

UNIVERSITI PUTRA MALAYSIA

IN VITRO CULTURE OF *METROXYLON* SAGU THE SAGO PALM - A PRELIMINARY STUDY

BASKARAN KRISHN APILLAY

FSAS 1986 1

IN VITRO CULTURE OF METROXYLON SAGU -

THE SAGO PALM - A PRELIMINARY STUDY

by

BASKARAN KRISHNAPILLAY

A Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies, Universiti Pertanian Malaysia

November 1986

DEDICATED

to the memory of my late

Father

VARGHESE KRISHNAPILLAY

and

to my Mother whose patience and understanding has been a constant source of inspiration for me throughout this study

ACKNOWLEDGEMENTS

It pleases me to have the opportunity of expressing my sincere gratitude to Universiti Pertanian Malaysia and in particular the Faculty of Science and Environmental Studies for supporting this research as part of a fulltime post graduate project.

I am extremely grateful and greatly indebted to my supervisor Dr Zaliha Christine Alang for her dedicated efforts, stimulating discussions, active participation and constant encouragement throughout the planning and execution of this research.

I take this opportunity also to thank Dr Ruth Kiew and Dr Ismail Hamzah for their expert advice in some parts of this study.

My sincere appreciation is extended to Encik Abdul Ghani bin Hashim for his professional photographic work; Cik Suleka Madhavan for technical assistance in the preparation of the histological slides, Encik R Jegathesan for assistance in the library; Cik Zulaini bte Ismail and Encik Ramli for assistance at the computer centre; the Faculty of Forestry, Universiti Pertanian Malaysia for providing transport and assistance for the field collections and to Puan Norijah Kassim and Encik D Selvaraj for technical assistance in the laboratory during the course of the study.

My special thanks goes to Puan Selvarani Ramachandran of the Agricultural Research and Advisory Bureau for her many hours of conscientious typing of my handwritten drafts into a thesis format.

To my brother George Krishnapillay I express my sincere gratitude for the assistance provided in the preparation of all the graphic works used in this manuscript despite his heavy work load.

Lastly but not the least, I wish to thank all my family members especially Richard and Sara Krishnapillay for being very understanding and for their constant encouragement throughout the course of this study.

TABLE OF CONTENTS

ACK	NOWLEI	OGEMENTS	iii
LIST	OF TAB	LES	viii
LIST	OF FIGU	JRES	xii
LIST	OF PLA	TES	xiii
LIST	OF APP	ENDICES	x v iii
LIST	OF ABB	REVIATIONS	xx
ABS	TRACT		xxii
1.	INTRO	DUCTION AND LITERATURE REVIEW	1
	1.1	Introduction	1
	1.1.1	Origin Distribution and Ecology of the Sago Palm (Metroxylon sagu)	1
	1.1.2	Botany and Taxonomy of the Sago Palm	4
	1.1.3	Economic Uses of the Sago Palm and Sago Starch	6
	1.1.4	Breeding and Selection in the Sago Palm	10
	1.1.5	The Role of <i>in vitro</i> Propagation in the Commercialisation of the Sago Palm	12
	1.1.6	The Aim of the Investigation	14
	1.2	Review of Literature	15
	1.2.1	Introduction	15
	1.2.2	Embryo Culture of Palms	16
	1.2.3	In vitro Propagation of Palms	22
	1.2.4	Resume	30

2.	MATER	IAL AND METHODS	32
	2.1	General	32
	2.1.1	Glassware and Cleaning	32
	2.1.2	Chemicals	32
	2.1.3	Preparation of Stock Solutions and Culture Media	33
	2.1.4	Scope of Study	34
	2.2	Embryo Culture	34
	2.2.1	Collection	34
	2.2.2	Storage of Fruit	34
	2.2.3	Excision of Embryos	36
	2.2.4	Sterilization of Embryos	37
	2.2.5	Choice of Basal Medium and Optimum pH	37
	2.2.6	Effect of Selected Addenda and Environmental Conditions on Development of Excised Embryos	38
	2.3	Culture of Vegetative Tissues	40
	2.3.1	Source of Plant Material and Collection	40
	2.3.2	Selection of Suitable Explants for <i>in vitro</i> Culture	43
	2.3.3	Surface Sterilization of Explants	47
	2.3.4	Choice of Basal Medium and Optimum pH	52
	2.3.5	Effect of Selected Addenda and Environmental Conditions on Excised Explants	52
	2.4	Histological Studies	54
	2.4.1	Light Microscopy	54
3.	RESULI	rs	55
	3.1	Embryo Culture	55
	3.1.1	Collection of Sago Fruit	55
	3.1.2	Storage of Fruit	59

