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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

DEEP LEARNING APPROACH FOR AUTOMATED GEOSPATIAL DATA 
COLLECTION 

By 

JALAL IBRAHIM AL-AZIZI 

February 2020 

Chairman :   Associate Professor Helmi Zulhaidi Mohd Shafri, PhD 
Faculty :   Engineering 

Geospatial data collection and mapping are considered to be one of the key 
tasks for many users of spatial information. Traditionally, data collection and 
mapping can be done using a variety of methods, such as mobile mapping, 
remote sensing and conventional survey methods. Each method has its 
advantages, accuracy, costs and limitations. It is therefore essential to assess 
the requirements of the project in order to ensure that the relevant data quality 
is acquired at the lowest possible cost. However, one of the greatest barriers 
is the availability of digital spatial data and attributes. Often this problem arises 
because these methods are considered costly and require considerable effort 
and time. 

With advancements in technology, such as object recognition through Artificial 
Intelligence technology, this has led to novel approaches to the extraction of 
features for a number of applications. Information is expected to be more 
accurate and readily available in real-time at lower operational and field 
observation costs. Several research groups have therefore investigated the 
detection of road objects, e.g. road signs. The main drawback of these works, 
however, is that none of these studies used low-cost sensors to generate 
geospatial maps in their studies. In addition, some of these studies are 
considered expensive and require a considerable amount of time to process 
the information collected.  

In this study, I presented a new approach to real-time geospatial data 
collection and map generation by integrating deep learning and geomatics 
technologies. The proposed solution runs on a laptop which is connected with 
a single vision sensor, e.g. camera, receiver to capture photographs or videos, 
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and the location unit e.g. using global navigation satellite system to record the 
user location (geographic coordinates). For some selected classes, a 
customized data set and a prototype framework "DeepAutoMapping" have 
been built.  
 
 
"DeepAutoMapping" was developed on the basis of convolutional neural 
networks inspired by recent rapid advancements in deep learning literature to 
detect, locate and recognize four main street objects (trees, street light poles, 
traffic signs, and palms) based on a defined object detection dataset. The 
prototype calculates the positioning of the detected object using a geographic 
coordinate system and then generates a geospatial database including object 
ID, object name, single photograph or video sequence (based on the type of 
test), distances, bearings, user and object coordinates. It allows users to verify 
the results in real time without the need to revisit the site. 
 
 
Various evaluation and test scenarios have been conducted to validate 
outputs. The findings show that the overall proposed approach is easy to use, 
provides a high detection accuracy of 88% with 6% false detection and a 
positioning accuracy of 6.16 m for video streaming and 9.99 m for single 
photography in the outdoor environment.  
 
 
Compared to the current data collection methods available, the proposed 
solution can be considered as a pipeline for the fastest and cheapest methods 
of data survey and geospatial map generation. In addition, a new research 
area for geospatial data collection using deep learning will be opened up. 
 
 
Keywords: Geospatial Data, Mapping and Localisation, Deep Learning 
Neural Networks, Positioning, GIS, Computer Vision for Automation, Survey 
Method 
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PENDEKATAN PEMBELAJARAN MENDALAM BAGI PENGUMPULAN 
DATA GEOSPATIAL TERAUTOMASI 

 
 

Oleh 
 
 

JALAL IBRAHIM AL-AZIZI 
 
 

Februari 2020 
 

 
Pengerusi :   Profesor Madya Helmi Zulhaidi Mohd Shafri, PhD 
Fakulti :   Kejuruteraan 
 
 
Pengumpulan data geospatial dan pemetaan dianggap sebagai salah satu 
tugas penting bagi pengguna-pengguna informasi spatial. Secara 
tradisionalnya, pengumpulan data dan pemetaan boleh dilakukan dengan 
menggunakan cara-cara yang berbeza seperti pemetaan mudah alih, 
penderiaan jauh dan kaedah-kaedah tinjauan konvensional. Setiap cara 
memiliki kelebihan-kelebihannya, ketetpatan, kos dan hadnya. Oleh itu, 
adalah sangat mustahak untuk menilai keperluan projek untuk memastikan 
kualiti data yang diperoleh dengan kos yang terendah. Namun, salah satu 
halangan terbesar adalah berkaitan dengan ketersediaan spatial digital dan 
atribut digital. Sering kali, masalah ini adalah disebabkan oleh kaedah-kaedah 
ini dianggap mahal, dan memerlukan usaha dan masa yang banyak. 
 
