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Hand impairment is a consequence of many neurological diseases such as stroke, 

where the stroke affects about 15 million people worldwide annually and it is one of 

the main causes of hand disability. Therefore, hand robotic devices can be used to 

help stroke patients to perform activities of daily living and at home rehabilitation. 

Control of hand robotic devices by using Surface Electromyography (sEMG) signal 

is the most preferred control technique due to the advantages of this method like 

naturalness. However, robust controlling by using such method is still a challenging 

process because the amplitude of these signals is not constant over the recording 

time due to the variations in the electrode-skin interface characteristics; these 

involuntary amplitude variations deteriorate the detection performance of the 

amplitude-dependent methods and produce false alarms. Many algorithms have been 

developed in the literature to detect muscle activities; however, most of these 

algorithms depend on amplitude features in the detection process. The performance 

of the amplitude-dependent methods is highly deteriorated when the signal to noise 

ratio (SNR) is low, such as for signals obtained from the paretic muscles. To 

simplify soft robotic glove systems and make them more practical for use in daily 

basis, they should have minimum number of sEMG channels. In spite of some 

algorithms that have been developed in the literature to classify some hand motions 

by using single channel, the current implementation of soft robotic glove systems are 

still employing two channels for detecting the closing and opening movements of the 

hand, due to the intensive calculations required by these algorithms which impose 

difficulties on real time implementation. This thesis addresses the aforementioned 

problems, by innovating an amplitude-independent and computationally efficient 

muscle activity detection algorithm to control a soft robotic glove intended for 

hemiparesis stroke patients by using single channel. The algorithm employs the First 

Lag Autocorrelation and the Modified Sample Entropy methods to detect and 

classify weak hand closing and opening muscle activities by using signal obtained 
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from the Flexor Carpi Ulnaris forearm muscle. The detection performance of the 

proposed algorithm compared to three amplitude-dependent algorithms was verified 

on seven healthy subjects and on six hemiparesis stroke patients. The performance of 

the proposed algorithm has outperformed that of the amplitude-dependent algorithms 

regarding the detection of weak muscle activities and robustness against false 

alarms. High classification accuracies have been achieved for the seven healthy 

subjects (92%-100%) which are comparable to that obtained by applying 

sophisticated single channel classification algorithms in previous studies; moreover, 

good accuracies (70%-85%) have been obtained for the stroke patients. The 

computation efficiency of the proposed algorithm has enabled the implementation of 

the soft robotic glove system prototype by using simple hardware.  
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Kecacatan tangan adalah akibat daripada pelbagai penyakit neurologi seperti strok, 

di mana strok memberi kesan kepada kira-kira 15 juta orang di seluruh dunia setiap 

tahun, dan ia merupakan salah satu punca utama hilang upaya tangan. Oleh itu, 

peranti tangan robotik boleh digunakan untuk membantu pesakit strok untuk 

melakukan aktiviti kehidupan harian dan pemulihan di rumah. Kawalan peranti 

tangan robotik dengan menggunakan isyarat Permukaan Elektromiografi (sEMG) 

telah mendapat perhatian yang tinggi kerana kelebihan menggunakan kaedah 

kawalan yang mempunyai sifat menyerupai semula jadi. Walau bagaimanapun, 

kawalan kukuh dengan menggunakan isyarat sEMG masih merupakan proses yang 

mencabar kerana ciri amplitud isyarat berubah dari semasa ke semasa ketika proses 

rakaman disebabkan oleh variasi dalam ciri-ciri antaramuka elektrod-kulit; variasi 

amplitud luar kawalan ini mengakibatkan prestasi pengesanan kaedah yang 

bergantung pada amplitud merosot, dan menghasilkan amaran palsu. Pelbagai 

algoritma telah dibangunkan dalam literatur untuk mengesan aktiviti otot; namun, 

kebanyakan algoritma ini bergantung pada ciri amplitud dalam proses pengesanan. 

