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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment  of 

the requirement for the degree of Master of Science 

HARVESTING ENERGY FROM PLANETARY GEAR USING 

PIEZOELECTRIC MATERIAL  

By 

CHILABI HAIDER JAAFAR HUSSEIN 

November 2019 

Chairman :   Associate Professor Eris Elianddy bin Supeni, PhD 

Faculty :   Engineering 

In this study, a rotational piezoelectric (PZT) energy harvester has been fabricated and 

tested. The prototype can enhance output power by frequency up-conversion and provide 

the desired output power range from a fixed input rotational speed by increasing the 

interchangeable planet cover numbers which is the novelty of this work. The prototype 

ability to harvest energy has been evaluated with four experiments, which determine the 

effect of rotational speed, interchangeable planet cover numbers, the distance between 

PZTs, and PZT number. Increasing rotational speed shows that it can increase output 

power. However, increasing planet cover numbers can increase the output power without 

the need to increase speed or any excitation element. With the usage of one, two, and 

four planet cover numbers, the prototype is able to harvest output power of 0.414 mW, 

0.672 mW, and 1.566 mW, respectively, at 50 kΩ with 1500 rpm, and 6.25 Hz bending 

frequency of the PZT. Moreover, when three cantilevers are used with 35 kΩ loads, the 

output power is 6.007 mW, and the power density of piezoelectric material is 9.59 

mW/cm3. It was concluded that the model could work for frequency up-conversion and 

provide the desired output power range from a fixed input rotational speed and may result 

in a longer lifetime of the PZT. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains    

MENUAI TENAGA DARI GEAR PLANET MENGGUNAKAN BAHAN 

PIEZOELEKTRIK 

Oleh 

CHILABI HAIDER JAAFAR HUSSEIN 

November 2019 

Pengerusi :   Profesor Madya Eris Elianddy bin Supeni, PhD 

Fakulti :   Kejuruteraan 

Dalam kajian ini, penuaian tenaga putaran piezoelektrik (PZT) telah direka dan diuji. 

Prototaip ini dapat meningkatkan daya output melalui kekerapan penukaran semula dan 

menyediakan julat kuasa output yang dikehendaki dari kelajuan putaran input tetap 

dengan meningkatkan nombor penutup planet yang dapat ditukar ganti yang merupakan 

suatu pembaharuan dalam kajian ini. Keupayaan prototaip untuk menghasilkan tenaga 

telah dinilai berdasarkan empat eksperimen, yang menentukan kesan kelajuan putaran, 

nombor penutup planet yang boleh ditukar ganti, jarak antara PZT dan nombor PZT. 

Peningkatan kelajuan putaran menunjukkan bahawa ia dapat meningkatkan kuasa 

output. Walau bagaimanapun, peningkatan jumlah penutup planet boleh meningkatkan 

kuasa output tanpa perlu meningkatkan kelajuan atau sebarang unsur pengujaan. Dengan 

menggunakan satu, dua dan empat bilangan nombor penutup bumi, prototaip mampu 

menghasilkan kuasa output 0.414 mW, masing-masing sebanyak 0.672 mW dan 1.566 

mW, pada 50 kΩ dengan 1500 rpm, dan frekuensi lenturan 6.25 Hz PZT. Tambahan 

pula, apabila tiga julur digunakan dengan beban 35 kΩ, kuasa output adalah sebanyak 

6.007 mW, dan ketumpatan kuasa bahan piezoelektrik ialah 9.59 mW / cm3. Dapat 

disimpulkan bahawa model ini dapat bekerja mengikut kekerapan penukaran tinggi dan 

menyediakan kadar tenaga output yang diperlukan daripada kelajuan putaran yang tetap 

seterusnya dapat menghasilkan PZT yang lebih lama jangka hayatnya. 
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1 

CHAPTER 1 

1  INTRODUCTION 

1.1 Research background 

Converting mechanical energy such as kinetic energy, vibration or distortion energy into 

electrical energy is known as energy harvesting. The fast development of wireless sensor 

networks (WSNs) and the solution of storage power better efficacy will, ultimately, 

increase the devices that use self-power in an automotive application, monitoring of the 

environment, and health-care (Yang et al., 2018). However, the limitation of the power 

source of WSNs is one of the significant problems in this technology. Further, there are 

issues such as volume, weight, and short lifetime of batteries, which is much shorter than 

the WSN life, and batteries must be changed frequently. Consequently, researchers must 

find an alternative power source by focusing more attention on energy-harvesting 

technology (Kherbeet et al., 2015; Wu et al., 2014). 

