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NUMERICAL INVESTIGATION OF KINGFISHER’S WING UNDER MULTI-
PHASE FLIGHT FOR MICRO-AERIAL-VEHICLE 

 
 

By 
 
 

MOHD FIRDAUS BIN ABAS 
 
 

August 2019 
 
 

Chair  : Kamarul Arifin bin Ahmad, PhD  
Faculty : Engineering 
 
 
Realizing an all-weather Micro-Aerial-Vehicle (MAV) has been this research’s 
ultimate purpose. This research focuses on the originality of Kingfisher-
inspired rigid and flexible wing designs and flapping patterns, and the novelty 
of multi-phase flapping flight. Numerical investigations have been conducted 
at 4.4 m/s, 6.6 m/s, and 8.8 m/s flight velocities, 11 Hz, 16 Hz, and 21 Hz 
flapping frequencies, and before, during, and after multi-phase impact with 
rain environment flight conditions. An experimental validation has been 
conducted using 3-D printed wing model under Particle Image Velocimetry 
(PIV) examination. The numerical investigations have been designed, mesh-
constructed, and simulated using SolidWorks, Pointwise, and ANSYS Fluent 
software, respectively. For the main Kingfisher-inspired flapping rigid wing 
model, both coefficient of lift (CL) and thrust force values under normal 
(ambient air) environment decreases with increased in flight velocity but 
increases with increased in flapping frequency, in a similar fashion. The main 
flapping rigid wing model at flight condition of 4.4 m/s flight velocity, 21 Hz 
flapping frequency, and 12° angle-of-attack shows the most optimal flight 
performance with exceptional overall aerodynamic characteristics. The 
flapping flexible wing model’s resulted CL value is 12.573% higher than the 
flapping rigid wing model under Single-phase flight condition. Furthermore, 
the flapping flexible wing model generates a staggering 81.064% higher 
thrust force with 41.030% lower coefficient of pressure (CP) value than the 
flapping rigid wing model under the same flight condition. Under Multi-phase 
flight condition through simulated rain environment, the flapping flexible wing 
produces 14.726% higher CL value and generates a staggering 82.527% 
higher thrust force with 62.770% lower CP value than the flapping rigid wing 
at point of rain impact. This in turn enables the flapping flexible wing to adapt 
to the new simulated rain environment 24 times faster than the flapping rigid 
wing, which only took 0.0048 second. After rain impact, the flapping flexible 
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wing produces 15.406% higher CL value and generates a staggering 
83.516% higher thrust force with 34.555% lower CP value than the flapping 
rigid wing under said simulated rain environment. As a conclusion, the 
flexible wing model counterpart shows greater aerodynamic performance 
under every investigated flight conditions as compared to the rigid wing 
model. 
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KAJIAN NUMERIKAL SAYAP BURUNG RAJA UDANG DI BAWAH 
PENGARUH PENERBANGAN PELBAGAI FASA UNTUK        

KENDERAAN-UDARA-MIKRO 
 
 

Oleh 
 
 

MOHD FIRDAUS BIN ABAS 
 
 