PAGE

	3.1.3	Excision of Embryos	61
	3.1.4	Structure of the Embryo and Endosperm	63
	3.1.5	Surface Sterilization of Embryos	68
	3.1.6	Choice of Basal Medium and Optimum pH	73
	3.1.7	Effect of Selected Addenda and Environmental Conditions on Development of Excised Embryos	78
	3.2	Culture of Vegetative Tissues	119
	3.2.1	Source and Collection of Plant Material	119
	3.2.2	Selection of Suitable Explants for <i>in vitro</i> Culture	119
	3.2.3	Surface Sterilization of Explants	119
	3.2.4	Anatomical Structure of Responsive Explants	140
	3.2.5	Effect of Selected Addenda and Environmental Conditions on Vegetative Tissues	142
4.	DISCUS	SION	179
	4.1	Embryo Culture	180
	4.2	Culture of Vegetative Tissues	188
	4.3	Suggestions for Future Studies	193
5.	SUMMA	RY AND CONCLUSION	195
6.	BIBLIO	GRAPHY	198
7.	APPEN	DICES	210

LIST OF TABLES

TABLE NO.

3.1	Mean Percentage Viability of Embryos from Fruit Stored under Various Conditions	59
3.2	Mean Percentage of Axenic Cultures Two Weeks after Sterilization	70
3.3	Mean Percentage of Surviving Embryos after Six Weeks in Culture	70
3.4	Mean Percentage of Developing Sago Embryos on Two Basal Media	74
3.5	Mean Percentage of Embryos that Showed Growth and Development after Four Weeks in Culture on Tisserat and DeMason (1980) Medium at different pH values	76
3.6	Mean Percentage of Embryos producing both Shoot and Root in Media containing NAA/BAP with or without Charcoal, in the Light or in the Dark	80
3.7	Mean Percentage of Embryos producing only Shoots in Media containing NAA/BAP with or without Charcoal, in the Light or in the Dark	82
3.8	Mean Percentage of Embryos forming Callus in Media containing NAA/BAP with or without Charcoal, in the Light or in the Dark	84
3.9	Mean Percentage of Embryos producing both Shoot and Root in Media containing 2, 4-D/2iP with or without Charcoal, in the Light or in the Dark	86
3.10	Mean Percentage of Embryos producing only Shoots in Media containing 2, 4-D/2iP with or without Charcoal, in the Light or in the Dark	88

PAGE

3.11	Mean Percentage of Embryos forming Callus in Media containing 2, 4-D/2iP with or without Charcoal, in the Light or in the Dark	90
3.12	Mean Percentage of Embryos producing both Shoot and Root in Media containing low levels of NAA/BAP with or without Charcoal, in the Light or in the Dark	97
3.13	Mean Percentage of Embryos producing only Shoots in Media containing low levels of NAA/ BAP with or without Charcoal, in the Light or in the Dark	99
3.14	Mean Percentage of Embryos producing both Shoot and Root in Media containing low levels of 2, 4-D/2iP with or without Charcoal, in the Light or in the Dark	101
3.15	Mean Percentage of Embryos producing only Shoots in Media containing low levels of 2, 4-D/ 2iP with or without Charcoal, in the Light or in the Dark	103
3.16	Mean Percentage of Embryos with only Shoots which showed Normal Shoot and Root Development after Three Weeks of Subculture on the best NAA/BAP Media	114
3.17	Mean Percentage of Embryos with only Shoots which showed Normal Shoot and Root Development after Six Weeks of Subculture on the best NAA/BAP Media	115
3.18	Mean Percentage of Embryos with only Shoots which showed Normal Shoot and Root Development after Three Weeks of Subculture on the best 2, 4-D/2iP Media	116
3.19	Mean Percentage of Embryos with only Shoots which showed Normal Shoot and Root Development after Six Weeks of Subculture on the best 2, 4-D/2iP Media	117

ix

120

TABLE NO.

