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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of philosophy 

 

 

NITROGEN DOPED CARBON DOTS FROM EMPTY FRUIT BUNCH 

CARBOXYMETHYLCELLULOSE FOR SELECTIVE DETECTION OF 

COPPER IONS IN AQUEOUS MEDIA 

 

 

By 

 

MOHAMMED ABDULLAH ISSA 

 

 

December 2019 

 

 

Chairman: Associate Professor Zurina Zainal Abidin, PhD 

Faculty: Engineering 

 

 

Fluorescent carbon dots (CDs) have emerged as sensing systems for wastewater 

treatment and chemical sensing. Nowadays, different biomass-based materials, including 

the usage of starch, glucose, and cellulose have been widely employed for the production 

of CDs. In spite of their sustainability, the fluorescent efficiency of the obtained CDs 

from these natural resources is still low. This motivates the researchers for doping CDs 

with various heteroatom species such as nitrogen doping agent. However, long-time 

synthesis process from 7-72 hr is normally required for obtaining a relatively low 

fluorescence quantum yield (QY). Additionally, a clear formation mechanism for 

nitrogen-doped CDs (N-CDs) synthesized hydrothermally from biomass and various 

heteroatom doping sources along with the origin of the photoluminescence (PL) emission 

are still under debate. 

 

 

In this work, one-step hydrothermal carbonization route has been used to produce N-

CDs from carboxymethylcellulose (CMC) of oil palms empty fruit bunch in the presence 

of ethylenediamine (EDA-CDs) and linear-structured polyethyleneimine (LPEI-CDs) in 

an attempt to enhance the fluorescence quantum yield of CDs. At first, the optimum 

conditions for the hydrothermal route of N-CDs were identified by assessing the effect 

of different influential variables (reaction temperature, time, and N-weight). The 

statistical analysis results indicated that the production of LPEI-CDs not only was 

obtained in a considerably shorter time in comparison to EDA-CDs but also, they had 

significantly better fluorescent QY. Additionally, the characterization tests were carried 

out on the optimum N-CDs. The prepared N-CDs are reproducible, highly homogeneous 

and excellent PL properties with narrow emission bands. Furthermore, the N-CDs are 

nearly small (approx. 3-8 nm) with narrow size distributions; are stable over a long period 

of time (at least six months), and maintain their PL properties when re-dispersed in 

solution. Moreover, LPEI-CDs showed predominantly crystalline nature, and the 

functional groups from the LPEI have successfully tuned the PL properties of CDs in 

both the intrinsic and surface electronic structures, and hence improve the fluorescence 
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QY up to 44%.  It was concluded that the origin of light emission in N-CDs caused by 

the interplay between intrinsic state emission originates from graphitic core and extrinsic 

state emission due to the surface functional groups. 

 

 

Due to the significant interaction between Cu (II) and amino functional groups over the 

LPEI-CDs surface, the LPEI-CDs were further used as a fluorescent probe for the 

detection of Cu (II) in aqueous media. The linear relationship between the relative 

quenching rate and the concentration of Cu (II) (1–30 µM) with a detection limit of 0.93 

µM were used. Considering the sustainable production of N-CDs, this PhD research 

project provides a guide for converting low-quality waste into value-added nanomaterials 

and applying for different functionalization processes and analytical applications. 

.  
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TITIK KARBON BERDOP NITROGEN MENGGUNAKAN KARBOKSIMETIL 

SELULOSA DARI TANDAN KOSONG KELAPA SAWIT UNTUK 

MENGESAN KUPRUM SECARA SELEKTIF DALAM MEDIA AKUEUS 

 

 

Oleh 

 

MOHAMMED ABDULLAH ISSA 

 

 

 Dicember 2019 

 

 

Pengerusi: Profesor Madya Zurina Zainal Abidin, PhD 

Fakulti: Kejuruteraan 

 

 

Pendafluor titik carbon (CD) telah muncul sebagai sistem pengesanan untuk rawatan air 

dan pengesanan bahan kimia. Kini, pelbagai bahan yang berasaskan biomas, termasuk 

penggunaan kanji, glukosa dan selulosa telah digunakan secara meluas dalam 

pengeluaran CD. Walaupun CD merupakan bahan mampan, namun hasil pendafluor CD 

yang diperoleh daripada sumber semula jadi ini masih rendah. Hal ini mendorong para 

penyelidik untuk membuat pengedopan CD dengan pelbagai spesis heteroatom seperti 

agen pengedopan nitrogen. Walau bagaimanapun, proses sintesis yang panjang dari 7 

hingga 72 jam biasanya diperlukan untuk menghasilkan kuantum pendarfluor yang agak 

rendah (QY). Tambahan pula, mekanisme pembentukan nitrogen berdop CD (N-CDs) 

secara hidrotermal dari biomas dan pelbagai sumber pengedopan heteroatom serta asal-

usul fotoluminesen (PL) masih diperdebatkan.  