Ogos 2019 
 
 
Pengerusi : Kamarul Arifin bin Ahmad, PhD 
Fakulti : Kejuruteraan 
 
 
Merealisasikan Kenderaan-Udara-Mikro (MAV) pelbagai cuaca telah menjadi 
tujuan utama penyelidikan ini dijalankan. Kajian ini memberi tumpuan kepada 
keaslian reka bentuk sayap tegar dan fleksibel yang diilhamkan oleh 
Kingfisher berserta corak mengepak, dan juga kebaharuan penerbangan 
pelbagai fasa. Penyiasatan berangka telah dijalankan pada kelajuan 4.4 m / 
s, 6.6 m / s, dan 8.8 m / s halaju penerbangan, 11 Hz, 16 Hz, dan 21 Hz 
frekuensi mengepak, dan ketika penerbangan sebelum, semasa, dan 
selepas kesan pelbagai fasa dengan persekitaran hujan. Pengesahan 
eksperimen telah dijalankan menggunakan model sayap bercetak 3-D di 
bawah pemeriksaan Particle Image Velocimetry (PIV). Penyiasatan berangka 
telah direka, dibina dengan mesh, dan disimulasikan menggunakan perisian 
SolidWorks, Pointwise, dan ANSYS Fluent. Bagi model sayap tegar yang 
menjadi kajian utama, kedua-dua pekali daya angkat (CL) dan nilai daya 
teras di bawah persekitaran biasa (udara ambien) berkurang dengan 
peningkatan dalam halaju penerbangan tetapi meningkat dengan 
peningkatan dalam frekuensi mengepak. Model sayap tegar pada keadaan 
penerbangan kelajuan penerbangan 4.4 m/s, frekuensi mengepak 21 Hz, 
dan sudut serangan 12° menunjukkan prestasi penerbangan yang paling 
optimum dengan ciri-ciri aerodinamik yang hebat. Bagi kajian parametrik 
mengenai model sayap fleksibel dan keadaan penerbangan pelbagai fasa, 
model sayap fleksibel menunjukkan prestasi aerodinamik yang lebih baik 
sebelum impak hujan, pada titik impak hujan, dan penerbangan dalam 
persekitaran simulasi hujan selepas impak berbanding model sayap tegar. 
Model sayap fleksibel menghasilkan 12.573% lebih tinggi nilai CL berbanding 
model sayap tegar dalam keadaan penerbangan satu fasa. Selain itu, model 
sayap fleksibel mampu menjana 81.064% lebih tinggi daya teras dengan 
41.030% lebih rendah nilai pekali tekanan (CP) berbanding model sayap 
tegar dalam keadaan penerbangan yang sama. Di bawah keadaan 
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penerbangan pelbagai fasa menembusi persekitaran simulasi hujan, model 
sayap fleksibel yang menghasilkan 14.726% lebih tinggi nilai CL dan 
82,527% lebih tinggi daya teras dengan 62.770% lebih rendah nilai CP 
berbanding model sayap tegar pada titik impak hujan. Ini seterusnya 
membolehkan model sayap fleksibel menyesuaikan diri dengan persekitaran 
simulasi hujan 24 kali lebih cepat daripada model sayap tegar, yang 
mengambil masa hanya 0.0048 saat. Selepas impak hujan, model sayap 
fleksibel menghasilkan 15.406% lebih tinggi nilai CL dan menjana 83.516% 
lebih tinggi daya teras dengan 34.555% lebih rendah nilai CP berbanding 
model sayap tegar dalam persekitaran simulasi hujan. Sebagai kesimpulan, 
model sayap fleksibel menunjukkan prestasi aerodinamik yang lebih baik di 
bawah setiap keadaan penerbangan yang disiasat berbanding dengan model 
sayap tegar. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 
 
In this chapter, the introduction to this numerical-focused research on 
Kingfisher-inspired flapping wing simulation will be discussed. This 
introductory chapter will cover on the history of the Micro-Aerial-Vehicle 
(MAV) research and production, the concept behind flapping wing MAVs, 
numerical importance of the flapping wing MAVs’ design, problem statement, 
contribution of this research with objective and scope included, and this 
research’s thesis outline at the end of the chapter. 
 
 
1.2 Timeline of MAVs 
 
For the past several decades, demands on smaller unmanned-aerial-vehicles 
(UAVs) are increasing. Reducing the size of a UAV will set new challenges 
as smaller size is as equivalent as smaller wingspan, and thus for flapping 
wing UAVs, smaller lift and thrust force values will be generated from a single 
flapping cycle. Therefore, smaller UAVs will have to face complex air flow 
characteristics, such as wake capture, due to flight conditions bounded within 
the low Reynolds number regime(Re<15000). Small UAVs are then coined in 
with the term micro-aerial-vehicles (MAVs). The utility of a MAV is vast; 
reconnaissance, search-and-rescue, terrain mapping, and military uses. 
 
