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By 

ERNNIE ILLYANI BINTI BASRI 

January 2020 

Chair: Kamarul Arifin bin Ahmad, PhD  
Faculty: Engineering 

 

The demand of Unmanned Aerial Vehicle (UAV) technology received growing 
interest from today’s engineers in designing and manufacturing the products 
within a short time and at reasonable price. The wide availability of modern and 
developing composite materials and the aid of computer systems had made the 
demand becoming possible and achievable. The proposed research consist of 
fundamental numerical work and experimental work. The study applied the Finite 
Element (FE) analysis and developed a standardized numerical approach for 
structural optimization subjected to tubercles design at the leading edge of 
NACA4415 wing with composite material, known as FE-ACP simulation. The 
study is crucial in order to optimize the structural behavior of spherical tubercles 
pattern at the leading edge of straight, untapered and unswept wing. The 
previous studies proved its superior aerodynamic advantages from 
computational fluid dynamics (CFD) perspective on the same tubercles design. 
Therefore, structural characteristic including the external and internal 
components of the wing should be taken into consideration to achieve the 
superiority of high strength-to-weight ratio in regards to the application of UAV. 
Up-to-date, the simulation software, ANSYS is widely used in solving the FE 
problems subjected to composite materials. The composite modelling of the wing 
design is developed using ANSYS Composite PrePost (ACP) module, whereby 
a preliminary simulation is prepared in terms of the designation of composite 
materials and its impact of wing deformation. In details, the parametric study is 
carried out, by which the structure of the wing is optimized through optimal 
composite ply orientation and optimal design configuration subjected to wing 
stiffness and also criticality of loading requirements for structural failure. Failure 
criteria of Tsai-Wu and Hashin play important role in determining the optimal 
design of tubercles wing subjected to strength and stiffness, which is able to be 
obtained. The experimental study of the designation of composite at the wing 
skin is conducted in order to prove the simulation validity through material 
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characteristics. Hence, from this study, 50.27% improvement is obtained by 
applying the TLE wing design with semi-monocoque-foam-reinforced proven the 
significant of current research area on optimal performance of wing in the 
perspectives of composite structural optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

iii 
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sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

ANALISIS BERANGKA PADA PINGGIR DEPAN TUBERKEL SAYAP 
KOMPOSIT PESAWAT UDARA TANPA PEMANDU 

 

Oleh 

ERNNIE ILLYANI BINTI BASRI 

Januari 2020 

Pengerusi: Kamarul Arifin Ahmad, PhD 
Fakulti: Kejuruteraan  

 