 

 

Dalam kajian ini, kaedah karbonisasi hidrotermal telah digunakan untuk menghasilkan 

EDA-CDs dan LPEI-CD dari karboksimetil selulosa (CMC) tandan kosong kelapa sawit 

dengan kehadiran etilinadiamina dan polietilinaimina berstruktur linear dalam usaha 

untuk meningkatkan penghasilan kuantum pendafluor (QY) CD. Sebagai permulaan, 

kondisi optimum untuk penghasilan N-CD melalui kaedah hidrotermal N-CD telah 

dikenalpasti dengan mengkaji pengaruh pembolehubah yang berbeza (suhu tindakbalas, 

masa, dan berat N). Hasil analisis statistik telah menunjukkan penghasilan LPEI-CD 

bukan sahaja boleh didapati dalam masa yang lebih singkat berbanding EDA-CD, malah 

mereka mempunyai pendafluor QY yang jauh lebih baik. Di samping itu, ujian pencirian 

telah dilaksanakan keatas N-CD yang dihasilkan pada kondisi optimum. N-CD yang 

terhasil mempamerkan sifat PL yang sangat baik seperti boleh dihasilkan semula, tinggi 

homogen dan pelepasan jalur yang sempit. Selain itu, N-CD adalah bersaiz kecil 

(anggaran 3-8 nm) dengan pengagihan saiz yang kecil; stabil dalam jangka masa yang 

panjang (sekurang-kurangnya enam bulan); dan mengekalkan sifat PL apabila 

disebarkan semula dalam larutan. Tambahan pula, LPEI-CD telah menunjukkan ciri-ciri 

kristal yang tinggi dan kumpulan berfungsi dari LPEI telah berjaya menyamai sifat PL 
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CD di dalam struktur intrinsik dan permukaan elektronik dan akhirnya meningkatkan 

pendafluor QY sehingga 44%. Dapat diisimpulkan bahawa asal-usul pelepasan cahaya 

dalam N-CD adalah disebabkan oleh interaksi antara keadaan pelepasan intrinsik yang 

berasal dari teras grafitik serta keadaan pelepasan ekstrinsik yang disebabkan oleh 

kumpulan berfungsi di permukaan.  

 

 

Oleh kerana interaksi yang baik diantara Cu (II) dengan kumpulan berfungsi amino di 

permukaan LPEI-CDs, maka LPEI-CDs telah digunakan sebagai prob pendafluor untuk 

mengesan Cu2+ dalam media akueus. Perkaitanan linear di antara kadar relatif pelindapan 

dan kepekatan Cu2+ (antara 1-30 μM) dengan had pengesanan pada 0.93 μM telah 

digunakan. Dengan mengambilkira penghasilan N-CD yang mampan, projek 

penyelidikan PhD ini menyediakan panduan untuk menukar sisa yang berkualiti rendah 

kepada bahan nanomaterial dengan nilai tambah dan menggunakannya untuk pelbagai 

proses fungsian serta aplikasi analisis. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Background 

 

 

Carbon dots (CDs), a new member of fluorescent carbon nanostructures family, with 

sizes of less than 10 nm, have drawn considerable attention among researchers since their 

first fundamental report (Sun et al., 2006). CDs consist of graphitic or amorphous carbon 

core coated with oxygen-functionalities, polymers and other active groups with respect 

to synthesis condition and surface chemistry (Liu et al., 2017). Compared to traditional 

semiconductor quantum dots (QDs) and organic dyes, carbon dots have outstanding 

properties such as good biocompatibility, tuneable photoluminescence, chemical 

inertness and ease of production (Li & Dong, 2018; Ren et al., 2017; Sun & Lei, 2017). 

 

 

Many methods, including arc-discharge approach (Xu et al., 2004), Electrochemical 

oxidation (Li et al., 2010), microwave treatment (Purbia & Paria, 2016) and 

hydrothermal carbonization approach (Sahu et al., 2012), have been recently established. 