 
The high demands for such improvements have made researchers sought to 
nature's best fliers, ranging from small birds to small insects, for example, a 
typical house/fruit fly. The research trend started with the initial idea of how 
birds, or scientifically referred as ornithopters, fly with superb efficiency and 
how its wing mechanism affects its ability to maintain aerodynamic superiority 
and gain air dominance. Early works on fluid flow, its behavior, and active 
flow control have been summarized in a comprehensive review by Collis et 
al.[1] regarding the theory and how to effectively control the predicted fluid 
flow, and the issues arises from numerical and experimental approaches on 
active flow control. 
 
 
During the last 5 years, several researches on ornithopter-type MAV 
development have been reported. Initial research was developing from 
experimental and numerical approaches of 2D flapping airfoils. As the 
research grow deeper, the need for a 3D flapping wing modelling and 
simulation arises for a more accurate performance-based predictions, despite 
cost factors. There are a vast amount of variables to consider in the attempt 
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to optimize a flapping wing configuration, such as endurance and optimum 
aerodynamic capabilities. Strang studied the flapping flight of pterosaurs and 
analyzed its flapping flight efficiency[2]. Jackowski then published a guideline 
regarding the design and construction of an unmanned ornithopter, 
displaying specific variable considerations in optimizing flapping wing 
efficiency[3]. Bunget observed an alternative in increasing such efficiency by 
adopting a bat’s flapping wing mechanism and created a bio-inspired MAV 
which is then termed BATMAV[4]. The ability of a bat to hover in mid-air is 
due to its unique flapping pattern of its wings, in which the wings produces 
positive lift during down-stroke and up-stroke as well, with efficient pitch 
control. 
 
 
Till today, research on ornithopters is still on the fast track, though there are 
significant reduction in literature since insect-inspired MAV became the next 
new lead in MAV development. Grauer et al.[5] argued that flapping wing 
MAV researches using insect modelling have overshadowed those using 
ornithopter modelling due to abundance of insect aerodynamics data. Most of 
the insect models utilized rigid wing over flexible wing and calculations 
regarding aerodynamic loads are simply done in quasi-steady sense. He also 
did a study of a flapping wing ornithopter in the aspect of inertial 
measurements obtained from the ornithopter's flight data[6]. 
 
 

 
Figure 1.1: Types of Micro-Aerial-Vehicle (MAV); (A) rigid wing MAV[7] 
and (B) flapping wing MAV[8] 
 
 
 
 
 
 

(A) 

(B) 
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1.3 Bio-Mimicry of MAVs 
 
Bio-mimicry is a term for the attempt to imitate nature’s living organism in 
what that particular organism performed best at. Generally, airplanes utilize 
the fluid flow surrounding its airfoil-shape wings and can only manipulate the 
fluid flow to a certain limit under high speed state (high Reynolds number 
regime). Unlike those steel birds, nature presents fliers that can fully 
manipulate the flow around its wings and can even keep itself afloat in midair, 
in a calm, almost stagnant flow environment (low Reynolds number regime), 
by flapping its wings accordingly. 
 
 
There are two types of natural fliers; birds (also known as ornithopters as 
referred by biologist) and insects, in which the latter has a higher degree of 
complexity when it comes to flight kinematics, in order to fly and hover in an 
extremely low Reynolds number flow condition. The type of animal selected 
for mimicry purposes is directly related to its importance towards a specific 
aerodynamic characteristic that the designed MAV wants to achieve, which is 
notably the aerodynamic characteristic the selected animal excels best. 
 
