (Croux et al., 1990:
Park and Labbe, 1990), Thermus sp RT 41A (Peek et al, 1992), and
Desulfurococcus (Cowan et al., 1987). Many species of yeast and fungus
such as Candida albicans (Homma et al., 1993), Candida humicola (Ray et al.,
1992), Agricus biosporus (Burton et al., 1993) Aspergillus oryzae (Fukushima
et al, 1991), Fusarium oxysprum (Castro et al, 1991), Aureobasidium
pollulans (Donaghy and McKay, 1993) and some other yeast and mold

have also been studied for their protease production.



Proteases which are known to be active and stable in highly
alkaline conditions are secreted by both neutrophilic and alkalophilic
bacilli. They are of interest since they represent a major source of
commercially produced proteolytic enzymes. These proteases are shown
to be very stable, albeit to differing extent, in the presence of a variety
of detergents. They have been used aslaundry additives for several
decades to provide cleaning improvements on a variety of proteinaceous
soil types. Their ability to enhance the detergent action in the washing of
soiled clothes have been investigated in detail. Two such commercially
available enzymes are Alcalase® and Esperase®, both being produced by
bacilli (Dambmann and Aunstrup, 1980). The commercial success of the
above detergent proteases resulted in a search for a new and novel
enzymes with better stain-removing properties and stabilities in the
washing suds. Enzyme-assisted de-hairing of animal hide is another
industrial process which is currently in focus. This process is made
possible with proteolytic enzymes that are stable and active under

alkaline conditions (pH 12) (Kroll, 1990).

In industries most enzymatic processes are being carried out at
an elevated temperature. Not only it accelerated the processes but also
increased the substrate solubilities, accelerated the rate of diffusion,
decreased the viscosity and reduced the risks of contaminations (Edwards,
1990; Doig, 1973). In addition, operating at high temperature provided a
means of distilling volatile chemical, thus allowing cheap and rapid
purification of the product (Edwards, 1990). Washing with proteases
containing detergents is usually done at 20-50°C or above (Aaslyng et al.,

1991). Thus there is a great necessity to use enzymes which are heat



stable. Thermostable enzymes are now gaining their importance in a wide
range of biotechnological applications. Their inherent stability at
elevated temperatures, in organic solvents and denaturing agents enable

their use in processes where conventional enzymes are restricted.

Even though thermostable enzymes may be obtained from
mesophilic microorganisms, chances are usually greater for them to be
produced by thermophiles. Similarly, most alkaline proteases were
obtained from alkalophilic microorganisms. These alkalophilic micro-
organisms may provide new proteases with useful characteristics
suitable for industrial applications. Therefore, the search for new
microorganisms producing new and novel proteases for industrial
purposes should be continuously pursued. Thus this research was

undertaken with the following objectives:

a) to isolate a thermophilic bacteria producing thermostable
proteases.

b) to identify the bacteria.

c) to optimise the protease production.

d) to purify the enzyme to homogeneity.

e) to characterise the purified enzyme.



CHAPTER 2
LITERATURE REVIEW

The Classes of Proteases

In general, protease is synonymous with peptide hydrolases
and can be applied to both exopeptidases and endopeptidases. Proteases
differ from almost all other enzymes, in that their substrate specificities
are extremely difficult to define (Barrett, 1986). Hartley (1960) observed
that the protease seemed to act through four distinct catalytic
mechanisms, and therefore could be refered as ’serine’, ‘thiol’, "acid’ or
‘metal’ proteases. With recent knowledge on the chemistry of the
catalytic sites, the concept of distinguishing these groups of enzymes
remains completely valid, although three of the four names have been
amended, and now called "serine’, ‘cysteine’, “aspartic’ and "'metalo-’
proteases (Barrett, 1986). In the enzyme nomenclature scheme, these forms
sub-sub-classes 21, 22, 23, and 24 respectively, of the peptide bond
hydrolyses (sub-class 3.4) (IUB Nomenclature Committee, 1984).

Serine Proteases (EC 3.4.21)

The enzymes which belong to this first group are most
numerous, extremely widespread and diverse. They canbe divided into
two superfamilies, namely the chymotrysin superfamily and the subtilisin
superfamily (James, 1976; Hartely 1960). Enzymes related to subtilisin
have been found only in bacteria, whereas the chymotrypsin-related
proteases are found inboth prokaryotic and eukaryotic microorganisms,

plant and both invertebrate and vertebrate animals.



When classified according to their substrate specificity, there are
three major types of serine proteases (Polgar, 1987). They are trypsin-like
enzymes which cleave substrates with positively charged amino acids
residue (lysine and arginine), chymotrypsin-like enzymes which prefer
substrate with aromatic or large aliphatic, and elastase-like enzyme which
prefers substrate of small aliphatic side chains. Staphylococcus aureus
protease O¢8 was a special case as it cleaves only glutamate and aspartate

residues (Drapeau, 1976).