Prestasi kaedah yang bergantung kepada amplitud akan merosot apabila nisbah 

isyarat kepada bunyi (SNR) adalah lebih rendah daripada isyarat sEMG, seperti 

isyarat yang diperoleh dari otot-otot paretik. Untuk memudahkan peranti tangan 

robotik dan menjadikannya lebih praktikal untuk penggunaan harian, mereka 

memerlukan bilangan saluran sEMG minimum. Walaupun beberapa algoritma yang 

telah dibangunkan dalam literatur untuk mengklasifikasikan beberapa gerakan 

tangan dengan menggunakan saluran tunggal, implementasi sistem sarung tangan 

robotik lembut masih menggunakan dua saluran untuk mengesan aktiviti penutupan 

dan pembukaan tangan, disebabkan oleh pengiraan intensif yang diperlukan oleh 

algoritma-algoritma saluran tunggal, yang menjadikannya tidak praktikal untuk 
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pelaksanaan masa sebenar. Tesis ini membincangkan masalah yang disebutkan di 

atas, dengan menginovasi amplitud bebas dan pengiraan algoritma pengesanan 

aktiviti otot yang cekap untuk mengawal sarung tangan robot yang lembut untuk 

pesakit strok hemiparesis dengan menggunakan saluran sEMG tunggal. Algoritma 

ini menggunakan Autokolerasi Lag Pertama dan kaedah Entropi Sampel yang 

Diubahsuai untuk mengesan dan mengklasifikasikan aktiviti penutupan dan 

pembukaan otot tangan yang lemah, dengan menggunakan isyarat yang diperolehi 

daripada otot lengan Fleksor Carpi Ulnaris. Prestasi pengesanan algoritma yang 

dicadangkan berbanding dengan tiga algoritma yang bergantung kepada amplitud 

telah disahkan keatas tujuh subjek yang sihat, dan pada enam pesakit strok 

hemiparesis. Prestasi algoritma yang dicadangkan berhubung dengan pengesanan 

aktiviti otot lemah dan ketahanan terhadap amaran palsu telah mengatasi prestasi 

algoritma-algoritma yang bergantung kepada amplitud. Ketepatan klasifikasi yang 

tinggi telah dicapai diatas tujuh subjek yang sihat (92% -100%) yang mana setanding 

dengan ketepatan yang diperoleh dengan menggunakan algoritma klasifikasi saluran 

tunggal yang canggih dalam kajian terdahulu; selain itu, ketepatan yang bagus (70% 

-85%) telah diperolehi untuk pesakit strok. Kecekapan pengiraan algoritma yang 

dicadangkan telah membolehkan pelaksanaan prototaip sistem sarung tangan robotik 

lembut dengan menggunakan perkakasan mudah. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview and Motivation 

Spinal cord injuries, traumas, natural aging, muscular dystrophy, cerebral palsy, 

Parkinson’s disease, arthritis, and stroke are the main causes of arm impairment or 

even a chronic disability for an increasing part of the population [1]. For instance, 

about 78 million arthritis cases with grasping impairment are expected yearly in US 

by the year of 2040. Also, stroke affects about 15 million people worldwide annually 

[2] and it is one if the main reasons of upper limb disability, which limits the 

patient's autonomy to do activities of daily living (ADL) [3]. One of the most 

common conditions resulting from a stroke is hemiplegia or hemiparesis, as many as 

88% of acute stroke patients have hemiparesis [51]. Hemiplegia means complete 

paralysis of one-half of the body, whilst hemiparesis means one-half of the body is 

only weakened [52]. Chronic hemiparesis afflicts about one-third of the stroke 

patients [53][54] and it is prevalent in the distal upper extremity especially for the 

fingers extension [55]. Therefore, hand robotic devices can be essential tools to help 

stroke patients afflicted with hand deficit to perform activities of daily living in 

addition to the possibility of restoring hand functions by home rehabilitation. 

Rehabilitation is an indispensable solution that helps to revive the hand functions 

after a stroke by intensive and repetitive training. Studies have shown that 14% of 

stroke patients with no active upper limb motion at the beginning of the therapy can 

completely recover the paretic arm functions with rehabilitation, whilst about 30% of 

the patients can partially recover [57]. Rehabilitation is predominantly conducted in 

clinics under the therapist’s supervision, but this process is costly, time-consuming, 

and needs special equipment only available in special places [4]. Therefore, an 

alternative solution is to utilize robotic gloves or hand exoskeletons to assist stroke 

patients in daily living activities or doing rehabilitation exercises at home.  