 

 
Figure 1.2: Various flapping wing MAV models[9] 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

4 
 

This thesis focuses on the Kingfisher bird family, specifically the Oriental 
Dwarf species, Ceyx erithacus, which can be found in Peninsular Malaysia. 
The fascination towards the Oriental Dwarf Kingfisher is based on its ability to 
produce constructive aerodynamic characteristics to enable it to manoeuver 
freely in the air and under water on a regular basis. Furthermore, its 
specifications of being smaller than 15cm in span and being one of the only 
bird species that stands at the fine line between ornithopter-like flight and 
insect-like flight (e.g. hummingbird flaps its wings in an insect-like manner) 
while maintaining ornithopter-like flapping wing motion under low Reynolds 
number regime (insect’s Reynolds number regime). 
 
 

 
Figure 1.3: Kingfisher bird reference for this research; (A) Oriental 
Dwarf Kingfisher[10] and (B) a Kingfisher diving into water to feed[11] 
 
 
 
 
 
 
 
 
 
 

(A) 

(B) 
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1.4 Numerical Importance of MAV Designs 
 
Numerical approaches in research development are also equally important 
as experimental approaches, but dealing with modelling and simulation 
necessary for numerical analyses have presented its own challenges. 
Bansmer et al.[12] and Gomes et al.[13] both conducted experimental and 
numerical studies of airfoils, which the former focuses more on the structural 
aspects, such as the rigidity and the flexibility of the seagull hand-foil-inspired 
airfoil, and the latter focuses on laminar fluid-structure-interaction aspects. 
 
 
Aiding the numerical research, Mazaheri and Ebrahimi conducted 
experimental investigations, using modern computational power and 
experimental setups, on the aerodynamic performance of a flapping wing 
vehicle in forward flight[14] and hovering flight under the effects of chord-wise 
flexibility[15]. They also performed a series of wind tunnel tests to investigate 
the cruise performance of a typical flapping wing MAV and published it 
shortly after[16]. Li and Nahon conducted a numerical investigation as well 
and recommend a more systematic approach of thrust force estimation for 
nonlinear dynamics of a flapping wing MAV[17]. 
 
 
Numerical approaches may have more advantages but it is inevitable that 
high technological aid comes with a high price to pay, as well as time 
consumption. As concluded by Liu and Aono[18], it takes up to 10 hours to 
simulate only 4 flapping cycles of a hawkmoth model. Zhang et al.[19] even 
proposed a justification where a MAV can be treated as a rigid body with only 
6 degrees of freedom in order to simplify the model and reduce time and cost 
of the simulation. 
 
 
1.5 Problem Statement 
 
Micro-Aerial-Vehicles are dominant used for reconnaissance and search-
and-rescue missions, though military uses of MAVs are gaining more 
attention by the day. These purposes are not restricted only during fine 
weathers since reconnaissance and search-and-rescue missions could be in 
dire need outside the benefits of a good weather forecast. The second most 
common weather that could occur would be rainy. Unfortunately, no research 
has been made to cater the instability that comes by launching a flapping 
wing MAV during rainy weather. 
 
 
As size is a limiting factor, the flight capabilities of said MAV is subjected to 
how well the MAV could perform under low Reynolds number. The 
complexity of flapping flight under low Reynolds number regime is immense, 
given the unsteady transition fluid flow characteristics shown within the flight 
regime. Flapping flight under such circumstance in itself presents a fair 
complexity in maintaining flight performance since transition fluid flow can 
mean that both steady and unsteady fluid flow characteristics are present 
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during the course of the flight. Thus, by adding the uncertainty of weather 
elements during flight, the complexity of numerically simulating a flapping 
wing MAV flying through rain environment would be of a higher level of 
difficulty considering the stacked of unknowns, and producing a fully 
functional prototype would be of even higher levels. 
 
 
Most MAV researches up-to-date have only focused on singular flight 
environment, which predominantly would be air since venturing into the field 
of multi-environment flapping flight presents a lot of difficulties. Limited 
researches have been found using an element called “gust” in the attempt to 
introduce a new flight environment by manipulating air inlet to simulate real-
life “pulse” or “oscillating” wind patterns. Researches involving gust are 
brilliant as birds deal with such difficult adaptations on a daily basis but 
leaving out other possible elements such as rain would be a terrible lost in 
the advance of MAV technology. 
 
