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The effect of the cutting force during high-speed machining (HSM) has been 

extensively focused on by many researchers and the existing literature mainly 

discuss the approaches that can be taken to reduce the cutting force when machining 

nickel-based superalloys, such as by reducing the chip load while increasing the 

spindle speed. Increasing the spindle speed can increase the cutting speed, which 

indirectly reduces the cutting force. While, a reduction in the chip load decreases the 

cutting force needed to remove the unwanted material. On the other hand, a decrease 

in chip load results in low material removal rate (MRR). Therefore, it is contrary to 

the principle of HSM, where increasing the spindle speed while reducing the chip 

load only reduce the cutting force, rather than reducing the cutting force and 

increasing the MRR. Furthermore, it has been proven that the surface integrity after 

machining directly affects the reliability and life of the product. Although the 

ultimate research goal of the cutting force is to improve cost-effectiveness and 

productivity, it is also crucial to maintain or improve the surface integrity of a 

product. Therefore, the main aim of this research is to study the influence of 

increases in spindle speed at constant chip load on the cutting force and surface 

integrity of high-speed end-milling of Hastelloy X material under dry conditions. 

The cutting force behaviour was simulated by using AdvantEdge, while 

dynamometer was used to measure the cutting force under experimental tests. The 

research then analysed the surface integrity of Hastelloy X. Surface integrity, that 

included surface roughness, surface hardness and sub-surface residual stress, was 

observed with the purpose of correlating it with the optimum combination of chip 

load and spindle speed under experimental conditions, and also the behaviour of 

cutting force components and resultant force. Results of the experimental tests 

revealed that the cutting force components and resultant force had quadratic 

behaviour. In addition, axial force was the dominant factor affecting the resultant 

force, followed by the normal force and feed force. In terms of surface integrity, the 

© C
OPYRIG

HT U
PM



 

ii 

surface roughness and sub-surface residual stress were in line with the behaviour of 

the cutting force components and resultant force. However, the behaviour of surface 

hardness did not necessarily correspond to the behaviour of the cutting force 

components and resultant force when the spindle speed was increased at a constant 

chip load. Finally, the ideal combination of chip load and spindle speed in order for 

the manufacturing industry to obtain the ideal cutting force, MRR and surface 

integrity during high-speed end-milling of Hastelloy X under dry conditions at 0.2 

mm depth of cut was proposed at 0.016 mm/tooth and 21,400 rpm in half-immersion 

down-milling, 0.019 mm/tooth and 23,920 rpm in half-immersion up-milling, 0.016 

mm/tooth and 23,560 rpm in full-immersion down-milling, and 0.016 mm/tooth and 

24,640 rpm in full-immersion up-milling. 
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Kesan Pemesinan berkelajuan tinggi (HSM) telah banyak difokuskan oleh ramai 

penyelidik dan literatur yang sedia ada secara lazimnya membincangkan pendekatan 

untuk mengurangkan daya pemotongan semasa pemesinan superaloi berasaskan 

nikel, seperti dengan mengurangkan beban serpihan beserta meningkatkan kelajuan 

pengumpar. Meningkatkan kelajuan pengumpar dapat meningkatkan kelajuan 

pemotongan secara tidak langsung mengurangkan daya pemotongan. Manakala, 

mengurangkan beban serpihan dapat mengurangkan daya pemotongan yang 

diperlukan bagi menyingkirkan bahan yang tidak diingini. Sebaliknya, pengurangan 

dalam beban serpihan menghasilkan kadar penyingkiran bahan (MRR) yang rendah. 

Oleh itu, ianya bertentangan dengan asas HSM di mana peningkatan kelajuan 

pengumpar beserta pengurangan beban serpihan hanya mengurangkan daya 

pemotongan, bukannya mengurangkan daya pemotongan dan meningkatkan MRR. 