Permintaan untuk teknologi pesawat udara tanpa pemandu (UAV) mendapat 
perhatian yang semakin meningkat dari jurutera hari ini bagi merekabentuk dan 
pembuatan produk dalam masa yang singkat dan pada harga yang berpatutan. 
Ketersediaan luas bahan komposit dan bantuan sistem berkomputer yang 
moden dan berkembang maju telah membawa kepada permintaan ini menjadi 
mungkin dan boleh dicapai. Penyelidikan yang dicadangkan merangkumi kerja-
kerja asas berangka dan eksperimen. Kajian ini menggunakan analisis unsur 
terhingga (FE) dan pendekatan berangka berpiawai yang telah dibangunkan 
untuk pengoptimuman struktur tertakluk kepada rekabentuk tuberkel pada 
pinggir depan sayap NACA4415 dengan bahan komposit, yang dikenali sebagai 
simulasi FE-ACP. Kajian ini sangat penting untuk mengoptimumkan tingkah laku 
struktur ke atas corak tuberkel berbentuk sfera terletak pada pinggir depan 
sayap yang lurus, tidak tirus dan tidak tersapu. Kajian terdahulu telah 
membuktikan ianya menunjukkan kelebihan aerodinamik yang unggul dari 
perspektif pengkomputeran dinamik bendalir (CFD) pada rekabentuk tuberkel 
yang sama. Oleh itu, ciri-ciri struktur merangkumi komponen-komponen sayap 
luaran dan dalaman yang perlu dipertimbangkan bagi mencapai keunggulan 
nisbah tinggi kekuatan-kepada-berat dalam aplikasi UAV. Sehingga kini, 
perisian simulasi, ANSYS telah luas digunakan dalam menyelesaikan masalah 
berkaitan FE yang dikaitkan dengan bahan-bahan komposit. Pemodelan 
komposit pada rekabentuk sayap telah dibangunkan dengan menggunakan 
modul ANSYS Komposit Sebelum/Selepas (ACP), di mana simulasi awal 
disediakan dari segi penentuan bahan komposit serta kesan terhadap ubah 
bentuk sayapnya. Secara terperinci, kajian parametrik telah dijalankan, yang 
mana struktur sayap dioptimumkan melalui orientasi piawai komposit yang 
optimum dan konfigurasi rekabentuk yang optimum tertakluk kepada kekakuan 
sayap dan juga keperluan bebanan yang kritikal untuk menentukan kegagalan 
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struktur tersebut. Kriteria kegagalan iaitu Tsai-Wu dan Hashin memainkan 
peranan penting dalam menentukan rekabentuk sayap tuberkel yang optimum 
tertakluk kepada nisbah tinggi kekuatan dan kekakuan, yang mana ianya telah 
dapat diperolehi. Kajian ekperimen tentang penetapan komposit pada luaran 
sayap telah dijalankan juga bagi membuktikan kesahihan simulasi melalui ciri-
ciri bahan. Oleh yang demikian, sebanyak 50.27% pembaikan diperolehi dengan 
menggunakan sayap TLE bersama rangka tunggal-berbusa yang diperkuatkan 
membuktikan kepentingan bidang penyelidikan yang terkini ke atas prestasi 
sayap optimum dalam perspektif pengoptimumam struktur komposit.  
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CHAPTER 1 

 

INTRODUCTION 

 

 
1.1  Overview 
 
This chapter describes the general idea of the current work. First, the theoretical 
foundations of this research are presented in research background and further 
elaborated in second section discussing on tubercles design at the leading edge 
of the wing. Then, in the problem statement section, the current situation in 
tubercles wing design configuration is discussed. The research objective is 
stated in the fourth section. The scope of the thesis is described in the final 
section. 
 
 
1.2  Research background  
 
An unmanned aerial vehicle (UAV) is a pilotless aircraft that can be remotely 
controlled from a ground control room. The interest in UAV development is 
growing in recent years due to its capabilities of utilizing relatively more 
reasonably priced airplanes without the on-board human operator especially 
when the missions involves long operational time and severe risks (Bento, 2008; 
Turgut, 2007). The extensive use of UAVs continued throughout the time with 
the development of improved UAVs capability which different kinds of UAV 
platforms have different mission and applications. The example of UAV for 
surveillance and reconnaissance applications in Malaysia is Alliance Unmanned 
Developmental Research Aircraft (ALUDRA MK 1), as depicted in Figure 1.1. 
 

 
Figure 1.1: Aludra MK1 for surveillance and reconnaissance mission in 
Sabah, Malaysia  
(Source: (Koo et al., 2012) 
 

Prior to the development of UAV, the basic inspiration and motivation for flying 
has come from the capabilities of birds, insects and aquatic animals that able to 
generate efficient lift and thrust with same wing planform. This bio-inspirations 
attempts to produce engineered systems that possess characteristic in 
aeronautical applications. In fact, this attempts has inspired human towards 
replicated or mimicked the features and capabilities of the biological evolution in 
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human engineered systems. Hence, this inspiration lead to the design of new 
technologies and the improvement of conventional ones. 
 

