
 
 

 
CATALYTIC GASIFICATION OF OIL PALM FROND BIOMASS IN 

SUPERCRITICAL WATER FOR HYDROGEN PRODUCTION USING 
SUPPORTED AND DOPED MAGNESIUM OXIDE CATALYSTS 

 

 
 
 
 
 
 
 
 
 

MOHD SUFRI BIN MASTULI 
 
 
 
 
 
 
 
 
 
 
 
 

FS 2019 84 



i 

CATALYTIC GASIFICATION OF OIL PALM FROND BIOMASS IN 
SUPERCRITICAL WATER FOR HYDROGEN PRODUCTION USING 

SUPPORTED AND DOPED MAGNESIUM OXIDE CATALYSTS 

By 

MOHD SUFRI BIN MASTULI 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of  

Doctor of Philosophy 

August 2019 

© C
OPYRIG

HT U
PM



 
ii 

COPYRIGHT 
 
 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs, and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained 
within the thesis for non-commercial purposes from the copyright holder. 
Commercial use of material may only be made with the express, prior, written 
permission of Universiti Putra Malaysia. 
 
 
Copyright © Universiti Putra Malaysia  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

© C
OPYRIG

HT U
PM



i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment  of the requirement for the degree of Doctor of Philosophy 

CATALYTIC GASIFICATION OF OIL PALM FROND BIOMASS IN 
SUPERCRITICAL WATER FOR HYDROGEN PRODUCTION USING 

SUPPORTED AND DOPED MAGNESIUM OXIDE CATALYSTS 

By 

MOHD SUFRI BIN MASTULI 

August 2019 

Chairman :   Professor Taufiq-Yap Yun Hin, PhD 
Faculty  :   Science 

Utilization of hydrogen as an energy carrier for transportation sector and other 
energy utilities could reduce the dependency on conventional fossil fuels and 
cater the increasing energy demands. The combustion of hydrogen gas (H2) in 
a fuel cell engine produces only water as its by-product with zero greenhouse 
gases that did not promoting the global warming. Production of H2 from biomass 
is one of the ultimate goals in renewable and sustainable energy development 
program. Various technologies have been developed for the conversion of 
biomass into combustible hydrogen. In this study, supercritical water gasification 
(SCWG) was used to convert the oil palm frond (OPF) biomass into H2-rich 
syngas. Two series of catalysts namely supported and doped magnesium oxide 
(MgO) catalysts were synthesized and characterized before catalyzing the 
SCWG reaction that enhanced the total H2 yield. Non-noble metal supported 
catalysts such as 20NiO/MgO, 20CuO/MgO and 20ZnO/MgO were synthesized 
using an impregnation method. The 20ZnO/MgO catalyst found to be produced 
the highest H2 yield even though it possessed the smallest specific surface area. 
Other factors such distribution, basicity and bond strength of the catalysts played 
important roles for higher catalytic performances. It is also believed that the 
catalyst stability can be further improved by doping the active metal into the 
crystal structure of the MgO catalyst. Therefore, the Ni doped MgO catalysts 
(Mg1-xNixO) and the Zn doped MgO catalysts (Mg1-xZnxO) with x = 0.05, 0.10, 
0.15, 0.20, were synthesized using a self-propagation combustion method. 
Interestingly, the Rietveld refinements showed contraction of crystal structure for 
the Ni doped MgO catalysts and expansion of crystal structure for the Zn doped 
MgO catalysts, upon increasing the metal contents. It means the crystallite size, 
surface area, porosity and basicity were affected. The correlation between 
catalytic performance and properties for selected supported and doped MgO 
catalysts were investigated. The doped catalysts have larger surface areas than 
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the supported catalysts, which can be arranged in the order of Mg0.80Ni0.20O (67.9 
m2 g-1) > Mg0.80Zn0.20O (36.3 m2 g-1) > 20NiO/MgO (30.1 m2 g-1) > 20ZnO/MgO 
(13.1 m2 g-1). Whether supported or doped, the Ni-based catalysts always 
exhibited larger surface area than that of the Zn-based catalysts. Unexpectedly, 
the Zn-based catalysts produced higher H2 yield from the SCWG of OPF biomass 
although these catalysts have smaller surface areas. When compared to the 
non-catalytic SCWG reaction, the H2 yield increased by 187.2% for 20NiO/MgO, 
269.0% for 20ZnO/MgO, 361.7% for Mg0.80Ni0.20O, and 438.1% for 
Mg0.80Zn0.20O. The Mg0.80Ni0.20O catalyst gave the highest H2 yield because it 
had the highest number of basic sites approximately twenty-fold higher than that 
of the 20ZnO/MgO catalyst. It also proved to be the most stable catalyst, as 
verified from the X-Ray photoelectron spectroscopy (XPS) outcomes. As such, 
this study concludes that the catalytic performances do not only depend on the 
specific surface area, but also influenced by the basicity properties and the 
catalyst stability. In addition, the doped catalysts may serve as a new catalyst 
system for the SCWG for hydrogen production. 
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sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 