Although a large diversity of techniques and carbonaceous precursors were used for the 

production of CDs, these techniques generally require costly equipment and harsh toxic 

chemicals. One way to reduce overall preparation costs is the use of biological waste 

as starting material. Hence, natural and renewable resources such as grass (Qin et al., 

2013), glucose (Dou et al., 2015), date palm frond (Kavitha & Kumar, 2018) and 

cellulose (Shen et al., 2016; Wu et al., 2015) have been used for the preparation of CDs. 

However, the fluorescence QY of the formed CDs are less than 10%, restricting their 

practical applications. To address these issues, much work has been reported to enhance 

the electronic characteristics of CDs, including doping with nonmetal heteroatoms (like 

nitrogen, boron and silver) as they significantly improve the fluorescence efficiency, 

increase the resistance to photo-bleaching and sensing selectivity to different analytes 

(Liao et al., 2016).  

 

 

In particular, N- doping source, also known as an electron donator, has been shown to be 

the most convenient element on the stimulating of electronic states of the carbonaceous 

material by introducing new energy states corresponding to the N- dopants (Li & Dong, 

2018). In contrast to the undoped CDs, N-CDs becomes optically active, showing 

obvious PL from visible to near-infrared spectral regions (Li & Dong, 2018). Thus, the 

PL properties of N-CDs can be tuned through controlling the particle size, choice of 

dopant, influence of the passivating species, pH, time, temperature, nature of the solvent, 

and so on. In spite of high achievements have been made in the development of N-CDs, 

some problems such as PL origin, and the corresponding interaction variables in 

production are still controversial and need to be further discussed. 
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Water pollution by metal ions released by anthropogenic activities has become a 

worldwide issue owing to their severe threats to human health and environment (Gumpu 

et al., 2015; Kumar et al., 2017). Therefore, in the past few decades, various conventional 

methods have been employed for the determination of heavy metals in aqueous solution 

include, atomic absorption spectroscopy (AAS), inductively coupled plasma mass 

spectrometry (ICPMS), anodic stripping voltammetry (ASV), X-ray fluorescence 

spectrometry (XRF), instrumental neutron activation analysis (INAA) (Bansod et al., 

2017; Guo et al., 2015; Li et al., 2013). Although these techniques are highly sensitive, 

specific and precise, they show some shortcomings including high expense, lack of 

portability, the need for complex operational procedures, and long detection times. More 

recently, QDs have drawn much attention for fluorescent sensing of metal ions (Yu et 

al., 2015), owing to their good optical characteristics and biocompatibility. However, 

several problems have arisen from their inherent toxicity owing to their intrinsically 

metal-based elements. Thus, it is essential to develop a simple method for synthesis of 

cheap and biocompatible nanomaterials. 

 

 

Due to the non-toxic carbon core and existing hydrophilic groups which act as the 

receptors, to react with the metal ions causing the change of signals subsequently, CDs 

are possible to be applied as fluorescence probes. To date, CDs sensitivity to varieties of 

ions, including ferric ions (Zhu et al., 2013b; Edison et al., 2016), lead ions (Wee et al., 

2013), mercury ions , copper ions (Liu et al., 2012; Ma et al., 2017; Singh et al., 2017; 

Zong et al., 2014), and many others, have been developed to enhance the performance of 

optical sensing systems in terms of sensitivity, detection limit, selectivity, and 

biocompatibility. Therefore, given the aforementioned advantages of CDs for metal ions 

sensing, finding highly fluorescent QY of CDs and as well as understanding and 

identifying the optical and chemical composition of the prepared CDs from sustainable 

bioresources in the presence of various N- additives are vitally important. 

 

 

1.2 Problem Statement 

 

 

1.2.1 Why New Detection Method is Needed? 

 

 

Copper is one of the essential transition metal ions in the human body. Cu2+ is necessary 

for significant physiological functions, but the excessive dose of Cu2+ in the body can 

cause adverse impact, including Menkes, Prion, Wilsons and Alzheimer's diseases 

(Singh et al., 2017). Moreover, copper is highly exploited by industries, environment, 

and domestic functions. Due to this danger, the fundamental toxicity guidelines for heavy 

metals in drinking water have been established, in which the permissible limits of copper 

ions in drinking water were settled to be 2 and 1.3 mg/l as recommended by the World 

Health Organization (WHO) and Environmental Protection Agency (EPA), respectively 

(Pawan et al., 1990). Therefore, finding a safe method for monitoring these toxic metals, 

especially in water, with selective and sensitive detection of Cu2+ is highly desirable. 