An energy harvester for powering WSNs and microdevices is a feasible approach in our 

environment, due to its low power consumption, small size, and special working 

environment. Piezoelectric energy harvesting is one of the novel approaches that has 

been developed to harvest power for these devices using different types of mechanical 

sources (Elahi et al., 2018). Depending on the application, different types of harvesting 

energies, as well as the handiness of the mechanical power sources, are available most 

of the time. Mechanical energies such as airflow, vibration, pressing, rotational machine, 

and human motion are variable frequencies and amplitude energies, which can be called 

random energies that are available everywhere (Kumar and Kim, 2012). 

Rotational mechanical energy is one of the important power sources for piezoelectric 

energy harvesting. Different types of rotational power sources have been used in the past 

decades for piezoelectric energy harvestings, such as rotational machines (Dannier et al., 

2019; Fu and Yeatman, 2019; Khameneifar et al., 2011; Wu et al., 2018; Zou et al., 

2017), human motion (Fan et al., 2017; Li et al., 2018), vehicle tires (Fu and Yeatman, 

2017; Wang et al., 2019; Xie et al., 2018; Yu-Jen et al., 2017; Zhang and Jin, 2019), and 

even air, wind and fluids (An et al., 2018; Gong et al., 2019; Kyoo and Rho, 2015; 

Nezami et al., 2019; Ramírez et al., 2019; Stamatellou and Kalfas, 2018; Yang et al., 

2014). They have been applied in different applications such as WSNs in any rotary 

machine (Khameneifar et al., 2011; Li et al., 2011), tire pressure-monitoring systems 

(TPMSs) (Guan and Liao, 2016; 2016; Zhu et al., 2017), wearable devices, and medical 

implants (Choi et al., 2017; Kuang et al., 2016; Mohamad Hanif et al., 2018; Pillatsch et 

al., 2016). 

The principle of rotational piezoelectric energy harvesting operation is based on the PZT 

plucking for excitation, which results in PZT bending, vibration, or pressing, and thus 

voltage is generated. Researchers have used different excitation elements in rotational 

piezoelectric energy harvestings, such as mass (Mohamad Hanif et al., 2018; Zhu et al., 

2017), magnetic (Çelik et al., 2017; Karami et al., 2013; Pozzi, 2018) centrifugal force 
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(Gu and Livermore, 2010a, 2012), gravitational force (Febbo et al., 2017; Hsu et al., 

2014; Farbod Khameneifar et al., 2013), and gear teeth force (Park et al., 2012; Wei and 

Duan, 2015) or a compilation of these elements ( Yeo, et al., 2018; Yunshun Zhang et 

al., 2018, 2016). They have also applied these elements to widen the broadband range 

(Bai et al., 2015; Fu and Yeatman, 2017; Rezaei-Hosseinabadi et al., 2015) or for 

frequency up-conversion (Fu and Yeatman, 2019; Pillatsch et al., 2014; Yeo, et al., 2018) 

and rotational frequency, which is considered to be low in some cases compared to 

piezoelectric resonant frequency. While these different methods for rotational 

piezoelectric energy harvesting offer many advantages, they have numerous challenges. 

These include harvesting the desired output power ranges from a fixed input rotational 

speed, finding new methods in frequency up-conversion with better results, less force on 

PZT and hence a longer lifetime, and avoiding using slip ring or any other extra device 

for power transfer. Using a new source power type, design or method that can achieve 

these challenges is still desirable. 

Most of the previously published papers on rotational piezoelectric energy harvesting 

area focused on frequency up conversion; however, frequency up conversion methods 

continues to be enhanced. Hence, rotational power sources, especially for wind, human 

motion, some rotary machines, and some vehicle tires, are generally considered as low 

frequencies, compared to PZT frequency. In some cases, the wiring for output power 

transfer is still an issue because the PZT is rotating with the system and thus a slip ring 

or any other wireless transfer is needed, which makes the device more complicated (Guan 

and Liao, 2016; Larkin and Tadesse, 2013; Li et al., 2011; Ramírez et al., 2017; Resali 

and Salleh, 2017b; Wu et al., 2014). Also, the heavy and rapid repetitive bending or 

striking on the PZT with the direct excitation contact can be considered an issue because 

it will reduce its lifetime; however, this can be avoided in different ways (Çelik et al., 

2017). 