The notion of characterize animal features is far from new. Leonardo da Vinci, 
the first developed early blueprints for ‘flying machine’ inspired by a bird in 
adopting flapping mechanism to produce lift and thrust ((Bar-Cohen, 2006). 
Then, the Wright Brothers succeeded in creating and flying the first airplane off 
the ground by adapting the ability of pigeon's wing to create lift. Throughout the 
biological evolution, the increasing demand integrating the structure and 
functions replicated the features of animal species has driven the designers 
towards more simple and efficient design. Moreover, one can take biologically 
identified anatomical structures and their functions in engineering applications, 
as in Table 1.1. 
 

Table 1.1: Biomimetics studies in engineering applications 
Category Animal Anatomical 

structures 
Anatomical 
Advantages 

Engineering 
application 

References 

Flying 

Birds Limbs and 
feathers 

The forces of lift, 
thrust, drag and 
gravity influence 
the flight patterns 
of birds 

Flapping 
UAVs 
 

(Bachmann & 
Wagner, 2011) 

Owls Feathers Fly silently and 
helps to absorb 
aerodynamic 
sound, suppress 
vibrations when 
waves of sound 
come crushing 
over the wing 

UAVs 
Wind turbines 
 

(Bachmann & 
Wagner, 2011) 

Wild 
geese 

Wings Ascending air 
current with less 
effort 

AIRBUS  (Alerstam et al., 
1990) 

Insects 
(dragonfly) 

Multiple 
wings and 
legs 

Pressure 
gradients for lift 
and thrust by 
flapping 

small UAVs 
(micro aerial 
vehicle)  

(Naqvi et al., 
2015) 

Bats Limbs Membrane of skin 
that stretches 
between arms and 
leg help to produce 
lift 

small UAVs 
(micro aerial 
vehicle) 
 

(Naqvi et al., 
2015; Norberg, 
2012) 

Aquatic Whale Flipper 
(Tubercles 
effect) 

Tubercles on the 
leading edge 
produces greater 
lift and less drag 
than a smooth 
surface fin 

small UAVs 
(micro aerial 
vehicle) 
 

(Bushnell & 
Moore, 1991; 
Fish & Battle, 
1995; Fish & 
Lauder, 2006; 
Miklosovic et al., 
2007; Miklosovic 
et al., 2004) 
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Referring to Table 1.1, the basic motivation for flying has always come from 
millions of species of birds and insects. They efficiently generate lift and thrust 
using the same wing planform. Specialized feathers of the owl have the ability to 
fly silently with its unique wing features of trailing edge fringe and velvety down 
that helps to absorb aerodynamic sound (Bachmann & Wagner, 2011). Whereas, 
the morphology of insects is way more complex which aerodynamically produced 
pressure gradients for lift and thrust by flapping from multiple wings and legs. In 
fact, dragonfly inspired the ideas to build four-winged MAVs (Naqvi et al., 2015). 
Despite that, the limbs of bats also influenced flight performance such as the 
geometry of wings and bones, compliant skin and bones, distribution of sensory 
hairs across wings and physiology of musculature that drives the wings (Naqvi 
et al., 2015; Norberg, 2012). In the late 1990s, Frank E. Fish discovered the 
tubercles effect of the flipper of humpback whale, act like a wing which 
contributed to the superior aerodynamic maneuverability that allowing greater lift 
and less drag than a smooth surface fin (Fish & Battle, 1995). The humpback 
whale flipper received tremendous attention on the influence of rounded 
tubercles located on the leading edge of flippers in order to design effective wings 
involving aerodynamic performance (Bushnell & Moore, 1991; Fish & Battle, 
1995; Fish & Lauder, 2006; Miklosovic et al., 2007; Miklosovic et al., 2004). 
 