 

 

Compared to the traditional techniques that have been developed for the determination 

of Cu2+ (Basabe-Desmonts et al., 2007; Yang et al., 2016), fluorescent nanomaterials can 
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improve the performance of sensing systems in terms of selectivity and sensitivity with 

less sophisticated process. Over the last few decades, nanomaterials- based strategies 

have gained high interest for biological monitoring, chemical sensing and others. Among 

them, novel metal-based nanomaterials, such as Au, Ag have been usually used for 

selective detection with electrochemical techniques and fluorescence measurements 

(Zhang et al., 2013). However, metal nanoparticle-electrochemical combined strategies 

require multiple steps, including extensive pre-treatments of the electrode surface 

(polishing, surface contamination oxidation, and others), which cannot be easily 

automated and thus affects their application as ideal systems. Meanwhile, to decrease the 

cost of the sensors fabricated from noble metals, it is necessary to develop low-cost 

materials-based chemosensors.  

 

 

Because of the high emission quantum yield and size-tunable emission profiles, 

semiconductor quantum dots (QDs), such as CdSe and CdTe, have become one of the 

most extensively investigated optical sensing nanomaterials in the detection of metal 

ions. For instance, CdSe QDs with a low detection limit of 5 nm was demonstrated for 

the determination of Cu (II) (Chan et al., 2010). However, these fluorescent QDs are 

limited due to the fact that they are toxic, low sensitive, low selective, hydrophobic or 

costly (Ren et al., 2017). In addition, their superior photophysical features are usually 

observed in organic solvents, thus restricting tremendously their analytical potential 

(Zeng et al., 2015). Compared to the traditional QDs, fluorescent CDs can be used as 

strong competitors and potential alternatives to that heavy metal-based owing to their 

low to non-toxicity (Kong et al., 2015). In other words, CDs are one type of QDs, but the 

core of CDs is made up of carbon rather than metallic complex, making them suitable 

for sensing of various analytes and for biological analysis.  

 

 

1.2.2 Why Carboxymethylcellulose from Empty Fruit Bunch?  

 

 

To synthesize CDs, the selection of a suitable starting material plays a significant role. 

A perfect carbon source for green CD synthesis should be accessible worldwide with 

defined and well-known properties, should not be in direct competition with essential 

food production, and last but not least, be cost-effective (Lim et al., 2014; Prat et al., 

2014). While the price of additives or carbon sources plays a minor role in fundamental 

research, it may play a major role when commercial quantities are considered. With the 

aim of producing biocompatible CDs, it has been proposed to use a biologically safe 

compound as starting precursor. Cellulose, for instance, is a polysaccharide that is 

abundant in nature and easily extractable from biomass waste. The broad usage of 

cellulose as supercapacitors, catalyst supports, and adsorbents has rendered it safe for 

consumption and therefore can minimize the toxicity risk (Brinchi et al., 2013; Souza et 

al., 2016).  

 

 

Palm oil industry has contributed significantly to Malaysia economy. However, 

lignocellulosic biomass specifically empty fruit bunch, which contributes 22% of 

total wastage from the palm oil extractions, has created a major disposal problem 

(Abdullah & Sulaiman, 2013). Therefore, by taking these considerations, this study 

attempts to convert empty fruit bunch into more valuable materials which are in the 
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form of CMC, where the utilization of these undesirable wastes is a clear advantage in 

terms of environmental impact.  

 

 

Since CMC does not contain N-functionalities in its structure, obtaining superior 

fluorescent properties of these high abundances and renewable sources is the critical step. 

Thus, in order to exploit CMC as the starting material, further improvement of PL 

properties using N-doping strategy is quite essential. Recently, the usage of CMC has 

been employed as precursor in the presence of N- additives for the production of N-CDs. 