The serine proteases normally have a molecular weight of 15,000 to
30,000 (Morihara, 1974). Their alternative name, alkaline protease,
reflects their high pH optima of 9 to 13. There are no absolute activator
requirements, but Ca** ions are required in the activation reaction of some

of the proenzymes as well as for stabilisation (Barret, 1986).

Phenylmethanesulphonyl fluoride (PMSF) was first shown to
stoichiometrically inactivate trypsin and chymotrypsin in 1963 (Gold and
Fahrney, 1964; Fahrney and Gold , 1963). Since then sulphonyl fluorides
havebeen used widely as serine protease inhibitors. In addition, several
substituted sulphonyl fluorides have also been reported as reactive and
specific inhibitors of trypsin-like enzymes (Tanaka et al. 1983 ; Laura et al.
1980). However, the most potent inhibitor for trypsin-like enzyme, is 4-
amidinophenylmethane sulfonyl fluoride (APMSF) (Laura et al. 1980).
Unlike PMSEF, APMSF does not inhibit chymotrypsin.

Several peptide aldehydes of microbial origin, have been reported
as inhibitors of serine proteases. The first aldehyde, chymostatin was

reported to inhibit chymotrypsin-like enzymes (Umezawa ef al. 1970) but



did not inhibit trypsin-like enzymes. Elastinal is a good and specific
inhibitor of elastase (Okura et al. 1975; Umezawa et al. 1970) and does not
inhibit chymotrypsin or trypsin. Two peptide aldehydes, leupeptin and
antipain have been reported as inhibitors of trypsin-like enzymes
(Umezawa and Aoyagi, 1977; Umezawa, 1976) and are widely used in

the characterisation of a new trypsin-like proteases.

More than 40% of the microbial proteases so far reported belong
to the serine proteases (Tsuru and Yoshimoto, 1987). Recently a number
of serine proteases produced by bacteria (Peek et al. 1992), yeast (Donaghy
and McKay, 1993) and fungi (Burton et al., 1993) have been reported.

Cysteine Proteases (EC 3.4.22)

The cysteine proteases, which were known previously as thiol
proteases, constitute the group of endopeptidases whose member rely for
catalytic activity in the presence of a thiol group of cysteine residue in the
enzyme molecule. Cysteine proteases have been isolated from a large
number of biological sources which encompass plants (papain,
bromelain, ficin) (Glzer and Smith, 1971), animal (cathepsin B) (Barret and
McDonald, 1980), bacteria (Streptococcus protease, clostripain) (Mohihara,

1974) and eukaryotic microorganisms (North, 1982).

Most cysteine proteases are small protein with molecular weight in
the range of 20,000-35,000 (Brocklehurst et al., 1987) and are most active at
around neutral pH. The isoelectric point of the various cysteine proteases

cover a wide range from about 3 to 11.7 (McDowall, 1970).



Cysteine proteases contain a catalytically active cysteine
sulphydryl groups (Cys-25) and a histidine imidozole group (His-159)
within the active site of the enzymes (Giles and Keil, 1984; Polgar and
Halasz, 1982). Reagents, such as N-ethylmaleimide, iodo- and bromo
acetates, p-chloromercuric benzoate or pyridyldisulphides (Brocklehurst
and Little, 1973) resulted in alkylation of cysteine sulphydryl group
which render the enzyme catalytically inactive. The inhibitor Tos-phe-
Ch,Cl (TPCK) inactivated cysteine protease by alkylation of thiol group
on Cys-25. E-64 ([N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-amino
(4-quanido)butane) an irreversible inhibitor of cysteine proteases was
discovered by Hanada et al. (1978). The most recent report showed that
sulphonium methyl ketones as the most potent class of calpain inhibitor

reported to date (Pliura ef al., 1992).

Aspartic Proteases (EC 3.4.23)

The aspartic proteases may be one of the younger classes of
proteases which appear to be confined to eukaryotes. Fungal aspartic
proteases, generally have a molecular weight values in the range 30,000-
45,000 and isoelectric points below pH 5.1 (North, 1982). Well-
characterised microbial acid proteases have been isolated and in some
cases crystallised, from strain of Candida albicans (Ruchel, 1981),
Monascus  kaoling (Hwang et al., 1980) and Fusarium moniliforme

(Kaloczewski et al., 1983).

Typical pH optima for aspartic proteases are in the range of pH 3.5
to 5.5. In general, aspartic proteases act best on peptide bonds between

bulky hydrophobic amino acid residues. Thus Leu-Try, Try-Leu, Phe-