PENGEGASAN BERMANGKIN BIOJISIM PELEPAH KELAPA SAWIT 
DALAM AIR SUPERGENTING BAGI PENGHASILAN HIDROGEN 

MENGGUNAKAN MANGKIN MAGNESIUM OKSIDA YANG TERSOKONG 
DAN TERDOP 

 
  

Oleh 
 
 

MOHD SUFRI BIN MASTULI 
 
 

Ogos 2019 
 
 

Pengerusi :   Profesor Taufiq-Yap Yun Hin, PhD 
Fakulti  :   Sains 
 
 
Penggunaan hidrogen sebagai pembawa tenaga untuk sektor pengangkutan 
dan kemudahan tenaga lain boleh mengurangkan kebergantungan kepada 
bahan bakar fosil konvensional dan memenuhi kehendak tenaga yang semakin 
meningkat. Pembakaran hidrogen dalam sel bahan api kenderaan hanya 
menghasilkan air sebagai produk sampingan dengan gas rumah hijau yang 
kosong yang mana tidak akan menyebabkan pemanasan global. Penghasilan 
hidrogen daripada biojisim merupakan satu daripada matlamat utama dalam 
program pembangunan tenaga boleh diperbaharui dan lestari. Pelbagai 
teknologi telah dibangunkan untuk menukarkan biojisim kepada hidrogen mudah 
bakar. Dalam kajian ini, pengegasan super genting (SCWG) telah digunakan 
untuk menukar biojisim pelepah kelapa sawit kepada syngas kaya-H2. Dua siri 
mangkin yang dinamakan magnesium okside (MgO) yang tersokong dan terdop 
telah disintesis dan dicirikan sebelum memangkinkan tindak balas SCWG bagi 
meningkatkan total H2 yang dihasilkan. Mangkin logam bukan murni 
berpenyokong seperti 20NiO/MgO, 20CuO/MgO and 20ZnO/MgO telah 
disintesis menggunakan kaedah pengisitepuan. Didapati mangkin 20ZnO/MgO 
menghasilkan H2 yang tertinggi walaupun ianya mempunyai luas permukaan 
yang terkecil. Faktor-faktor lain seperti serakan, sifat bes dan kekuatan 
memainkan peranan penting untuk prestasi pemangkinan yang tinggi. Adalah 
dipercayai juga bahawa kestabilan mangkin boleh dipertingkatkan melalui 
pengedopan logam aktif ke dalam struktur kritstal mangkin MgO tersebut. Oleh 
yang demikian mangkin Ni terdop MgO (Mg1-xNixO) dan mangkin Zn terdop MgO 
(Mg1-xZnxO) telah disentesis menggunakan kaedah pembakaran 
penswarambatan. Menariknya, kaedah penapisan Rietveld menunjukkan 
pengecutan sel untuk mangkin Ni terdop MgO dan perkembangan sel untuk 
mangkin Zn terdop MgO, dengan pertambahan kandungan logam. Ini 
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bermaksud saiz kristal, luas permukaan, keliangan dan sifat bes adalah 
terkesan. Hubung kait antara prestasi pemangkinan dan sifat-sifat mangkin 
untuk mangkin MgO yang tersolong dan terdop turut dikaji. Mangkin yang terdop 
mempunyai luas permukaan yang lebih besar yang boleh disusun mengikut 
urutan of Mg0.80Ni0.20O (67.9 m2 g-1) > Mg0.80Zn0.20O (36.3 m2 g-1) > 20NiO/MgO 
(30.1 m2 g-1) > 20ZnO/MgO (13.1 m2 g-1). Tidak kira tersokong atau terdop, 
mangkin berasaskan Ni biasanya mempunyai luas permukaan lebih besar 
berbanding mangkin berasaskan Zn. Adalah di luar jangkaan apabila mangkin 
berasaskan Zn dengan luas permukaan lebih kecil untuk SCWG menghasilkan 
H2 lebih tinggi daripada biojisim OPF. Apabila dibandingkan dengan tindak balas 
tanpa mangkin, penghasilan H2 meningkat sebanyak 187.2% untuk 20NiO/MgO, 
269.0% untuk 20ZnO/MgO, 361.7% untuk Mg0.80Ni0.20O, dan 438.1% untuk 
Mg0.80Zn0.20O. Mangkin Mg0.80Ni0.20O menghasilkan H2 yang paling tinggi kerana 
ia mempunyai tapak bes yang lebih banyak; lebih kurang dua puluh kali ganda 
lebih tinggi daripada mangkin 20ZnO/MgO. Mg0.80Ni0.20O juga telah terbukti 
sebagai mangkin paling stabil, seperti yang disahkan oleh keputusan 
spektroskopi fotoelektron sinar-X (XPS). Daripada kajian ini dapat disimpulkan 
bahawa prestasi pemangkinan oleh mangkin yang telah disintesis bukan sahaja 
bergantung kepada luas permukaan spesifik, tetapi juga dipengaruhi oleh 
bilangan tapak bes dan kestabilan mangkin.. Oleh yang demikian, mangkin 
terdop boleh menjadi sistem mangkin baharu untuk tindak balas SCWG. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of research 