For instance, Q. Wu et al., (2015) synthesized N-CDs from CMC (source in not specified) 

in the presence of urea as the nitrogen source. The obtained blue-green aqueous N-CDs 

with an average diameter of 32 nm and QY of 18% show excitation- and emission-

independent pH-sensitive properties (Wu et al., 2015). Additionally, fluorescent N-CDs 

with a QY of 21% were obtained via hydrothermal treatment of cellulose (the specific 

type is not defined in the original report) in the presence of urea (Shen et al., 2016). In 

another study, Wang et al., (2017) synthesized a blue-color N-CDs from cellulose in the 

presence of ammonium carbonate. The obtained N-CDs are mainly spherical 

morphology with an average diameter of 1.5 nm and QY of 7.6%. Generally, the QY of 

CDs is low (<10%), whereas the QY can be increased to 10-30% (a few examples even 

reach as high as 50–80%) after surface passivation. However, the needs to find 

alternative agents which can play an effective role to manipulate the intrinsic properties 

and improve the optical performances of CDs, and even produce unexpected phenomena 

and applications is highly desirable. 

 

 

1.2.3 Why Short-time Hydrothermal Route is Significant? 

 

 

For the synthesis part, top-down approach which involves physical changes to the 

starting material often requires costly and complicated instrumental setup. Therefore, the 

bottom-up method is more favorable as the simple and facile synthetic routes can be 

carried out easily in laboratory without elaborated experimental conditions. 

Hydrothermal carbonization route (HTC) is a promising synthesis route, which is fast, 

economical, and eco-friendly in comparison with other synthesis methods (Falco et al., 

2011; Shen et al., 2018).  

 

 

Since the obtained QY is highly dependent on the starting materials and synthesis 

conditions used, the ease of the processing and no need for high temperature and long-

time synthesis process is of great interest. Hence, efforts have to be made to avoid 

today’s scenario observed for QDs. While having amazing properties and interesting 

uses, they still have not achieved their full potential in commercial applications due to 

significant production costs,  low fluorescence efficiency and long-time synthesis 

process (Derfus et al., 2004; Wang et al., 2013). For instance, Shen et al., (2016) 

synthesized N-CDs from cellulose and urea as carbon and nitrogen sources, respectively 

through HTC process. In their study, QY of 21% was obtained and the time consumed is 

72 hr. In another study, N-CDs obtained from hydrothermal treatment of cellulose and 

ammonium carbonate, in which 12 hr of synthesis time was found to be sufficient for the 

carbonization conversion rate and obtaining QY of 7.6% (Wang et al., 2017). Similar 

findings were also reported (Dou et al., 2015; Li et al., 2010; Wu et al., 2017; Wu et al., 
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2015), in which low QY and/or long synthesis time needed for the production of CDs 

using biomass as a sole  precursors or even after doping them with various N- additives.  

 

 

1.2.4 Knowledge Gap in Current Studies 

 

 

As previously mentioned, the ease of the processing and no need for high temperature 

and long-time synthesis process can be quite useful for the industry. Additionally, the 

investigation into the effect of the synthesis parameters such as temperature, time, and 

N- additive would be very beneficial for evaluating the fluorescence efficiency of the 

obtained N-CDs. Yet, to the best of our knowledge, so far, no study on the preparation 

of N-CDs from CMC of empty fruit bunch has been carried out. Additionally, the study 

on the combination interaction between the influential conditions and the QY using 

hydrothermal route is very limited (only one study exists: Barati et al., (2015). Hence, 

more investigation on the N-CDs of CMC is needed. 

 

 

Previous research related to the comparative analysis of the physicochemical properties 

using various N- additives are rarely studied. Under identical conditions, Sachdev et al., 

(2014) evaluated the optical performance of polyethylene glycol (PEG) and 

polyethyleneimine (PEI) on the hydrothermal carbonization of chitosan. Various QYs, 

structures and chemical properties of the obtained N-CDs were resulted using different 

N- additives. However, a clear formation mechanism for nitrogen-doped CDs (N-CDs) 

synthesized from saccharides and various heteroatom doping sources along with the 

origin of the PL emission are still under debate.  

 

 

Furthermore, the usage of lignocellulosic waste has been recently documented for the 

production of N-CDs, in which various QYs using different synthesis conditions were 

obtained. It is well known that the formation of N-CDs depends on the degree of the 

substitution of the cellulose structure (i. e. how many of the OH- have taken part in the 

substitution reaction), as well as the chain length of the cellulose backbone and the degree 

of clustering of the cellulose substituents. Most of reported works show several 

shortcomings including low fluorescence QY and long preparation time (Wu et al., 2015; 

Shen et al., 2016; Wang et al., 2017). These drawbacks may relate to the absence of ether 

groups within the cellulose framework and as a results lower substitution reaction could 

be occurred. CMC of EFB is rich with ether and hydroxyl groups which could play the 

major role for the successive rearrangement reactions leading to process acceleration. 