 
Dengan adanya kemajuan teknologi seperti pengenalan objek melalui 
Kecerdasan Buatan (AI), teknologi ini telah membawa kepada pendekatan 
baru dalam pengekstrakan ciri dalam beberapa aplikasi. Adalah dijangkakan 
bahawa maklumat boleh mempunyai ketepatan yang lebih tepat dan boleh 
didapati dalam masa nyata dengan kos operasi dan kos pemerhatian 
lapangan yang lebih rendah. Oleh itu, beberapa kumpulan penyelidik telah 
menjalankan penyiasatan terhadap pengesanan objek di jalan raya seperti 
tanda lalu lintas. Walau bagaimanapun, kelemahan utama dalam penyelidikan 
ini adalah tiada penyelidik yang menggunakan sensor kos rendah untuk 
menghasilkan peta geospatial dalam penyelidikan mereka. Tambahan pula, 
beberapa kajian itu juga dianggap mahal kerana memerlukan masa yang 
banyak untuk memproses maklumat yang terkumpul.  
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Dalam kajian ini, pengkaji telah mengemukakan pendekatan baru bagi 
pengumpulan data geospatial waktu nyata dan pembuatan peta dengan 
mengintegrasikan pembelajaran mendalam dan teknologi geomatik. 
Cadangan penyelesaian ini dijalankan pada komputer riba yang dihubungkan 
dengan sensor penglihatan tunggal seperti kamera iaitu penerima untuk 
menangkap gambar atau merakam video serta unit lokasi seperti 
menggunakan GNSS untuk merakam lokasi pengguna (koordinat geografi). 
Suatu set data tersuai telah dibina untuk kelas tertentu dan kerangka 
prototaip.  

Oleh itu, "DeepAutoMapping" telah dihasilkan berdasarkan Rangkaian Neural 
Convolutional, hasil daripada pembangunan pesat baru-baru ini yang 
dijelaskan dalam literatur pembelajaran mendalam untuk mengesan, 
menyetempatkan dan mengenali empat objek utama di jalan iaitu pokok, tiang 
lampu jalan, tanda lalu lintas dan pokok palma berdasarkan objek yang 
ditentukan pada set data pengesanan. Prototaip akan mengira kedudukan 
objek yang dikesan menggunakan sistem koordinat geografi dan 
kemudiannya menghasilkan pangkalan data geospatial termasuklah ID objek, 
nama objek, urutan gambar tunggal atau video (berdasarkan jenis ujian), 
jarak, bearing dan koordinat pengguna & objek. Dalam masa nyata, pengguna 
dapat mengesahkan keputusan tanpa perlu melawat tapak tersebut. 

Penilaian dan senario ujian yang berbeza telah dilakukan untuk mengesahkan 
keputusan tersebut. Hasil kajian menunjukkan bahawa pendekatan yang 
dicadangkan secara keseluruhannya mudah digunakan dan juga memberikan 
ketepatan pengesanan yang tinggi iaitu 88% dengan pengesanan palsu 6% 
dan ketepatan kedudukan dalam jarak 6.16 m untuk pengaliran video dan 9.99 
m untuk satu fotograf di persekitaran luar. 

Sebagai perbandingan dengan kaedah pengumpulan data yang wujud ketika 
ini, cadangan penyelesaian ini boleh dianggap sebagai saluran kepada 
kaedah yang terpantas dan termurah bagi kaedah tinjauan data dan 
pembuatan peta geospatial. Selain itu, pendekatan ini akan membuka bidang 
penyelidikan baru untuk pengumpulan data geospatial dengan menggunakan 
pembelajaran mendalam. 

Kata Kunci: Data Geospatial, Pemetaan dan Penempatan, Rangkaian Neural 
Pembelajaran Mendalam, Penentududukan,  
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CHAPTER 1 

1 INTRODUCTION 

Geospatial data plays a key role in several important applications, such as 
navigation, planning, and researches (Khutwad et al., 2017). Hence, field data 
observations and mapping are fundamental to collecting and analysing all 
geospatial data. Therefore, significant research efforts have been expended 
into developing techniques for collecting, storing, analysing, processing, and 
representing geospatial data, eventually resulting in the development of the 
Geographic Information System (GIS) (Goodchild, 2009). 