1.1.1 Current global energy outlook 

According to International Energy Outlook 2018 that reported by the U.S. Energy 
Information Administration (www.eia.gov), the energy consumption by the non-
OECD (Organization for Economic Co-operation and Development) countries 
began to exceed the OECD countries’ consumption started in 2007 with the 
value of 241 quadrillion Btu (British thermal unit) and this trend is projected to 
increase up to 739 quadrillion Btu in 2040. In 2017, the energy consumption by 
the non-OECD countries was 353 quadrillion Btu as compared to 245 quadrillion 
Btu for the OECD countries. Figure 1.1 (a) shows the energy consumption and 
energy projection for the non-OECD countries from 1990 until 2040, in which 
Asia is projected to have the largest energy consumption. The reasons for this 
significant increment are due to the population and economic growths, as well 
as the fast progress in the service and manufacturing sectors, particularly for the 
developing countries to achieve sophisticated living styles. Therefore, all the 
energy sources either non-renewable or renewable, except the coal, are 
projected to increase in term of consumption as shown in Figure 1.1 (b).  
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(a) 

 
(b) 

 
Figure 1.1 : Energy consumption and projection for (a) the non-OECD 
countries and (b) the energy sources  
(Source: International Energy Outlook 2018) 
  
 
For the renewable energy, it can be harvested from various types of natural 
resources such as solar, wind, tidal, geothermal, hydrothermal and biomass. 
These renewable resources can be produced both clean and green fuels that 
environmentally tolerable to sustain the world energy demands. Based on the 
Annual Energy Outlook 2019 (www.eia.gov), the relationship between energy 
consumption and energy projection in term of energy sources, application 
sectors and CO2 emission can be summarized as in Figure 1.2.  
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(c) 

 
Figure 1.2 : Energy consumption and energy projection by (a) energy 
sources, (b) application sectors and (c) CO2 emission by the sectors 
(Source: Annual Energy Outlook 2019) 