3.20	Surface Sterilization of Primary, Secondary and Tertiary Root Sections	120
3.21	Surface Sterilization of Primary Root Segments using Mercuric Chloride (HgCl ₂)	121
3.22	Surface Sterilization of Secondary and Tertiary Root Segments using Mercuric Chloride (HgCl ₂)	122
3.23	Surface Sterilization of Primary Root Segments using Commercial Clorox	124
3.24	Surface Sterilization of Secondary and Tertiary Root Segments using Commercial Clorox	125
3.25	Emerged Leaf Explants Swabbed with 70% Alcohol prior to Sterilization with Mercuric Chloride (HgCl ₂)	127
3.26	Emerged Leaf Explants Sterilized with Mercuric Chloride (HgCl ₂) without prior Swabbing with 70% Alcohol	128
3.27	Emerged Leaf Explants Swabbed with 70% Alcohol prior to Sterilization with Commercial Clorox	129
3.28	Emerged Leaf Explants Sterilized with Commercial Clorox without prior Swabbing with 70% Alcohol	130
3.29	Unemerged Leaf Explants Swabbed with 70% Alcohol	131
3.30	Unemerged Leaf Explants Sterilized with Mercuric Chloride (HgCl ₂)	132
3.31	Unemerged Leaf Explants Sterilized in 0.05% Mercuric Chloride (HgCl ₂) for 5 minutes followed by Commercial Clorox	133
3.32	Unemerged Leaf Explants Sterilized with Commercial Clorox	134
3.33	Stem Apex Explants Swabbed with 70% Alcohol	135

TABLE NO.

3.34	Stem Apex Explants Sterilized with Mercuric Chloride (HgCl ₂)	136
3.35	Stem Apex Explants Sterilized with 0.05% Mercuric Chloride (HgCl ₂) for 5 minutes followed by Commercial Clorox	137
3.36	Response of Explants on Media containing NAA/BAP combinations, cultured in the Dark	146
3.37	Response of Explants on Media containing 2, 4-D/2iP combinations, in the Dark	152
3.38	Response of Explants on Media containing only 2, 4-D in the presence of Charcoal, in the Dark	158
3.39	Response of Explants on Media containing only 2, 4-D in the presence of Charcoal, in the Light	163
3.40	Response of Explants Subcultured from NAA/ BAP Media after One Month in the Dark onto Media containing 2, 4-D and Charcoal, Cultured in the Light	169
3.41	Response of Explants Subcultured from 2, 4-D/ 2iP Media after One Month in the Dark onto Media containing 2, 4-D and Charcoal, Cultured in the Light	175

LIST OF FIGURES

FIGURE		PAGE
1	Mean Percentage Viability of Embryos from Fruit Stored under Various Conditions	60
2A	Mean Percentage of Axenic Cultures Two Weeks after Sterilization with Mercuric Chloride (HgCl ₂)	71
2B	Mean Percentage Survival of HgCl ₂ – Sterilized Embryos after Six Weeks in Culture	71
3 A	Mean Percentage of Axenic Cultures Two Weeks after Sterilization with Clorox	72
3B	Mean Percentage Survival of Clorox-Sterilized Embryos after Six Weeks in Culture	72
4	Mean Percentage of Embryos that showed Growth and Development after Four Weeks in Culture on Tisserat and DeMason (1980) Medium at different pH values	77

LIST OF PLATES

PLATE PAGE 1 A Fruiting Sago Palm 35 2 A Cluster of Sago Palms in the vegetative Phase, 41 located in an abandoned Rice Field 3 Excised Young Offshoots with some Excision 42 Tools 4 44 Excised Primary, Secondary and Tertiary Roots of the Sago Palm 5 Young Emerged Leaves Reddish Green in Colour, 44 used in the Study 6 Young Unemerged Leaves, White in Colour, 45 enclosed firmly within two outer Leaf Sheaths Stem Apex Tissue (not visible), enclosed firmly 7 46 within the outer Sheaths of Leaf bases Young Unemerged Leaf Tissue exposed from 49 8 enclosing Leaf Sheaths 50 9 Intact Stem Apex Tissue exposed 10 Stem Apex Tissue sliced into two longitudinally 51 to show the Apical Meristem 11 Close-up of the infructescence of a Sago Palm 56 12 Collection of Sago Fruit after felling the 57 Fruiting Palm A sample of Fertile Sago Fruit 13 58 14 A sample of Infertile Sago Fruit 58 15 Sago Fruit, Whole Seeds and an Excised Embryo 62 Sago seeds cut into two to expose the Embryos 16 64