Thus, full exploitation of these biomass waste can be done by maximizing the utilization 

of these resources to form products of high value which not only comply to the zero-

waste strategy but also generate additional profit to the palm oil industry. To the best of 

the knowledge of the current authors, no earlier work has been carried out to synthesis 

N-CDs from CMC of EFB in the presence of EDA and LPEI as both the carbon source 

and nitrogen atom/ surface passivation agents, respectively using different synthesis 

conditions.  

 

 

The greatest challenges in heavy metal ions detection are the necessity of using short 

synthesis time for the production of highly fluorescence N-CDs and low sensitivity at the 
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same time. Copper ion detection has an association with long-time synthesis process and 

low QY and this has been established by preview workers (Zhu et al., 2012). 

Additionally, CDs have been widely applied as a fluorescent probe for the determination 

of Cu (II) with high selectivity and sensitivity. However, several drawbacks limit their 

metal ions application, including long response time of more than 10 min (Liu et al., 

2012; Ma et al., 2017; Singh et al., 2017; Zong et al., 2014a),  narrow detection interval 

(Ma et al., 2017; Salinas-Castillo et al., 2013; Salinas-castillo et al., 2016), high detection 

limit (Ganiga & Cyriac, 2016; Ma et al., 2017; Wen et al., 2014; Zong et al., 2014), or 

complex probe synthesis (Liu et al., 2012; Salinas-Castillo et al., 2013; Zong et al., 2014). 

Therefore, it would be sensible to develop highly fluorescent N-CDs in significantly 

short synthesis time as well as to improve the detection sensitivity of copper ions in 

aqueous media. 

 

 

1.3 Significance of the Study/ Practical Contribution 

 

 

The main contribution of the study comprises: 

 

 

i. By using EFB CMC as the main carbon source for obtaining N-CDs, it is possible 

to convert low-value materials into useful compounds, where the utilization of these 

undesirable wastes is a clear advantage in terms of environmental impact. 

ii. By incorporating LPEI into the final structure of carbon particles, this study can take 

a big step in providing useful information for the N-CDs formation and/or emission 

mechanism and exploiting these sustainable fluorescent nanomaterials for further 

functionalization and analytical applications. 

iii. By optimizing the hydrothermal synthesis process of N-CDs using CCD-RSM, this 

step can be quite beneficial, where shorter reaction times and lower temperatures are 

more favored during the hydrothermal treatment and consequently reduce the cost 

and money. 

 

 

 

1.4 Objectives of the Study 

 

 

The goal of this study is to develop fluorescent carbon dots from sustainable and cost-

effective natural resources as optical sensing receptor for detection of copper ions in 

water. The following specific objectives were designed to achieve this goal; 

 

 

i. To optimize one-pot hydrothermal route for the synthesis of N-CDs from CMC of 

oil palm empty fruit bunch (EFB) incorporated with EDA and LPEI as N- additives. 

ii. To characterize the numerically optimized EDA-CDs and LPEI-CDs. 

iii. To investigate the fluorescence stability of the optimized LPEI-CDs. 

iv. To evaluate the potential applications of the optimized LPEI-CDs on detection of 

Cu+2 in aqueous solutions using Stern-Volmer quenching analysis. 
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1.5 Research Hypothesis  

 

 

The present study attempts to synthesize and analyze N-CDs from EFB CMC using HTC 

approach which could provide a foundation to identify the chemical composition of a 

probe. This fluorescent probe can be used to obtain a selective response to heavy metal 

ions that will cause a measurable change of optical properties of N-CDs. The usage of 

CMC for the production of N-CDs is believed to have a higher degree of substitution 

than other lignocellulosic waste due to the abundant of hydroxyl and ether moieties 

within CMC structure. In other words, higher aromatization reaction could be occurred 

as a result of rapid clustering degree and rearrangement of the CMC substituents, leading 

to the formation of N-CDs in considerably milder synthesis conditions. 

 

 

In sensor applications, the low detection limit and selectivity are depending directly on 

the sensing precursors and the detection process. Thus, that fluorescent probe doping 

with nitrogen agent can play a vital role in detection. The existence of N- species can 

provide more active sites over the surface of N-CDs, leading to higher binding affinity 

to interact with metal ions compared to the undoped ones. 