 
 

The utilization of non-renewable energy sources is responsible for the global 
warming and climate change, which associated with the oscillating of fuel prices 
and uncertainties of fuel reserves, the energy paradigm is shifted from the non-
renewable to the renewable. Interestingly, the combination between non-
renewable and renewable energies can reduce the CO2 emission from all the 
sectors with the transportation is expected to be consistent as the major 
contributor of CO2 as a greenhouse gas that promoting the global warming. 
Therefore, hydrogen gas (H2) that derived from the renewable resource has 
gained a great attention as energy carrier for the transportation sector due to the 
success of fuel cell technology (Dodds et al., 2015). 

1.1.2 Hydrogen as energy carrier 

Hydrogen is the simplest, lightest and most abundant element on earth. It 
consists only one proton and one electron. The atomic number and atomic 
weight of hydrogen are 1 and 1.008. Its monoatomic form (H) is constituted 
approximately 75% the mass of the universe. At standard temperature and 
pressure, it appears as diatomic gas molecule (H2), which is non-metallic, 
colorless, tasteless, odorless and also non-toxic, but highly combustible. The H2 
can be used as energy storage and energy carrier. However, it does not exist in 
nature because it can easily escape from the earth’s gravity than other heavier 
gases. The H2 can be produced from covalent compounds such as water and 
hydrocarbons. The first artificial hydrogen gas was discovered by Robert Boyle 
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in 1671 after reacted the iron filings with diluted acid. In 1766, Henry Cavendish 
recognized that gas as a discrete substance and called it as an inflammable air 
because it burned when ignited and also produced water after the ignition as 
reported by him in 1781. Later in 1783, Antoine Lavoisier named the constituent 
element as hydrogen (from the Greek: hydro is water and genes is creator, thus; 
hydrogen is water creator) after he successfully reproduced the Cavendish’s 
experiment that water is produced when hydrogen is burned. Hydrogen gas (H2) 
can be used in a broad range of applications such as for ammonia and fertilizer 
production, petroleum refining, shielding gas for welding, hydrogenation agent 
for chemical reaction, rotor coolant in electrical generator, co-reactant for 
chemical, petrochemical and pharmaceutical industries, electronic 
manufacturing, energy storage and power generation, and many others. Besides 
that, the H2 can be combusted in a fuel cell to generate electricity, power and 
heat. Figure 1.3 illustrate the production of electricity from the fuel cell 
technology.  

 
Figure 1.3 : Electricity production from fuel cell technology using 
hydrogen gas (Dodds et al., 2015) 
 
 
The H2 can be produced from various domestic resources, from non-renewable 
such as fossil fuel, natural gas, nuclear and coal, until renewable likes solar, 
wind, hydrothermal and geothermal. The technology and energy density related 
the hydrogen gas is given in Figure 1.4. Presently, worldwide research is 
focusing on the production of hydrogen from the biomass because it is expected 
to become a major source of energy and to play an important role in economic 
development.  

© C
OPYRIG

HT U
PM



 
6 

 
(a) 

 
(b) 

 
Figure 1.4 : (a) Technologies for hydrogen production and (b) comparison 
of energy densities (Corbo, 2011)   
 
 
1.1.3 Potential of oil palm biomass for hydrogen production  

Oil palm (Elaeis guineensis) is originated from the South Africa and it grows at 
all tropical areas of the world. The oil palm has become as an important 
agricultural crop to many Southeast Asian countries including Malaysia. In 1870, 
it was first introduced to Malaysia as an ornamental plant. Currently, Malaysia is 
ranked second after Indonesia as the world’s producer and exporter of palm oil. 

Energy density (MJ/kg) 
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The Malaysian palm oil industry has grown significantly over many years in 
which the palm oil production has increased from 2.5 million tonnes in 1980 to 
21.0 million tonnes in 2017 (Onoja et al., 2018). Every year Malaysia alone 
produced more than 30% of the total world palm oil production. Figure 1.5 shows 
the Malaysian palm oil production for three consecutive years. It shows the 
sustainability of palm oil production in Malaysia. The statistics related to 
Malaysian palm oil industry can be obtained from the website of Malaysian Palm 
Oil Council (www.mpoc.org.my).  