 
Kingfishers and some other bird species have known to deal with watery 
environments on the same basis due to its feeding habits and preferred 
nesting habitats along rivers and lakes. Weather and terrain patterns are also 
factors which defines the very nature of these birds as frequent guest to 
unexpected, high dampness, and watery environments. These birds could fly 
through rain and could even paddle themselves underwater for a brief 
moment, as if they were amphibians, despite the necessity. Till today, limited 
or no research has been done to identify and analyze the flow patterns on the 
wings of these types of birds and the benefits of implementing said wings in 
the attempt to provide better chances in producing an all-weather flapping 
wing MAV. 
 
 
1.6 Contribution of the Present Research 
 
By considering another important element in bird flight, water can be seen as 
a daily encounter for survival for the Kingfishers. This research will contribute 
in the field of wing aerodynamics by providing and analyzing flow patterns 
produced around a wing model based on a Kingfisher’s wing during Single- 
(in ambient air environment only) and Multi-phase flight. The Multi-phase 
flight will consider a simulated rain environment as the second phase 
environment along the flight path of the wing model. 
 
 
Therefore, this research can provide significant data on Multi-phase flight 
which can be utilized to produce an all-weather MAV. This is an important 
aspect which we need to deepen our understanding and widen our 
knowledge in order to assist future MAV development in espionage, rescue, 
scouting, surveying, and other military focused missions in less forgiving 
terrain and weather. 
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1.7 Objective of the Research 
 
The objective of this research is to provide essential information on inter-
domain flight of a Kingfisher. Rigid and flexible wing has been adopted for 
research and progresses in that order as to simulate a more realistic 
numerical analysis. Ultimately, the objectives of this research can be listed as 
follows: 
 
 

1) To provide Lift, Drag, and Thrust force analyses on Rigid Kingfisher-
inspired Flapping Wing (Single-phase). 

2) To compare aerodynamic performance of Flexible Flapping Wing with 
its Rigid counterpart at optimal flight condition (Single-phase). 

3) To analyse aerodynamic changes between Flexible and Rigid 
Flapping Wings at impact point with Rain environment (Multi-phase). 

4) To analyse aerodynamic performances of Flexible and Rigid Flapping 
Wings after impact with Rain environment (Multi-phase). 

5) To validate the simulation results of the Kingfisher-inspired flapping 
wing’s aerodynamic performance with existing researches on different 
bird-inspired flapping wing model of close similarity in dimensions. 

 
 
1.8 Scope of the Research 
 
The scope of this research are as follows; first, an introduction on bio-mimicry 
system is presented and then mimicking flying animals is discussed, followed 
with wing design of rigid and flexible nature, contribution of both towards 
generated lift, drag, and thrust forces in air. Ultimately, the flexible wing will 
be tested under inter-domain flight from air to water environment, which is to 
be assumed rain and generated lift, drag, and thrust force changes on impact 
will be observed and analyzed. 
 
 
1.9 Thesis Outline 
 
This thesis is organized in seven chapters. Chapter 1 deals with introduction 
to Micro Air Vehicles (MAVs). The rationale for carrying out this research, its 
objectives and scope are presented in the introductory chapter.  Chapter 2 
provides the background of this study by reviewing relevant literatures in this 
field. The effectiveness of flapping wing used for MAVs is discussed in this 
section. Moreover, a review of previous work dealing with aerodynamic 
enhancement and other parametric studies carried out to improve the flight 
performance of MAVs are discussed.  Chapter 3 explores the methodology of 
developing experimental and numerical models, including the fluid dynamic 
and dynamic mesh theories involved in the developing process and the 
conducted validations. Results, analyses, and discussions on aerodynamic 
performance of the main flapping wing model simulations and parametric 
studies (including multi-phase flight conditions) are presented and compared 
in Chapter 4. As a closing statement, Chapter 5 discusses on the conclusion 
and recommendation for future research deduced from this research. 
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