Using a gear as a rotational mechanical input for piezoelectric energy harvesting 

excitation has been considered a good and new method. Only a few works have been 

accomplished using the gear as input in rotational piezoelectric energy harvesting. Juil 

Park et al. (Park et al., 2012) proposed a design where the cantilever free tip was excited 

by any rotary motion of mechanical devices. Using a mouse gear as the rotary mechanical 

device, the frequency can be changed from 0 to 800 Hz according to the changes in 

rotational speed and gear teeth numbers. Further, the output voltage and power generated 

from the gear model frequency up-converted kinetic energy harvesting device have 

reached a level of interest for practical applications and could be easily increased using 

multiple cantilevers within a single gear ( Janphuang et al., 2015). Energy harvesting is 

produced from an impact by using a piezoelectric Micro-Electro-Mechanical Systems 

(MEMS) scavenger. Useful electrical power is generated by the impact of the rotating 

gear on the MEMS piezoelectric transducer (PJanphuang et al., 2011). Moreover, 

Janphuang et al. 2011 ( Janphuang et al., 2013) conducted an experiment where the 

results revealed that free vibrations of the harvester after plucking contributed 

significantly to the power efficiency. The efficiency and output energy can be greatly 

improved by adding a proof mass to the harvester. Yang et al. (Yang et al., 2019) 

proposed a gullwing-structural piezoelectric energy harvester that consists of two typical 

non-linear buckled-bridges to scavenge low-frequency rotational energy based on a gear 

mechanism induced oscillation. This design is promising for self-powered sensors, 

especially at changeable and low frequency, such as tire pressure monitoring. However, 
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as far as the authors are concerned, no research has been done using the planetary gear. 

Also, the PZT lifetime, wiring, and getting the desired output power from a fixed input 

rotational speed have not been clearly studied. 

The novelty of this work is to design, fabricate, and test a compact frequency up-

conversion energy harvester that can harvest sustainable energy in broad range 

frequencies. This work is inspired from previous studies (that use normal gear), but with 

an enhanced gear design (planetary gear), which has less effect on the PZT and its 

primary system. The planetary gear design can harvest energy using a piezoelectric 

cantilever. The advantage of this study design over the previous designs that use a 

standard gear ( Janphuang et al., 2011; Pattanaphong Janphuang et al., 2015, 2014; Park 

et al., 2012) is that it uses interchangeable planet covers so that it will have the ability to 

provide the desired output power range from a fixed input rotational speed, thus, by 

increasing the planet cover numbers without the need to increase the input speed, use of 

multiple PZT cantilevers, or increase the PZT pressing force. Moreover, it could be 

applied in any rotational machine such as a steam turbine with a pump for powering 

WSNs. Also, the PZT will be gently bent by the pressing of planet teeth gear, due to the 

way the planet gear moves in the planetary gear system, and this may result in a longer 

life-time for PZT. The wiring will not be an issue; there is no need for a slip ring or any 

other wireless device to transfer output power because the PZT will be fixed and will not 

rotate with the system. 

Many applications can be suggested to apply this piezoelectric energy harvester 

prototype due to its properties, such as when it is connected to any rotational source that 

runs with variable speeds such as steam turbine or wind rotational source; moreover, it 

could be used in human motion energy harvesting with a more compact design. 

1.2 Problem statement 

Energy harvesting is the most effective way to respond to the energy shortage and to 

produce sustainable power source from the surrounding environment. In particular, 

rotational piezoelectric energy harvesting, which uses a direct energy conversion from 

any rotational mechanical input energy to the electrical energy, has been considered as 

an important type of harvesting (Elahi et al., 2018).. However, it is a challenge to harvest 

the energy at the desired output power range from a fixed input rotational speed. 

Frequency up conversion is still an issue for rotational power source, a lot of research 

has been done on frequency up conversion (Fu and Yeatman, 2019; Williams, et al., 

2018) . However, new method are still desirable especially, most of the rotational power 

sources and their applications are considered as low frequency compared to high resonant 

frequency of piezoelectric (Febbo et al., 2017). 

Only few works have been done on piezoelectric energy harvesting using gear, and there 

are lot of rooms to be filled with these kinds of design and enhance it (Janphuang et al., 

2011; Janphuang et al., 2014; Park et al., 2012) . further, it has been found that no 

research has been done on piezoelectric energy harvesting using planetary gear. One of 

the issues in using gear for piezoelectric energy harvesting is that the gear teeth may 

damage the piezoelectric, due to the hard bending of the teeth, so, finding new contactless 

method or using less friction will enhance the output power (Janphuang et al., 2015). 
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However, it is the usage of planetary gear may increase the lifetime of piezoelectric 

cantilever, as the way the planet gear moving in the planetary gear system and thus, it 

bend the piezoelectric cantilever smoothly without damaging it. In addition, the wiring 

to transfer output power in rotational energy harvesting has also been considered as an 

issue because most of the time, the source of power rotates within the system and thus 

an extra device such as slip ring or Bluetooth will be needed for output power transfer  

(Guan and Liao, 2016; Lallart, 2017; Ramírez et al., 2017; Resali and Salleh, 2017b). 