 
 
Figure 1.5 : Malaysia palm oil production from 2015 to 2017 (source: 
www.mpoc.org.my) 
 
 
Besides producing the palm oil, Malaysia also produces a large quantity of oil 
palm biomass every year. The palm oil only forms about 10% of the whole oil 
palm tree, while the other 90% remains as the biomass (Basiron, 2007). 
Basically, the oil palm tree is a single-stemmed and it can grow up to 20 m tall. 
The oil palm fruits are reddish in colored and grow in large bunches, each 
weighing at about 10 – 40 kg with up to 200 individual fruits. The fruit comprises 
a single seed (kernel) and surrounded by the soft pulp (mesocarp). Oil palm 
fruits are usually harvested after 3 years from planting. Maximum yield is 
achieved in the 12 – 14th years and then continuously declining until the end of 
the 25th year. As mentioned, the Malaysian palm oil industry produces a large 
quantity of oil palm biomass including trunk, frond, empty fruit bunches (EFB), 
mesocarp fiber, kernel shell and palm oil mill effluent (POME) from the fruit 
harvesting and oil extraction processing. The oil palm biomasses are shown in 
Figure 1.6 and their chemical composition are given in Table 1.1. 
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Figure 1.6 : Oil palm biomasses (Onoja et al., 2018) 
 
 
Table 1.1 : Chemical composition of oil palm biomass 

 
Biomass Cellulose 

(wt.%) 
Hemicellulose 

(wt.%) 
Lignin 
(wt.%) 

Reference 

EFB 23.7 21.6 29.2 (Samiran et al., 
2015) 

OPF 40.0 30.8 29.5 (Kristiani et al., 
2013) 

Trunk 34.4 23.9 35.9 (Abnisa et al., 2013) 
Shell 27.7 21.6 44.0 (Abnisa et al., 2011) 
Fiber 34.5 31.8 25.7 (Koba & Ishizaki, 

1990) 
 

 
Therefore, there is a greater potential to convert the oil palm biomass into value-
added products and renewable energy sources. The biomass-derived energy is 
one of the goals for global renewable and sustainable energy development 
program (Hosseini & Wahid, 2016). Although the biomass is categorized as a 
renewable resource, the direct use of the biomass for energy applications is not 
convenient due its low energy density (Lu et al., 2014). The biomass should be 
converted into liquid or gaseous fuels, such as hydrogen gas (H2). Currently, the 
main interest is the production of H2 from the oil palm biomass. In a particular, 
the oil palm frond (OPF) is the largest amount of palm solid residue as compared 
to other oil palm biomasses, that is abundantly available at oil palm plantation 
(Hosseini et al., 2015). Moreover, the OPF biomass contained the highest 
amount of cellulose and hemicellulose, and the lowest amount of lignin, which 
presents a great potential to be employed as a feedstock for hydrogen 
production (Kelly-Yong et al., 2007; Mohammed et al., 2011).  
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The H2 derived from the biomass can be considered as a clean fuel because the 
combustion of hydrogen in a fuel cell produces only water as its by-product, 
unlike the fossil fuels that emit greenhouse gases and promoting global warming 
(Guo et al., 2010). It is expected to take a significant role in future energy 
demand due to the raw material availability. The Malaysian Government has 
identified the oil palm biomass as the biggest resource that can be easily 
developed, thus having the greatest potential for bringing renewable energy into 
the mainstream energy supply. Figure 1.7 illustrates the Malaysian roadmap for 
production of hydrogen from the biomass until 2030 (Mohammed et al., 2011). 
This could make Malaysia to be one of the major contributors of renewable 
energy in the world. As such, various advanced technologies have been 
developed for the conversion of biomass into combustible hydrogen (Pereira et 
al., 2012; Puig-Arnavat et al., 2010; Sansaniwal et al., 2017). 