Selain itu, telah dibuktikan bahawa integriti permukaan selepas pemesinan secara 

langsung akan menjejaskan kebolehharapan dan hayat produk. Meskipun matlamat 

muktamad bagi penyelidikan daya pemotongan adalah untuk meningkatkan 

keberkesanan kos dan produktiviti, juga penting untuk mengekalkan atau 

meningkatkan integriti permukaan produk. Oleh itu, matlamat utama penyelidikan 

ini adalah untuk mengkaji pengaruh kelajuan pengumpar yang meningkat pada 

beban serpihan yang dikekalkan terhadap daya pemotongan dan integriti permukaan 

dalam pengisaran hujung berkelajuan tinggi bahan Hastelloy X di bawah keadaan 

kering. Sifat daya pemotongan disimulasikan dengan menggunakan AdvantEdge, 

manakala dinamometer digunakan untuk mengukur daya pemotongan di bawah ujian 

eksperimen. Penyelidikan diteruskan dengan menganalisis integriti permukaan 

Hastelloy X. Integriti permukaan, yang termasuk kekasaran permukaan, kekerasan 

permukaan dan tegasan baki bawah permukaan, diperhatikan dengan tujuan 

mengaitkannya dengan gabungan optimum beban serpihan dan kelajuan pengumpar 
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di bawah keadaan eksperimen, dan juga sifat komponen daya pemotongan dan sifat 

daya paduan yang dihasilkan. Hasil ujian eksperimen mendedahkan bahawa 

komponen daya pemotongan dan daya paduan bersifat kuadratik. Disamping itu, 

daya paksi ialah faktor dominan yang mempengaruhi daya paduan, diikuti oleh daya 

normal dan daya suapan. Dari segi integriti permukaan, kekasaran permukaan dan 

tegasan baki bawah permukaan bersifat selari dengan sifat komponen daya 

pemotongan dan sifat daya paduan. Manakala, sifat kekerasan permukaan tidak 

semestinya selari dengan sifat komponen daya pemotongan dan sifat daya paduan 

apabila kelajuan pengumpar dipertingkatkan pada beban serpihan yang dikekalkan. 

Akhirnya, gabungan ideal beban serpihan dan kelajuan pengumpar untuk industri 

pembuatan bagi memperolehi daya pemotongan, MRR dan integriti permukaan yang 

ideal semasa pengisaran hujung berkelajuan tinggi Hastelloy X di bawah keadaan 

kering pada kedalaman pemotongan 0.2 mm dicadangkan pada 0.016 mm/gigi dan 

21,400 rpm bagi separuh perendaman pengisaran bawah, 0.019 mm/gigi dan 23,920 

rpm bagi separuh perendaman pengisaran atas, 0.016 mm/gigi dan 23,560 rpm bagi 

perendaman penuh pengisaran bawah 0.016 mm/gigi dan 24,640 rpm bagi 

perendaman penuh pengisaran atas. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Research 

With the development of science and technology, the machining process has 

gradually become a main component in the manufacturing industry due to its ability 

to fulfil numerous criteria, such as having a variety of work materials, a variety of 

parts, shapes and geometric features, dimensional accuracy and surface finish. In 

fact, approximately more than 70% of the machining process is used in the 

manufacturing industry (Hidayah et al., 2015). Through this figure, it is clear that 

machining process is so important for the manufacturing of a part. Thus, it is vital 

for the manufacturing industry to identify the main factors affecting the efficiency of 

machining process and then overcome the effects of these factors, especially the 

cutting forces (Wan et al., 2016). In definition, cutting force is a natural phenomenon 

consisting of high compressive and frictional contact stresses on the cutting tool and 

machined material interfaces generated when cutting tools are used to mechanically 

cut the machined material during the machining process. On the other side, the 

imperative knowledge of cutting force research is the solution for practical problems 

associated with material surface quality, geometrical accuracy, tool-work material 

vibrations and chatter (Grossi et al., 2015). The research area on cutting force has 

provided a lot of benefits to the above problems and has long been established 

through development across time. 

Since almost a century ago, the cutting force research has been developed at full 

speed worldwide through German patent number 523594 (Longbottom & Lanham, 

2006; Ling et al., 2011). Dr. Carl Salomon who was also a researcher for the patent, 

said that the increase of cutting speed would lead to reduce cutting force 

(Longbottom & Lanham, 2006; Ling et al., 2011; Kadam & Pawade, 2017; 

Brinksmeier et al., 2017). Furthermore, high-speed machining (HSM) is one of the 

improvements found from the contributions of the patent to overcome the problems 

that cannot be overcome by conventional machining (CM), especially on cutting 

force (Ling et al., 2011; Kadam & Pawade, 2017). Significant differences between  

CM and HSM can be seen through cutting force behaviour when cutting speed is 

increased (Longbottom & Lanham, 2006; Al-Ghamdi & Iqbal, 2015), as indicated in 

Figure 1.1. Cutting force for CM will increase when the cutting speed is increased, 

then decreases after reaching a specific cutting speed, even when cutting speed 

continues to increase; this phase is known as HSM as stated by Kadam & Pawade 

(2017). Although the behaviour of cutting force in HSM is too complex to 

understand due to its fluctuating nature, it has positively impacted HSM nickel-based 

superalloys when high cutting speed is needed in order to achieve low cutting force 

as this material is difficult-to-machine (Thellaputta et al., 2017; Kumar et al., 2017).  
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Figure 1.1 : Cutting force against cutting speed  

(Modified from: Kadam & Pawade, 2017) 

 

 

Nickel-based superalloys are frequently used materials for high-temperature 

applications due to their high-temperature strength (Yu et al., 2018; Sun et al., 2019). 