1.3 Objective of Research 

The primary objective of this study is to design a rotational energy harvester model by 

using an interchangeable planetary gear cover that can harvest different ranges of output 

power from piezoelectric without changing the excitation pressure or rotational speed, 

and this can be done with the following secondary objectives.  

1. To fabricate and test compact energy harvester using planetary gear. 

2. To evaluate the performance of the prototype for frequency up conversion and 

test it with four experiment which is; effect of rotational speed, effect of planet 

cover numbers, effect of distances between PZT, and effect of PZT number, and 

prove its ability to provide the desired output power range from a fixed input 

rotational speed by increasing the planet covers numbers. 

1.4 Hypothesis 

Using planetary gear as energy harvester; the output power can be increased by 

increasing; rotational speed, choose the best angular distance between PZTs, and 

increasing PZTs numbers. However, increasing planet cover numbers can increase the 

output power without need to increase rotational speed or any other elements. 

1.5 Contributions 

It is clearly noted that no research has been done using planetary gear for piezoelectric 

energy harvesting. The ability to give different ranges of output power without increasing 

the frequency (rotational speed) or pressing on piezoelectric by simply plugging in more 

planet covers is the significance of this work. Moreover, the device was worked as a 

frequency up conversion, when more planet covers are used and in addition to that, the 

bending of piezoelectric cantilever is done smoothly because of the way that the planets 

gear move in the planetary gear. Consequently, this may increase the lifetime of 

piezoelectric. 

1.6 Research Scope 

1. Rotational speed range 300 rpm (5 Hz) to 1500 rpm (25 Hz), has been chosen 

according to the suggested application which is human motion applications to 
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wind turbine generator sensor. The frequency of gait motion is normally about 

0.5–3 Hz which corresponds to a walking speed of 1.3–7.8 km/h, however 

human motion maximum frequency such as for walking is less than 10 Hz (Choi 

et al., 2017). The digital sensors rotating part that use to measure the rotational 

speed is mounted on wind turbine generator shaft with a typical speed range 

from 750 to 1500 rpm (Van Engelen and Kanev, 2010). 

2. The sufficient output power is 100 µW which is enough for powering sensors. 

However, the Optimum power output that supposed to reach by this prototype 

is more than 1 mW  (Adu-Manu et al., 2018; Grady and Jeff, 2019; M׳boungui 

et al., 2015)(Grady and Jeff, 2019).   

3. The PZT cantilever is 5H material, d31 parallel connection and a sealed type 

named (S234-H5FR-1803XB) from Mide technology company with a 

dimension of 71×10.4×0.84 mm. These type as stated by the manufacturer is 

sealed by using reinforcement laminated between the two piezoelectric layers 

that make it a rugged PZT (Mide Technology, 2019a). 

4. The planetary gear type is chosen with 100 mm diameter to cope with the 

selected PZT dimension. The planet gear maximum numbers that can be fit in 

this size is four planets (Kohara Gear Industry Co., 2015) . 

5. 3-dimension finite element method simulation using COMSOL Multiphysics 

program has been done to predict the performance of the harvester. According 

to the target applications and the size of the planetary gear, the simulation has 

been done to test these range of frequencies and planet cover numbers and with 

the using of 50% of the maximum allowable displacement of the PZT. The FE 

check whether the harvester with these elements were able to harvest the 

sufficient output power. 

1.7 Thesis outline 

First chapter of this study gives a background on energy harvesting, its piezoelectric 

rotational movement, problem statement, objective of the study and its outline. The 

literature review in the second chapter contains factors that affect output power energy, 

review, comparison of previous studies from different aspects with mechanical input 

which has been divided it into four parts; rotational from wind, vehicle tires, human 

motion and any rotary machine that include gear. Chapter three describes the 

methodology which includes planetary gear system, planetary gear components, 

fabrication of the prototype, experimental setup and procedures for four experiments 

which are the effect of rotational speed, effect of planets cover number, effect of 

distances between PZT, and increasing PZT number, effect on primary system, and 

modelling and simulation. Chapter four provides the experimental results and the 

discussions. Finally, chapter five draws the conclusion with the recommendations of 

future work.   
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