From the perspective of this study, these methods can be categorised into: 1) 
conventional data collection, 2) modern data collection, and 3) smart data 
collection. Each of these methods has its own benefits, accuracy, costs and 
limitations (Schaefer & Woodyer, 2015). It is important to assess the project 
requirements in order to ensure that the relevant data quality is acquired at the 
lowest cost (Ganendra & Zakaria, 2007). However, one of the major 
drawbacks of these current methods is that building a geospatial information 
database for large size projects tends to be expensive and requires 
considerable effort and time Silva et al., (2000) and B. Yang et al., (2013) 
associated with the use of different platform types; navigation techniques, and 
mapping technologies. Even an “inexpensive” system may cost over 
2,000USD. For example, conventional land survey techniques require specific 
instruments, such as the global navigation satellite system (GNSS), the 
receiver or the total station instruments, to gather information. Additionally, 
separate teams are required for the survey work, processing of the raw data, 
and analysis of the outputs. For certain requirements, such as street data 
collection, the conventional data collection and survey methods require street 
closures to guarantee the safety of the surveyors (Figure (1.1)). 

 

Figure 1.1 : Geospatial data collection using conventional survey 
methods 
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The use of satellite images for the extraction of features is an example of 
modern data collection (Renaud & Thierry, 2003). However, this method 
requires an expert to perform the analysis and is dependent on up-to-date 
satellite images, aerial photographs, or light detection and ranging (LiDAR) 
data, which are expensive and not readily available. For example, Osco et. al. 
(2020) provided a Convolutional Neural Network (CNN) method for estimating 
the number and location of multispectral imagery UAV citrus trees. However, 
the imagery considers expensive and not always available.  

Another modern data collection that introduced some automation in geospatial 
map generation is mobile mapping (Puente et al., 2011a). Mobile mapping 
(Figure (1.2)) is the process of collecting geospatial data from a mobile vehicle 
that is typically fitted with a range of photographic, radar, laser, Light Detection 
And Ranging (LiDAR), or remote sensing systems (Puente et al., 2011b). 
However, such solutions can be expensive and require special instruments 
and software, permits to drive the vehicles in the required zones, and an expert 
to run the process and to analyse the output.  

 

Figure 1.2 : Mobile Mapping Solution components 

 
 
Furthermore, several recent studies have explored the collection and mapping 
of geospatial data using portable sensors. For example, Martinez et al., (2017) 
introduced a generic module to collect data from different mobile device 
sensors, whereas Korpilo et al., (2017) used a smart device to log the Global 
Positioning System (GPS) data to explore the spatial distribution and density 
of recreational movement for multiple-use in urban forests. Additionally, Lwin 
and Murayama, (2011) demonstrated a real-time field data collection method 
using mobile phones to collect field data in a practicable manner. However, 
the abovementioned solutions are time-consuming (Maeda et al., 2018), as 
the user has to stop at each feature, record the measurements, input the object 
descriptions, and then store the information; despite this, the output may be 
flawed owing to human intervention. Examples are shown in Figures (1.3) and 
(1.4). 
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Figure 1.3 : Data collection using a portable device. It requires human 
interaction 
 
 

 

Figure 1.4 : Another example of data collection using a portable device. 
Data collector has to stop near each street feature and enter the required 
information 
 
 
This chapter is organized as follows. First, the chapter discusses the problem 
statements and conducted researches related to this work. Second, the 
research main and objectives and contributions, and the last section 
detriments the scope of work. 

1.1 Problem statement 

Over the past years, a number of data collection related studies have focused 
on proposing solution to enable reducing the data collection and processing 
time, cost and minimisation of errors. For example, several research groups 
have contributed to the topic of data collection and mapping using portable 
sensors. According to Klimaszewski-Patterson et al., (2010), Delail et al., 
(2012) and Clark, (2015), e.g. a smartphone embedded with GNSS and vision 
sensors. Nevertheless, these solutions require the user’s action to get the 
outputs in order to generate the desired digital maps, which may lead to human 
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errors and mistakes. Other research groups, e.g.  Vakalopoulou et al., (2015) 
and  Nahhas et al.,(2018) applied deep learning to  detect of buildings using 
LIDAR–orthophoto fusion and very high-resolution multispectral data, 
although these are dependent on the LiDAR and satellite image availability, 
resolution, and date.  

Recently and with advancements in portable devices, and technologies  such 
as artificial intelligence (Russell J & Norvig, 2016), computer vision (Pulli et al., 
2012; Gary et al., 2008) and deep learning (Deng & Yu, 2013; Goodfellow et 
al., 2015), it is now possible to detect and recognise objects from images and 
video sequences recorded with portable devices (Damodharan et al., 2017). 
In instances where professional digital cameras are not accessible, easily 
accessible simple cameras can provide a useful alternative image and video 
recording device for several geometrics’ applications, such as data collection 
and mapping. For example, (Wegner et al., 2016) proposed an algorithm for 
the identification and classification of urban forest trees and their types and 
(Nassar et. al. 2019) used faster Regions-Convolutional Neural Networks (R-
CNN) algorithm to detect the traffic signs. (Song et. al. 2019) set up a high-
definition vehicle object dataset from the surveillance cameras perspective 
and proposed an object detection and tracking system for highway 
surveillance video scenes. However, building a deep learning application on 
portable devices capable of localising and identifying objects in a single 
photograph or stream video and suitable for data collection purposes is still a 
core challenge in computer vision and geospatial fields as it requires special 
processing and integration techniques. 