This alloy can withstand temperatures as high as 1200 °C (Han et al., 2018) and has 

high corrosion resistance (D’Addona et al., 2017; Thellaputta et al., 2017); due to 

this unique combination, the demand for these alloys for certain applications has 

rapidly increased. This alloy application can be seen through several examples, such 

as gas turbine engines (Qinghua Zhang et al., 2016), space vehicles (Thellaputta et 

al., 2017), nuclear reactors (Thellaputta et al., 2017) and rocket engines (Cheng et 

al., 2018). Referring back to HSM, machining is commonly recognised as the 

finishing process for achieving excellent surface finish and high-dimensional 

accuracy (Logins & Torims, 2015; Kadam & Pawade, 2017). Nickel-based 

superalloy parts are also no exception when it comes to achieving these two goals 

using HSM. However, it is vital to not only achieve excellent surface finish and 

high-dimensional accuracy, but also meet the requirement on the surface integrity for 

the reliability of nickel-based superalloy parts. Surface integrity of a machined part 

includes surface topography and metallurgy characteristic of the surface and sub-

surface; for example, surface roughness, residual stress and surface hardness 

(Thellaputta et al., 2017). The transition from CM to HSM not only affects the 

cutting force, but also affects the surface characteristic of the machined parts. Based 

on the study conducted by Thakur & Gangopadhyay (2016b), surface roughness 

value decreases as the cutting speed increases. On the other hand, the residual stress 

and surface hardness values are found to increase with increase in cutting speed. It 

can be concluded here that the behaviour of cutting force and surface integrity in 

machining nickel-based superalloys are closely related to cutting speed variations.  
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1.2 Problem Statement 

Hastelloy X material is one of the most widely used nickel-based superalloys for gas 

turbine engine parts because of its high strength at elevated temperatures and high 

oxidation resistance (Naik Parrikar et al., 2015; Jinoop et al., 2019). Also, Hastelloy 

X is principally noted as difficult-to-machine materials, and causes high cutting 

force. On the other hand, the effect of cutting force during HSM and especially high-

speed milling has been widely focused on by many researchers and the result has 

provided the manufacturing industry an opportunity to reduce cutting force during 

machining (Arrazola et al., 2018). High-speed milling can be deduced as a transition 

from slow and heavy cuts to fast and light cuts, which is an innovative method that 

reduces cutting force. With high-speed milling in the manufacturing industry, 

productivity is continuously increasing, making businesses more and more efficient. 

In others words, high-speed milling has brought enormous benefits to the 

manufacturing industry. Through these approaches, reduction of cutting force when 

machining is done by reducing the rate of chip load while increasing the rate of 

spindle speed (Masmiati et al., 2016). Given that cutting speed is closely related to 

spindle speed, by increasing the spindle speed can reduce the cutting force (Selvaraj, 

2017). Moreover, since the feed rate is tied to the chip load, as the chip load 

decreases, the feed rate also decreases. As a result, this allows for a reduction in the 

cutting force as the speed at which the cutting tool engages with the machined 

material is decreased (Selvaraj, 2017). Although cutting force has been reduced 

through this approach, there is still a concern that needs to be resolved whereby a 

decrease in chip load results in a reduction in material removal rate (MRR). Thus, it 

is contrary to the high-speed milling method in which the combination of high 

spindle speed and fast feed rate is the primary method used to increase MRR 

(Masmiati et al., 2016). Furthermore, it has been proven that the surface integrity 

after machining directly affects the reliability and life of the machined part 

(Masmiati et al., 2016; Thellaputta et al., 2017; Arrazola et al., 2018). Basically, the 

surface roughness decreases as the spindle speed increases. On the other hand, the 

sub-surface residual stress and surface hardness values are found to increase with the 

increase in spindle speed. Whereas, the increase in chip load led to increased surface 

roughness, surface hardness, and sub-surface residual stress. It is clear that the 

variation of spindle speed and chip load has significant impacts on surface integrity 

behaviour and cutting force behaviour. Although the ultimate research goal of the 

cutting force is to improve cost-effectiveness and productivity, it is also crucial to 

maintain or improve the surface integrity of a machined part. It is pointless when 