1.3  Emerging of bio-inspired application: Tubercles Leading Edge 
(TLE)  

  
One of the baleen whale species, known as Megapteranovaeangliae that has 
massive size of 40 tons and 15 metres in length, as in Figure 1.2. The highly 
articulated pectoral fins with characteristic tubercles on the leading edge provide 
great maneuverability for hunting krill, plankton and small shoals of fish (Fish et 
al., 2011) 
 

 
Figure 1.2: Tubercles on the leading edge of a humpback whale 
(Source: Fish et al., 2011) 
 

The humpback whale has a unique maneuvering ability to undertake sharp 
movements to catch prey. The sharp and high speed banking turns of the 
humpback whale are favoured by the high lift or drag characteristic of the 
combination of the tubercles and the high aspect ratio of the flippers. The 
tubercles provide the benefit in maneuverability and in capturing the prey by 



© C
OPYRIG

HT U
PM

4 
 

acting as leading edge control devices to maintain lift and avoid stall at high 
angles of attack (Easter et al., 2013; Serres et al., 2011; Swartz et al., 2007). 
The presence of tubercles of the humpback whale flipper inspired the design of 
airplane wing and underwater vehicle. The simultaneous achievement of 
increased lift and reduced drag results in an increase aerodynamic efficiency. 
Hansen (2012) proposed the tubercle geometric parameters are amplitude, A 
and wavelength, λ, by which the optimal ratio for determining the shape of foil at 
the leading edge, as depicted in Figure 1.3. 
 

 
Figure 1.3: Amplitude and wavelength of sinusoidal tubercles  
(Source: Hansen, 2012) 
 

Much progress has been made in the computational fluid dynamics (CFD) 
analysis to assess different external shapes based on parametric designs. In 
particular, aerodynamic perspective potentially gain endurance by reducing 
drag. However, the structural perspective also should be considered as it 
contributed towards weight reduction of the wing which can be translated into a 
lighter UAV with an increased endurance and a reduced speed stall (Landolfo, 
2008). Noteworthy, Weisler et al., (2017) also highlighted the competing 
requirement of capability for performing in aerial (air) and underwater domains, 
whereby the efficient air flight requires a lower density airframe which decreases 
wing loading and stall speed while increasing efficiency. This may lead to serious 
attention for ideal aero-structural design due to the complexity of wing designs 
by considering other structural perspectives prior to manufacturing and testing 
UAVs under the real-world condition. 
 

1.4  Problem statement 
 
One of the critical element of aircraft is the wing design. Kumar et al., (2015) 
highlighted that fuselage and wing are the two essential element of aircraft, by 
which 80% of lift load is acted on the wings while the remaining 20% is acted on 
the fuselage. In today’s aeronautical researches, the advancement of 
multidisciplinary optimisation performances and their applications towards the 
ideal aero-structural design is one of the main factor contributing to continuous 
development in UAV designs. For the TLE wing design, the complex surface 
element of the wavy pattern or spherical shape at the leading edge of the wing 
is notably increase the aerodynamic performance particularly along the center 
between crest and through the tubercles on the lower surface of the wing 
(Hansen & Horst, 2008). Though much progress of TLE wing has been made in 
the capability of computational fluid dynamics to analyse difference external 
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shapes of TLE design, the structural aspects of the design optimisation 
complication have not enjoyed the same attention. 
 

There are several issues related to TLE structural design, namely: 
i. Lack of works in the structural mechanics and other possible 

uncertainties in materials characterization and manufacturing 
practices. As TLE is the current wing design, many researchers 
focused on the aerodynamic aspects. Hence, there is a 
knowledge gap in the structural analysis 

ii. Knowledge gap in understanding the role of structure wing 
components such as spars and ribs or other alternative 
reinforcement of the wing (Aftab & Ahmad, 2017; Kanesan et al., 
2014)  

iii. Lack of extensive use of computational structural analysis tools 
for high fidelity design analysis 

iv. Limitation information on the design flexibility and structural 
dimensional stability with requirement of the high strength-to-
weight ratio to meet the demand of modern UAV 

 

Therefore, the current work employs ANSYS Composite Prepost (ACP) module, 
known as FE-ACP provide superior performance of aero-structural design of TLE 
wing under various conditions. In addition, the limitations of complexities in the 
design of TLE wing can be technically solve with the aid of fidelity analysis. 
Hence, the current FE-ACP can provides the structural response in technical 
perspectives such as loading and related structural-material stiffness in order to 
observe the optimal aero-structural performance of the developed TLE of UAV 
wing. 
 