 
 

Figure 1.7 : Hydrogen roadmap for Malaysia (Mohammed et al., 2011) 
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1.2 Problem statements 

Oil palm is one of the major economic crops in many Southeast Asian countries 
including Malaysia (Kelly-Yong et al., 2007). The Malaysian palm oil industry has 
grown tremendously for many years to become a major producer and exporter 
for the world palm oil production. Besides producing palm oil, Malaysia also 
generates a large amount of oil palm biomass such as frond, trunk, empty fruit 
bunches (EFB), mesocarp fiber, kernel shell and palm oil mill effluent (POME), 
that can be obtained from the plantation, fruit harvesting and oil extraction 
activities (Mohammed et al., 2011). The commercial applications of the oil palm 
biomass are very limited. The kernel shell and mesocarp fiber are usually 
combusted in the boiler to produce steam, heat and electricity for the mill 
operations. The empty fruit bunches, which not suitable to be combusted due to 
its high moisture content, are burned in incinerators and releases harmful gases. 
Meanwhile, the oil palm trunk and frond are still under-utilized and abundantly 
available at oil palm plantation. It is worthy to mention that the oil palm frond 
(OPF) biomass is not only the largest quantity among the oil palm biomass 
(Hosseini et al., 2015), but also contained the highest amount of cellulose and 
hemicellulose with the lowest amount of lignin (Hosseini & Wahid, 2016), which 
presents a great potential to be used as a feedstock for production of renewable 
hydrogen gas. 

Thermochemical process such as gasification is widely used to produce gas 
from the biomass (Schiefelbein, 1989; Vick, 1981). The biomass gasification will 
produce a mixture of combustible gas, mainly composed of hydrogen (H2), 
carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) with different 
ratios depending on the gasification operating parameters. The gas mixture also 
known as a syngas (synthesis gas). Small quantities of liquid oil, tar and char 
also can be formed as the gasification products. Conventionally, the gasification 
is carried out at reaction temperature of above 700 °C with O2, CO2, air and 
steam or their mixtures added into the gasifier as the gasifying medium to allow 
the partial oxidation and reforming the biomass (Sutton et al., 2001). The 
biomass that contained higher amount of moisture needs to be dried before the 
gasification processes in order to obtain higher conversion efficiencies, which is 
not economical for industries. Besides, the problems associated with the quality 
of gas product due to tar and char impurities are the main challenges for the 
gasification technology. The present of these impurities in the syngas can cause 
blockage and corrosion of the reactor as well as reduce the overall efficiency of 
the gas yield. Several attempts have been carried out to reduce the tar and char 
contents in the gas products (Rapagna et al., 1998; Tomishige et al., 2004; Wei 
et al., 2007). Catalysts are widely used to improve the quality of the syngas and 
to enhance the production of H2-rich gas from biomass with a tar-free and a char-
free of products. For examples, naturally occurring catalysts (dolomite and 
olivine), alkali metals (KOH, K2CO3, Na2CO3, CaCO3, CsCO3, KCl, ZnCl2 and 
NaCl) and nickel-based catalysts.  © C
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As an alternative, the wet biomass can be gasified in water at supercritical 
condition (T ≥ 374 °C and P ≥ 22.1 MPa) without any costly drying pre-treatment 
due to the supercritical water is used as the reaction medium to produce the 
hydrogen gas (Guo et al., 2010). This technology is called “supercritical water 
gasification” (SCWG). Most of organic compounds can be dissolved in 
supercritical water leading to high conversion of biomass into gas product 
(Elliott, 2008). Additionally, the H2 is produced at high pressure, thus, requiring 
less energy to pressurize the gas product in a storage tank (Abdoulmoumine et 
al., 2015). Tar and char problems also can be suppressed during the SCWG of 
biomass (Shen & Yoshikawa, 2013). Nonetheless, the gas product from the 
SCWG of biomass is not limited to H2 alone as it generates other carbon gases 
with varied ratios (Matsumura et al., 1997; Xiaodong et al., 1996). Therefore, the 
addition of catalyst during the SCWG process is vital to alleviate the H2 yield and 
to suppress the formation of other gases. Various types of biomass have been 
used in SCWG for production of hydrogen (Albarelli et al., 2015; Cengiz et al., 
2016; Nanda et al., 2017; Rana et al., 2018). However, the mechanism of the 
SCWG of biomass is complicated due to its complex chemical structure that 
heavily cross-linked between the cellulose, hemicellulose and lignin. Therefore, 
many researchers are investigating the SCWG of model compound of the 
biomass such as cellulose, glucose, hemicellulose, xylan and lignin (Kang et al., 
2016a; Tülay et al., 2016; Yoshida & Matsumura, 2001). Regardless of model 
compounds and real biomass, the yield and composition of the gas products are 
depending on the reactor design, choice of catalyst and various SCWG 
operating parameters such as temperature, pressure, feedstock concentration 
and reaction time (Furimsky, 1998; Guo et al., 2010; Leung et al., 2004; Sutton 
et al., 2001). For the non-catalytic SCWG, high gas yield can be obtained at 
higher temperature and pressure with longer reaction time from the diluted 
feedstock. However, the composition of the produced gas can be varied and the 
production of H2-rich syngas is only possible at harsh conditions. Therefore, the 
addition of catalysts during the SCWG process is highly required, not only to 
reduce the severity of the non-catalytic SCWG operating conditions, but also to 
shift the distribution of the gas composition to H2-rich syngas by the aid of water-
gas shift reaction (Ahmad et al., 2016; Correa & Kruse, 2018; Prabhansu et al., 
2015; Sansaniwal et al., 2017).  