In the last years, soft robotic gloves have emerged as an alternative to the traditional 

bulky and rigid exoskeletons due to their portability, efficacy, safety, less complex 

designs and light weight [1]. Among the three types of the soft robotic gloves, 

pneumatic actuated soft gloves are preferred over hydraulic actuated soft glove 

because it has less weight and over the cable actuated soft gloves because it has 

faster setup time and more safety [1][5][6]. 

Many studies on stroke patients [6][5][7][8] have proved that the use of the soft 

robotic gloves in home rehabilitation improves the grasping performance and grip 

strength of the impaired hand. Recently, controlling of the soft robotic gloves by 

using the surface electromyography (sEMG) signals has earned a lot of attention. 

This interest is motivated by the advantages of using the sEMG signal as a control 

signal, for instance, naturalness, direct correlation between the movement intention 
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and the sEMG signal [9], low time delay between human intention and movement of 

the device [10], and simple obtaining of sEMG signal by employing the surface 

electrodes. Many studies have proved that employing such control method for stroke 

rehabilitation led to enhance the levels of sEMG signals and improved the hand 

functions of the patients [36][39][115][116][122][127]. Therefore, nowadays the 

EMG based control is the most common method used to operate active orthotic 

devices [9]. 

1.2 Problem Statement 

The sEMG signal amplitude is not constant over the recording time due to the 

changes in the person exerted force or due to the variation of electrode-skin interface 

characteristics as well as the changes in the ground reference level [13]. Moreover, it 

is found that motor unit over activity of paretic muscles in stroke subjects are 

sometimes producing Spurious Background Spikes that contaminate the voluntary 

sEMG signal, such spikes made it difficult to use the conventional amplitude-based 

methods for muscle activity detection [14][15]. Therefore, the muscle activity 

detection algorithms should be amplitude independent and insensitive to Spurious 

Background Spikes. 

Many algorithms have been developed in the literature to detect the presence of 

muscle activities in sEMG signal [14-33]. However, most of these algorithms depend 

on amplitude features to report muscle activities or employing complex computation 

methods which impose difficulties on real time implementation. Moreover, the 

frequency domain analysis requires intensive calculations that would introduce 

constraints when implemented in real time. Therefore, the muscle activity detection 

algorithms intended to control robotic devices should have low computation efforts 

to enable real time implementation. 

Until now, all the practical implemented soft robotic hand devices [34-42] have 

employed simple detection methods that use amplitude features to report muscle 

activities. Moreover, it is observed that sEMG signals with high signal to noise ratio 

have been used to control the gloves in the above endeavors, whilst the disabled 

people always have weak and low Signal to Noise Ratio (SNR) sEMG signals. In 

pathological muscles, the signals are characterized by a low activity level due to low 

firing rate, low number of motor units recruited, low activation threshold and very 

low signal to noise ratio [163]. Therefore, the muscle activity detection algorithm 

should be able to detect weak contraction levels and can deal with sEMG signals that 

have low signal to noise ratio. 

To simplify the hand robotic system and make it more practical for use in daily basis 

with easy to wear and take off (don and doff), it should have minimum number of 

sEMG channels. All the practical implemented soft robotic gloves systems in the 

literature have employed two channels to detect the muscle activities for hand close 

and hand open. In spite of some studies that have tried to develop algorithms for 
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hand motions classification by using single sEMG channel [43-48], these algorithms 

have not been applied to control the practical implemented soft glove systems yet. 

This abstention is due to fact that most of these algorithms require high computation 

power and need time for training like neural networks which make them impractical 

for real time implementation on simple hardware.Moreover, these algorithms depend 

on amplitude features to classify hand movements and need controlled laboratory 

environments to get good classification accuracies.Additionally, previous 

experiments [49][50] have concluded that employing the traditional classification 

methods is inappropriate with the severely impaired stroke patients due to the week 

sEMG signals and abnormal pattern of muscles activation. Therefore, it is necessary 

to develop a computationally efficient and amplitude independent classification 

method to distinguish at least between hand close and hand open activities by using 

sEMG signal obtained from a single channel.  