The simulation based on the structural and manufacturing aspects such as 
realistic airfoil for UAV models, geometrical shape, ease of manufacture, surface 
finish quality and price for preparing the materials of TLE wing may provide better 
understanding on the structural and composite response of complex design of 
TLE wing. The novelty of the current research work is the application of FE-ACP 
technique on the wing with tubercles design at the leading edge in terms of 
composite materials lamination and structure deformation. The mentioned 
issues related to TLE structural design mainly the increase studies on CFD from 
aerodynamic perspectives highlighted the least attention on the structural 
mechanics including computational structural analysis and the needs of design 
flexibility and structural components. Therefore, the analysis on the composite 
materials and loading mechanisms are the essential elements that contributed 
to critical findings in terms of structural efficiency on mechanical perspectives 
 

1.5  Research objectives 
 
The main objective of this research is to investigate the structural response of 
TLE wing of NACA4415 airfoil subjected to composite materials using the 
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application of Finite Element-ANSYS Composite Prepost (FE-ACP). In specific, 
this research are: 

1. To determine a standard method for conventional wing by conducting 
two validations of numerical structural analysis and experimental tests. 

2. To carry out the real work of 3D numerical analysis of FE-ACP to 
investigate the structural performance of TLE wing design 

3. To investigate the optimal composite ply orientation and optimal design 
configuration subjected to wing stiffness and also criticality of loading 
requirements for structural failure 
 

1.6  Scope of work 
 
This research focus on the structural investigation of the static wing structure of 
NACA4415 airfoil with additional design of tubercles at the leading edge of the 
wing, known as tubercles leading edge (TLE). In order to prepare the standard 
technique of presenting the investigation of the wing structure of TLE, the basic 
understanding needed to be developed from the design of conventional wing 
with clean leading edge. Hence, the real work on TLE wing with composite 
materials is performed with regards to the presence of rib-reinforcement of spars 
and ribs that support the whole wing structure. Several parameters are taken into 
consideration such as total deformation, stress and strains. The total deformation 
defined the structural characteristic of the wing models, whereby all the stresses 
and strains data characterized the material behaviour under applied loading 
conditions. Besides that, experiment testing on the laminated composite 
materials of conventional wing skin is also investigated to understand the 
material behaviour under tensile and flexural loading. This research is mainly to 
understand the structural behaviour according to additional tubercles patterns at 
the leading edge as well as to investigate the composite materials impacts 
towards the whole structure of the wing. To the best of our knowledge, less work 
on the structural analysis has driven this research towards optimal structural 
performance of the TLE wing. 
 

1.7  Thesis outline 
 
The thesis contains seven chapters. 

 Chapter 1 provides the overview of Unmanned Aerial Vehicle (UAV), bio-
inspired applications of Tubercles Leading Edge (TLE), and objectives 
of the research. 

 Chapter 2 provides the previous works describing evolution of 
conventional UAV wing with normal airfoil and limitation of TLE wing. 
The chapter also provides the approaches in numerical simulation and 
experiment. 

 Chapter 3 discusses on the methodology adopted in this research. The 
conceptual technique of finite element modeling are explained in detail. 
Despite that, this chapter also explains the experimental setup for 
flexural and tensile tests. 

 Chapter 4 reveals the validation of NACA4415 composite UAV wing 
using FE-ACP simulation with existing research paper. The validation of 
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computational FE-ACP with the experimental studies are also included 
in this chapter. 

 Chapter 5 describes the details on structural design and performance of 
UAV composite wing with TLE using FE-ACP. 

 Chapter 6 presents the parametric studies on structural performance in 
terms of optimal ply orientation, monocoque-foam-reinforcement and 
loading requirements for failure. 

 Chapter 7 gives the conclusion and recommendations for future works. 
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