Few empirical studies have proposed various methods and techniques 
regarding detection, recognition and localisation of objects. For example, 
Montoya, (2003) explored the use of an off-the-shelf low-cost and rapid 
method of data collection for the development of a building inventory based 
on the combination of Remote Sensing (RS), GPS, Digital Video (DV), and 
GIS. However, the solution requires a post office processing and the output 
depends on the existing building GIS layer data. Mills et al., (2010) introduced 
the spatial video technology by taking advantage that each frame of the video 
is linked to a coordinate. The video can be played in a GIS environment and 
will align with other spatial data. As a result, each frame is imported to GIS 
environment at the same location. However, the solution does not show any 
generation of geospatial data. 

Kršák and Toth (2012) described the traffic sign detection and recognition 
system to calculate the approximate GPS position of the traffic signs. The 
vehicle’s position obtained from a common GPS receiver is shifted by a 
constant value in latitude and longitude because signs are usually located on 
the left or right side of the road. This is a simple but not an accurate method, 
and there was no evaluation on the accuracy of the calculated position. 
Hazelhoff et al., (2012) defined a framework for road-sign detections using a 
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panoramic image. Detections of the same traffic sign from multiple images are 
combined, and a position is calculated by straightforward geometric 
calculations. A capturing interval of 5m causes large differences in perspective 
and emerging hypothesis of sign location, which are clustered around the sign 
position. The accuracy of the calculated position was not part of the author’s 
extensive experiments.   

Welzel et al., (2014) provided two methods for absolute traffic sign localisation 
for driver assistance purposes. However, two main drawbacks have been 
noticed in their approach. The first drawback is that the proposed solution is 
limited to detect a single object, and the second drawback is that the solution 
is based on a single image which did not show any geospatial data outputs. 
Woudsma et al., (2015), in their findings, presented a single-panoramic image 
processing of a street marking using high quality positing system (GPS and 
Inertial Measurement Unit (IMU)) and pixel for the transformation of 
geographic coordinates. They managed to obtain up to 10m location accuracy. 
However, the proposed approach requires pre-processing, and is limited to 
single images and certain geographical region of interest. (Piarsa et. al. 2015) 
have developed a rural road mapping geographic framework that can conduct 
the coordination process in real time using GPS technology, so the user can 
assess the exact location of the road coordinate and at the same time directly 
observe the road condition. The key feature of this geographic framework is 
road mapping. Road mapping is achieved first by determining the position of 
the road which will be the starting point of the route, then by determining the 
other point of the route which will be achieved in two ways; ‘use button' or 'use 
time'. This simple where the user location is considered as the object locations. 

More new recent approach to geospatial data collection, which has just started 
using machine learning techniques for geospatial collection. For example, Rao 
et al., (2017) proposed an approach for visitors by providing information about 
the detected buildings. The authors used deep learning method to detect 
certain object, to estimate the site locations by considering the concept of a 
distance threshold, and then obtain the object description from the stored 
database and display for the user. The research did not show any geospatial 
or map data generation. This system only works offline, and can only detect 
images. Also, the accuracy of the research was not mentioned whether it’s too 
low to provide any samples for test data according to the findings.  

Shah et al.,(2017) proposed a framework capable of detecting, localising, and 
recognising trees using deep learning. However, the approach requires the 
quadcoptor equipped inertial device, and it is necessary to run the quadcoptor 
over the survey area twice. In this work, an innovative approach was proposed 
that uses deep learning integrated with geospatial technologies and computer 
vision to provide a real-time low-cost solution for geospatial data collection and 
geospatial data generation for certain street features. This system only works 
offline, and can only detect images. Also, the accuracy of the research was 
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not mentioned as well, whether it is too low to provide any samples for test 
data according to them. Nuakoh et al., (2019a) modified VGG-16 to detect 
traffic signs. This system only works offline, and can only detect single images. 
They also did not mention the accuracy of the research as well as being too 
low to provide any samples for test data according to them. Nuakoh et al., 
(2019b) proposed a traffic sign detector based on You Only Look Once 
(YOLO)v3, and a classifier based on custom CNN. Detection efficiency is 
found to be superior to previous detectors, based on the detection speed, with 
traffic-sign being considered as a single class. The proposed detector can 
detect nearly all types of traffic signs and may be able to regress correct 
bounding boxes for most of the signs detected. A number of very small traffic 
signs could not be identified correctly and a few false positive detections were 
also possible.  