Many types of catalysts either homogeneous or heterogeneous have been 
reported in literatures for the catalytic SCWG of both model compounds and real 
biomass (Adamu et al., 2017; Ge et al., 2014; Li et al., 2018; Sheikhdavoodi et 
al., 2015; Weijin et al., 2017). Recently, the nickel based heterogeneous 
catalysts that supported on various types of activated carbons and metal oxides 
and also promoted by a wide range of transition metals are used in the SCWG 
reactions to maximize the H2 yield in the gas product (Barati et al., 2014; Norouzi 
et al., 2017; Rashidi & Tavasoli, 2015; Tavasoli et al., 2016). The added catalysts 
should be enhancing the H2 yield and suppressing the carbon-based gases. It 
means that the catalysts are not only active for H2 formation, but also selective 
to H2, hence, the H2-rich gas can be produced from the biomass via SCWG 
reaction. From the literature survey, most of the researchers are focused on the 
activity and selectivity of the commercialized and synthesized of supported and 
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promoted nickel-based catalysts for the SCWG (Pooya et al., 2011; Chan & 
Tanksale, 2014a; Correa & Kruse, 2018; Hosseini & Wahid, 2016; Reddy et al., 
2014). Only a few of them are reported the stability (Furusawa et al., 2007; Li et 
al., 2018; Zhang et al., 2012) of the catalysts and none research groups are 
studied the potential of doped nickel-based catalysts, which are expectedly 
highly stable because more interaction between the nickel and the support, also 
reduce the sintering and dissolution of the nickel in supercritical water, that 
beneficial for the catalytic performances. 