17	Removal of the Sago Embryo from the seed using a single edged stainless steel razor blade	65
18	Excised Embryos with the soft Operculum still attached to the top of the Embryo	66
19	Longitudinal Section through a Sago Embryo	67
20	Longitudinal Section through the Endosperm of a Sago Palm	69
21	Sago Embryos showing Formation of Callus	95
22	Proliferation of the Callus formed from the Sago Embryo	95
23	Example of Shoot and Root Development in a Sago Embryo, Cultured in a medium without Charcoal, and incubated in the Light	105
24	Example of Shoot and Root Development in a Sago Embryo Cultured in a medium containing Charcoal and incubated in the Light	106
25	Example of Shoot and Root Development in a Sago Embryo Cultured in a medium without Charcoal and incubated in the Dark	107
26	Example of a Shoot and Root Development in a Sago Embryo Cultured in a medium containing Charcoal and incubated in the Dark	108
27	Example of a Sago Embryo Forming only Shoot in a medium without Charcoal and incubated in the Light	109
28	Example of a Sago Embryo Forming only Shoot in a medium containing Charcoal and incubated in the Light	110
29	Example of a Sago Embryo Forming only Shoot in a medium without Charcoal and incubated in the Dark	111
30	Example of a Sago Embryo Forming only Shoot in a medium containing Charcoal and incubated in the Dark	112

31	Sterilized Tertiary Root Segment showing elongation and some swelling in Tisserat and DeMason (1980) basal medium, without hormones or activated Charcoal	123
32	Transverse Section through a Tertiary Root	141
33	Tranverse Section through an Unemerged Leaf	143
34	Longitudinal Section through the Stem Apex of a Young Offshoot	144
35	Swelling and Expansion of the Tertiary Root in Medium containing 25 mgl ⁻¹ NAA	147
36	Tertiary Root segment beginning to form Callus in Medium containing 25 mgl ⁻¹ NAA after 5 months in Culture	148
37	Example of Unemerged Leaf explant turning Brown after attaining Maximum Expansion in Medium containing NAA/BAP	150
38	Example of Stem Apex Tissues turning Brown after attaining Maximum Expansion in Medium containing NAA/BAP	151
39	Unemerged Leaf Tissues showing the Formation of White Crystalline Callus at their cut ends in Medium containing 25 mgl ⁻¹ 2, 4-D	154
40	Proliferation of the White Crystalline Callus formed on an Unemerged Leaf section Cultured in Medium containing 25 mgl ⁻¹ 2, 4-D	155
41	Stem Apex Tissues showing the Formation of White Crystalline Callus at the base of the Explants in Medium containing 25 mgl ⁻¹ 2, 4-D	156
42	Expanded Leaf Tissues turning Brown in Medium containing Charcoal and 2, 4–D, Cultured in the Dark	159
43	Expanded Stem Apex Tissues turning Brown in Medium containing Charcoal and 2, 4–D Cultured in the Dark	160

44	Leaf Tissues expanding in Medium containing Charcoal and 2, 4–D incubated in the Dark	161
45	Stem Apex Tissues expanding in Medium containing Charcoal and 2, 4-D Cultured in the Dark	162
46	Unemerged Leaf Tissues Cultured in Medium containing Charcoal and 2, 4–D, incubated in the Light, showing Greening and thickening of its tissues	165
47	Apex Tissues developing into Normal Plant but without Roots in Medium containing Charcoal and 2, 4–D, incubated in the Light	166
48	Apex Tissues Cultured in Medium containing Charcoal and 2, 4-D, incubated in the Light showing Greening and thickening of its tissues	167
49	Unemerged Leaf Tissue subcultured from Medium containing 10 mgl ⁻¹ NAA and 1 mgl ⁻¹ BAP showing Callus Formation on Media containing Charcoal and 175 mgl ⁻¹ 2, 4-D, incubated in the Light	171
50	Stem Apex Tissue subcultured from Medium containing 10 mgl ⁻¹ NAA and 1 mgl ⁻¹ BAP showing Callus Formation on Media containing Charcoal and 175 mgl ⁻¹ 2, 4-D, incubated in the Light	172
51	Rapid Proliferation of the Callus formed from the Leaf and Stem Apex Tissues Subcultured to Medium containing charcoal and 175 mgl ⁻¹ 2, 4-D	173
52	Transverse section through Nodular Callus showing Budding of the Callus and Differentiation of the Tissues	174
53	Unemerged Leaf Tissue subcultured from Medium containing 2, 4–D/2iP, showing Greening and thickening of the Tissue in Medium containing 175 mgl ⁻¹ 2, 4–D, incubated in the Light	176