 

 

1.6 Scope of Research 

 

 

In this research study, the focus is to synthesize fluorescent nitrogen-doped carbon dots 

(N-CDs) from renewable resources and exploit the prepared N-CDs in the enhancement 

performance of selective detection of heavy metal ions using N-CDs as a chemical 

sensor. 

 

 

i. Response surface methodology (RSM) was used to design the synthesis 

experiments by hydrothermal carbonization method from CMC of EFB with the 

incorporation of two doping agents mainly EDA and LPEI. A central composite 

design was used to optimize operational parameters of the synthesis of N-CDs by 

hydrothermal carbonization route. 

ii. The optimization of hydrothermal carbonization method was assessed based on the 

fluorescence quantum yield (QY) of the synthesized N-CDs at different 

temperature, reaction time, and doping weight. The QY of all the experimental runs 

that suggested by Design Experts software were calculated based on the 

comparative method using quinine sulfate as a reference, where both of the 

absorption and fluorescence spectra were analyzed. 

iii. The numerically optimized aqueous solution of hydrothermal process in synthesis 

of N-CDs was assessed based on the results of TEM, HRTEM, FTIR, XPS, UV-

VIS, PL spectroscopy, and zeta potential. 

iv. The formed N-CDs obtained in the presence of LPEI doping agent were selected 

for the subsequent experiments due to their highest obtained QY. 

v. The photostability properties of the optimized N-CDs were evaluated by identifying 

the influence of N-CDs concentration, pH, time of exposure, storage time and ionic 

strength on the PL stability of N-CDs. 



© C
OPYRIG

HT U
PM

8 

 

vi. Sensor performance were achieved by evaluating the selectivity study through 

measuring the PL spectra of N-CDs in the absence and presence of different metal 

cations, including Fe (III), Fe (II), Pb (II), Cu (II), Mg (II), Ca (II), Cd (II), Zn (II), 

Hg (II) and Mn (II) ions. 

vii. The sensitivity study of the fluorescent sensor was evaluated by measuring the PL 

spectra of N-CDs in the absence and presence of different receptor concentrations 

and hence the limit of detection was analyzed. 

 

 

1.7 Thesis Structure 

 

 

This thesis is divided into five chapters. Chapter one covers introduction, problem 

statements, objectives, scope and thesis structure. Chapter two includes descriptions on 

the fluorescent carbon dots, including their benefits, fabrication methods, starting 

materials used and fluorescent enhancement using various surface passivation and /or 

doping agents. The main structure of CMC and their advantages for exploiting them as 

potential starting precursors were explained. Also, an introduction to the various 

characterization measurements used throughout the study was explained and the 

principle of fluorescence was clarified. Furthermore, sensing applications, including 

theory of fluorescence quenching, possible mechanisms, sensor design, and 

immobilization/embedment techniques were thoroughly explained. Moreover, the theory 

of multi-objective design optimization using response surface methodology was 

explained shortly. In chapter three, both the materials and method for producing N-CDs 

from CMC in the presence of EDA and LPEI are elaborated. Moreover, the 

characterization methods (TEM, HRTEM, FTIR, XPS, UV-Vis, and PL spectra) for 

testing the obtained EDA-CDs and LPEI-CDs were explained. The method of 

fluorescence stability in terms of N-CDs concentration, pH, surface charge, irradiation 

time, storage time and ionic strength on the fluorescence of N-CDs was discussed. 

Finally, the methodology of using N-CDs as a selective and sensitive probe for Cu2+ 

sensing as well as the analysis of real samples was explained. In chapter four, the results 

of experiments were thoroughly explained and discussed. Chapter four consists 

preparation of N-CDs from CMC using EDA and LPEI, including QY calculation, study 

the effect of key parameters. An experimental design using Central Composite Design 

(CCD) was done on the production of N-CDs from CMC in the presence of EDA and 

LPEI. Then it continues to optimize operational variables using RSM. The results of 

several characterization tests of both numerically optimized EDA-CDs and LPEI-CDs 

were analyzed and investigated. Based on the characterization tests, a detailed 

fluorescence origin and potential formation mechanism of N-CDs were systematically 

elaborated. The results of photostability measurements were explained. The feasibility 

of N-CDs-based-Cu2+ sensor, as well as the possible sensing mechanism, were discussed. 

Finally, the overview of the study, conclusion, and the direction for future studies were 

presented in Chapter 5. 
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