1.3 Research Objectives 

This research aims to develop a pneumatic actuated soft robotic glove system for 

hemiparesis stroke patients that have hand impairment to help them in activities of 

daily living and at home rehabilitation. The system must be light weight, low cost, 

small size, has fast setup time, and controlled by a robust sEMG muscle activity 

detection algorithm. In order to realize this aim, it is necessary to fulfil the following 

objectives: 

1. To propose an amplitude independent muscle activity detection algorithm 

that can distinguish between hand close and hand open muscle activities by 

using single sEMG channel. The algorithm must be computationally efficient 

and able to detect muscle activities that have low SNR (less than 3dB) as 

well as it should be insensitive to the spurious background spikes and can 

process the data in real time. 

2. To introduce the best forearm muscle used to locate the single sEMG channel 

in order to get the best classification performance for the proposed algorithm. 

3. To verify the performance of the proposed algorithm on healthy subjects and 

on hemiparesis stroke patients. 

4. To propose a soft robotic glove system controlled by the proposed muscle 

activity detection algorithm and verifies its operation on a healthy subject. 

 

 

1.4 Scope and Limitation of the Study 

The scope of this study is on the orthotic hand devices not prosthetic, where this 

research is focused on the development of an amplitude independent muscle activity 

detection algorithm used to control a soft robotic glove system intended for 

hemiparesis stroke patients by using sEMG signal to help them with the activity of 

daily living and at home rehabilitation. All the experiments that were conducted in 

this research have employed real sEMG signals and there is no use to simulated 

signals because of the stochastic nature of sEMG signals, where the modelling of 
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sEMG has been controversial and may lead to erroneous conclusions when 

compared to experimental data [33]. The sEMG signals from the medical point of 

view about how they are generated from the brain, how they are transferred through 

neurons, and the factors affect these signals are out of scope for this study. The 

research has managed to achieve its objectives by using real sEMG signals obtained 

from seven healthy subjects (six volunteers plus the researcher) and six hemiparesis 

stroke patients (as justified in section 3.4.2.1). The sEMG recording sessions for the 

healthy subjects were conducted at the Universiti Putra Malaysia and the clinical 

trials for the stroke patients were conducted at the Seberang Jaya Hospital, Penang. 

However, there are some limitations in conducting this research. Firstly, all the 

sEMG signals used to develop and verify the operation of the muscle activity 

detection algorithm were obtained by using the low cost MyoWare Muscle Sensor 

from Advancer Technologies, where a study by Sophie et al. [140] on ten healthy 

subjects has showed that using the low-cost MyoWare sEMG sensor is comparable 

to a commercial system for assessing muscle activation. Secondly, the approved 

ethics by the Medical Research and Ethics Committee (MREC) for this study has 

permitted to use only the sEMG sensor in the clinical trials without using the glove, 

therefore the tests that were conducted by using the glove were applied to only one 

healthy subject (the researcher).  Whereas, all the sEMG signals obtained from the 

six healthy subjects and from the six stroke patients were used to verify the operation 

of the proposed algorithm without the use of the glove (bare hand).  

1.5 Layout of the Thesis  

Chapter 1 presents the motivation of the study and the problem statement. It also 

introduces the aim, objectives, and gives a brief summary of the structure of the 

thesis. 

Chapter 2 presents the literature survey about controlling by sEMG signals with the 

advantages and problems. It also gives a survey about muscle activity detection 

algorithms and sEMG controlled hand robotic devices.  

Chapter 3 describes the research methodology carried out to achieve the objectives 

and discusses the steps that are taken to develop the proposed amplitude independent 

muscle activity detection algorithm, comparing it with the amplitude dependent 

algorithms and developing the prototype of the soft robotic glove system. 

Subsequently, Chapter 4 presents the results with discussions and verifies the 

obtained results to rationally present the soft robotic glove system controlled by the 

proposed muscle activity detection algorithm. 

Finally, Chapter 5 gives a summary and the conclusion according to the findings of 

this research. Suggestions and recommendations for future research in this area as 

well as the research contributions are also presented in this final chapter.   
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