Hastelloy X parts are successfully produced at low cutting force through high MRR 

but have poor surface integrity. Since the influence of increased spindle speed at a 

constant chip load on the behaviour of cutting force and surface integrity remains 

undefined comprehensively, more accurate analysis should be focused on this 

approach as it has the potential to create a new dimension for reducing cutting force, 

while ensuring the desired reliability and life of the machined part as well as 

increased MRR. Apart from this, it is also intended to overcome the drawback from 

the existing approach, which is increasing spindle speed while reducing chip load 

during high-speed end-milling, in terms of MRR. 
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1.3 Objectives of Research 

The main aim of this research is to study the influence of increases in spindle speed 

at constant chip load on cutting force and surface integrity of high-speed dry end-

milling of Hastelloy X. Therefore, the objectives of this research are:  

1. To analyse the behaviour of the cutting force components and the resultant 

force when spindle speed was increased at constant chip load under 

simulation and experimental conditions. 

2. To determine the optimum combination of chip load and spindle speed, 

leading to the lowest value of cutting force components and resultant force, 

and subsequently correlate it with MRR and surface integrity. 

3. To propose an ideal combination of chip load and spindle speed to the 

manufacturing industry in order to obtain the ideal cutting force, MRR and 

surface integrity during high-speed dry end-milling of Hastelloy X. 

 

 

1.4 Scope and Limitation 

This research was conducted to identify the ideal combination of chip load and 

spindle speeds that generated low cutting force at ideal MRR and surface integrity, 

in order to improve the existing cutting force reduction approaches. The method is 

done by increasing the spindle speed at constant chip loads, during high-speed end-

milling of Hastelloy X under environmentally-friendly dry cutting conditions. The 

cutting force behaviour was simulated by using AdvantEdge version 6.4002, while 

dynamometer type 9129AA from Kistler was used to measure the cutting force 

under experimental conditions. A KYS40 solid ceramic with diameter 6 mm end-

mill from Kennametal was employed in the simulation and experimental conditions 

during which the spindle speed was increased from 13,300 rpm to 37,600 rpm under 

three different chip loads (0.013 mm/tooth, 0.016 mm/tooth and 0.019 mm/tooth). 

Depth of cut was held constant at 0.2 mm, while the amount was selected to ensure it 

was greater than the work-hardened layer (more than 0.12 mm). In addition, the 

experimental tests were carried out in a vertical machining centre model Mori Seiki 

NV 4000 DCG. The behaviours of cutting force components (feed force, normal 

force and axial force) and resultant force for half-immersion up-milling, half-

immersion down-milling, full-immersion up-milling and full-immersion down-

milling were analysed using a curvilinear trend-line, while tool wear was not taken 

into consideration. The response optimizer was performed using the Minitab 

software version 18 to determine the optimum combination of chip load and spindle 

speed, leading to minimising the cutting force components and resultant force. 

Surface integrity consisted of surface roughness (Sa), surface hardness (HRB) and 

sub-surface residual stress (MPa). Instruments used for the surface roughness, 

surface hardness and sub-surface residual stress evaluations were the LEXT 

OLS4100 3D measuring laser microscope, Wolpert UH930 universal hardness tester 

and PANalytical X'Pert Pro MPD PW 3040-60.  
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1.5 Significance of the Study 

The proposed combinations of chip load and spindle speed are able to achieve low 

cutting force at ideal MRR and surface integrity during high-speed end-milling of 

Hastelloy X under environmentally-friendly dry cutting conditions. Here are some 

significant and beneficial achievements that the proposed combinations of chip load 

and spindle speeds are expected to provide: 

1. Will enable the manufacturing industry to choose the ideal combinations of 

chip load and spindle speed, based on specification of the milling machine's 

spindle speed and the operation to be carried out in terms of direction of the 

cutting tool rotation and radial immersion amount. This is to enable them to 

achieve low cutting force and increase the productivity of Hastelloy X parts 

in addition to preserving surface integrity of the parts. 

2. Furthermore, high-speed end-milling of Hastelloy X conducted under dry 

conditions can improve cost-effectiveness through loss of cutting fluid costs. 

In addition, it can minimise the negative impact on the environment. 

3. Last but not least, the use of ceramic cutting tool during high-speed dry end-

milling of Hastelloy X was the key to increase the MRR. Therefore, a new 

dimension was opened to encourage the use and study of this cutting tool. 
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