1.3 Scope of research 

In this research, the MgO supported Ni, Cu and Zn oxides catalysts were 
synthesized using an impregnation method. Meanwhile, both Ni doped MgO 
catalysts (Mg1-xNixO: x = 0.05, 0.10, 0.15, 0.20) and Zn doped MgO catalysts 
(Mg1-xZnxO: x = 0.05, 0.10, 0.15, 0.20) were synthesized using the self-
propagating combustion method. The thermal profiles of the obtained precursors 
of all the catalysts were studied using simultaneous thermogravimetric analyzer 
(STA). From the STA findings, all the precursors were calcined in a furnace 
under air at 600 °C for 6 h. The phase of all the calcined catalysts was confirmed 
using X-Ray diffractometer (XRD) and the XRD data for the doped catalysts 
were further analyzed using Rietveld refinement method to study their crystal 
structures. The morphologies of all the catalysts were observed via a field 
emission scanning electron microscope (FESEM) and a high-resolution 
transmission electron microscope (HRTEM). Energy X-Ray dispersive (EDX) 
that integrated with the FESEM also used to measure the elemental 
compositions for each catalyst. The isotherm, surface area and porosity 
distribution for all the catalysts were measured using a BELSORP-mini II 
instrument from BEL Japan Inc. The isotherms were analyzed using Brunauer-
Emmett-Teller (BET) and the Barrett-Joyner-Halenda (BJH) methods. The 
strength and density of basicity properties of each catalyst were analyzed using 
a temperature programmed desorption of carbon dioxide (TPD-CO2) analyzer. 
Last but not least, the chemical environments in all the synthesized catalysts 
were carried out using X-Ray Photoelectron Spectroscopy (XPS) measurement. 
All the synthesized catalysts were characterized for the SCWG using OPF 
biomass. The gas products that produced from the non-catalytic and catalytic 
SCWG were analyzed using gas chromatography (GC). The yield and 
composition of the gas products were calculated and compared. The relationship 
between catalyst properties and catalytic performances during the SCWG 
reactions were discussed in detail. 

1.4 Significance of research 

In Malaysia, the production of renewable energy from the biomass is still low 
even though a huge amount of biomass is generated especially from the oil palm 
industry. The is due to a lot of challenges including the availability of 
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economically viable technology, sophisticated and sustainable natural resources 
management, and proper market strategies under competitive energy markets. 
Amidst these challenges, the development and implementation of suitable 
policies by the local-policy makers are still the single and most important factor 
that can determine a successful utilization of renewable energy in a particular 
country. Therefore, further efforts, researches and strategic plans must be 
developed and implemented correctly. Ultimately, the race to the end line must 
begin with the proof of biomass ability to sustain in a long run as a sustainable 
and reliable source of renewable energy.  

The successful completion of this research will enhance the understanding on 
the catalytic SCWG of biomass. Tailoring the catalysts for the SCWG with larger 
surface area and higher catalytic sites is necessary for improving the activity, 
selectivity and stability of the catalysts and making the SCWG as an 
economically viable gasification process. In addition, the successful of 
converting the oil palm frond biomass to syngas with high H2 content through the 
SCWG assisted by supported and doped of MgO catalysts will make the 
abundant of oil palm biomass in Malaysia turns to some value-added products. 
As the Malaysian palm oil industry produces a huge quantity of oil palm biomass 
every year, there is a greater interest in the utilization of the oil palm biomass for 
production of hydrogen gas.  

This research is aligned with inspiration of the Ministry of Energy, Science, 
Technology, Environment and Climate Change (MESTECC) and the Ministry of 
Education (MOE) of Malaysia as the targeted national research area for the 
nation's advancement in knowledge based economy. It also will contribute to the 
nation's aspiration to increase the ratio of Research Scientists and Engineers 
(RSE population) according to the 11th Malaysia Plan for the nation's 
development (2015 – 2020). The Malaysian Government is started to promote 
the utilization of renewable energy since year 1999 and recognized it as the 5th 
fuel for the country. Hydrogen energy is identified as most viable long term of 
renewable energy and alternative to the fossil fuel.  

1.5 Objectives of research   

The main aim of this research is to synthesize new catalysts for supercritical 
water gasification of biomass for hydrogen production. The catalytic 
performances between new catalysts (called doped catalysts) and conventional 
catalysts (called supported catalysts) are compared in catalyzing the SCWG of 
OPF biomass to produce H2-rich syngas. In order to achieve this aim, the 
following objectives are listed. 
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a) To synthesize and characterize the NiO, CuO and ZnO supported MgO 
catalysts. 

b) To synthesize and characterize the Ni doped MgO catalysts and Zn 
doped MgO catalysts.  

c) To study the catalytic performance of the synthesized catalysts for the 
SCWG of OPF biomass.  

d) To investigate the correlation between the catalytic performance and 
properties of both supported and doped MgO catalysts in SCWG 
reactions.   
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