Chen et. al., (2019) showed that a CNN based object detector's low-level 
features have the potential to improve the detection accuracy of small objects. 
However, they did not show any geospatial data outputs. Zhang et. al., (2019) 
suggested an automated method to detect and position road objects located 
at intersections from street-level images. The approach proposed is based on 
two deep learning pipelines: one for semantic segmentation, and the other for 
object recognition. However, they can only verify the effectiveness of our 
proposed positioning algorithm at crossroads and T-junctions. Doval et. al., 
(2019) used YOLOv3 algorithm to identify, recognize and 3D locate traffic 
signs in various scenarios, and a new dataset for traffic sign detection. They 
also introduced updated architecture to improve results of detection at lower 
resolutions and to reduce their performance at higher resolutions. However, 
the outputs show only the distance and no locations and coordinates were 
presented. Tabernik and Skocaj, (2020) discussed the issue of detecting and 
identifying a large number of traffic sign categories for the main purpose of 
automating the management of traffic sign inventories. They suggested 
several modifications to mask R-CNN which would improve the ability to learn 
on the traffic signs domain. In addition, authors have suggested a technique 
for data increase based on geometric distribution and appearance distortions. 
But they also have high error rates for groups of traffic signs, mainly due to 
overlapping with other groups, small viewing angles and high occlusions. 

1.2 Novelty and research objectives 

In summary, a review of existing literatures indicates that implementation of a 
low operational and field observations costs approach using deep learning and 
computer vision techniques integrated with geospatial science to automate the 
geospatial data collection process is full of unanswered questions. Some 
scholars mentioned estimating the object detection positioning, but the 
descried solutions either considered expensive or did not show the geospatial 
map outputs. For this reason, this research aims to produce low cost system 
that uses contemporary and freely available technologies including deep 
learning, computer vision and geospatial technologies to produce this a low 
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operational and field observations costs for data collection and geospatial map 
generations. The objectives of this research are: 

i. To build an object detection dataset by training a large number of 
images 

ii. To examine the level of accuracy in positioning and availability 
obtained using low cost sensors by applying deep learning and 
computer vision technologies with respect to the ground truth 
government database. 

iii. To develop a prototype and portable application “DeepAutoMapping” 
in order to evaluate the proposed algorithm. 

 
 
The scope of work encompasses building the dataset for object detection on 
the target street objects, tracking the detection objects, estimating the 
distances and directions to each detected object, calculating the geographic 
coordinates for each object and then storing the outputs in geospatial dataset. 
The work includes building a prototype application to test and evaluate the 
outputs. The prototype can be used as a static mode using single photograph 
or a moving mode using streaming video inputs. Though it is configured to 
work on straight-line roads, but feature work can also be updated to work on 
curved roads. 

The proposed solution may be considered as one of the fastest, most 
economic and real-time survey method and mapping solution that enhances 
the efficiency of spatial data collection not only for GIS applications, such as 
mapping of street features for street asset management, but also for different 
applications which required obtaining the information in real-time such as 
driver assistance systems, some urban planning studies, and road assist 
management where the decision maker should take the required decision on 
site. 

1.3 Scope of work 

The problem addressed in this thesis takes into consideration that the areas 
under observation are flat. Where the slope of the ground has a direct impact 
on the results, which is not part of this research study. 

1.4 Summary 

Geospatial data plays a key role in many important applications, such as 
navigations, assists in maintenance, planning, and studies, and helps 
managers in taking the correct decision. One of the biggest bottlenecks is 
related to the cost and availability of spatial and attributes data. Different 
research groups have investigated on the use of deep learning to detect and 
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locate some certain objects. However, the drawbacks of these researches are 
that none of these researches have generated any geospatial outputs and 
maps, which requires an expensive instrument such as drone. Thus, this study 
proposes a robust, fast, and low-cost solution for auto map generation for main 
road features in real-time. 

1.5 Thesis structure 

This thesis consists of five chapters. A brief background and literature review 
have been provided in Chapter Two. Chapter Three describes the 
methodologies and implementation procedures. Chapter Four provides the 
conducted tests, evaluations, and results achieved. Chapter Four also gives 
an illustration of the outputs and discussion. The final chapter summarises the 
conclusion and contributions of this research which provides possible 
directions for future work. 
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