54 Stem Apex Tissue subcultured from Medium	177
containing 2, 4-D/2iP, showing Greening and	
Thickening of the Tissue on Medium containing	
Charcoal and 175 mgl ^{-1} 2, 4–D, incubated in	
the Light	

LIST OF APPENDICES

APPENDIX

Ι	Media Formulation after Murashige and Skoog (1962)	210
II	Media Formulation after Tisserat and DeMason (1980)	212
III	Preparation of Hampts Solution	214
IV	SPSS – ANOVA Programme for Embryo Culture in Media containing NAA/BAP	215
IVa	ANOVA and DNMRT for Embryos Developing both Shoot and Root in Media containing NAA/BAP	216
IVb	ANOVA and DNMRT for Embryos Developing only Shoot in Media containing NAA/BAP	218
IVc	ANOVA and DNMRT for Embryos Forming Callus in Media containing NAA/BAP	220
v	SPSS - ANOVA Programme for Embryo Culture in Media containing 2, 4-D/2iP	222
Va	ANOVA and DNMRT for Embryos Developing both Shoot and Root in Media containing 2, 4-D/2iP	223
Vb	ANOVA and DNMRT for Embryos Developing only Shoot in Media containing 2, 4-D/2iP	225
Vc	ANOVA and DNMRT for Embryos Forming Callus in Media containing 2, 4-D/2iP	227
VI	SPSS – ANOVA Programme for Embryo Culture in Media containing low levels of NAA/BAP	229
VIa	ANOVA and DNMRT for Embryos Developing both Shoot and Root in Media containing low levels of NAA/BAP	230

APPENDIX

VIb	ANOVA and DNMRT for Embryos Developing only Shoot in Media containing low levels of NAA/BAP	232
VII	SPSS - ANOVA Programme for Embryo Culture in Media containing low levels of 2, 4-D/2iP	234
VIIa	ANOVA and DNMRT for Embryos Developing both Shoot and Root in Media containing low levels of 2, 4-D/2iP	235
VIIb	ANOVA and DNMRT for Embryos Developing only Shoot in Media containing low levels of 2, 4-D/2iP	237

LIST OF ABBREVIATIONS

ANOVA	-	analysis of variance
BAP	-	benzylaminopurine
°C	-	degrees centigrade
cm ²	-	square centimetre
2, 4-D	-	2, 4-dichlorophenoxyacetic acid
df	_	degree of freedom
DNMRT	-	Duncan's new multiple range test
EtOH	-	ethyl alcohol
Fe-EDTA	-	ferrous-ethylenediaminetetraacetic acid
gl ⁻¹	_	grams per litre
HC1	-	hydrochloric acid
HgCl ₂	-	mercuric chloride
IAA	-	indole-3-acetic acid
IBA	-	indole-3-butyric acid
2iP	-	N ⁶ -(Δ^2 - isopentenyl) adenine
Kg/cm ³	-	kilogram per cubic centimetre
KH ₂ PO ₄	-	potassium di-hydrogen phosphate
М	-	molar
mg1 ⁻¹	-	miligram per litre
mm	-	millimetre
MS	-	Murashige and Skoog medium formulation (1962)
M.S.	-	mean sum of squares
NAA	-	🕅 - naphthalene acetic acid
NaH ₂ PO ₄	-	sodium di-hydrogen phosphate
P.C.l	-	medium formulation (Smith and Thomas, 1973)

P.C.m	-	medium formulation (Smith and Thomas, 1973)
S. D.	-	standard deviation
S.S.	-	sum of squares
2, 4, 5-T	-	2, 4, 5 - trichlorophenoxyacetic acid
Y ₃	-	medium formulation (Eeuwens, 1976)
%	-	percentage

ABSTRACT

An abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirement for the Degree of Master of Science.

> IN VITRO CULTURE OF METROXYLON SAGU -THE SAGO PALM - A PRELIMINARY STUDY

> > by

BASKARAN KRISHNAPILLAY

November, 1986

Supervisor	:	Dr Zaliha Christine Alang
Faculty	:	Science and Environmental Studies
Key Words	:	Metroxylon sagu, embryo culture, in vitro,
		sago palm.

The sago palm (*Metroxylon sagu*) is an under-exploited starch storing tropical crop which has great commercial potential.

Excised embryos of this palm were cultured *in vitro* for the first time. Suitable sterilization methods, media, addenda and cultural conditions for normal development of embryos and for callus production from excised embryos were investigated. As a large number of fruit (1 000 - 2 000) were

