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Sonochemical treatment on V 205 and sonochemical synthesis were employed to 

produce VOP04·2H20 both using ultrasound irradiation. Intercalation-exfoliation-

reduction using different mixture of solvent as reducing agent to produce 

VOHP04·0.5H20 and mechanochemical treatment were employed on both 

VOP04·2H20 and VOHP04·0.5H20. Besides, the effects of Bi dopant addition also 

have been studied. The catalysts were synthesised by calcining the precursor, 

VOHP04·0.5H20 in a flow of n-butane in air (0.75% n-butane in air) for 1 8  h at 733 

K. The physico-chemical properties of the catalysts were characterised by using X-

ray diffraction (XRD), BET surface area measurement, redox titration, inductively 

coupled plasma-atomic emission spectroscope (ICP-AES), scanning electron 

microscope (SEM), transmission electron microscope (TEM) and temperature 

programmed reduction in H2 flow (H2-TPR). The catalytic properties of the selected 

catalysts were carried out by using temperature programmed reaction (TPRn) and on-

line microreactor system. The experimental results indicated that V 205 that 

undergoes ultrasound irradiation for 30 minutes showed an extremely high n-butane 

conversion (94%) due to its morphology which different from its bulk structures and 
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with the present of kinetically reactive oxygen species. Moreover, nanostructured 

YPO catalyst produced using sonochemical treated Y 205 for 30 min as starting 

material also shows drastic increment in n-butane conversion (9%) compared to the 

reference catalyst synthesised via organic route. YOP04·2H20 produced through 

sonochemical synthesis technique drastically reduced the synthesis time to only 15  

min compared to  the conventional reflux method that consumed the synthesis time 

up to 24 h. The YPO catalyst produced which undergo sonochemical synthesis for 

1 20 min (YPDS 1 20) shows a drastic increment in n-butane conversion (36%) due to 

its diameters and thickness of platelets which are smaller thus directly increase the 

active site of the catalyst for oxidation of n-butane. Furthermore, YPDS 1 20 catalyst 

contains more y4+ percentage which directly lead to the increment of the total 

amount of active and mobile oxygen attached to y4+ phase (0'-y4+ pair). YPO 

catalyst produced through intercalation-exfoliation-reduction technique using 

mixture of 2-butanol and ethanol as reducing agent while doping I % bismuth as 

promoter, IERC(2Bu-Et)RB i l  gave the highest maleic anhydride (MA) selectivity 

due to reactive 0
2
- species released from the additional crystall ine y5+ phase formed 

(02-_y5+ pair) at relative lower temperature. Mechanochemical treated YPO catalyst, 

YPDM30 shows both reduction peaks occurred at lower temperature compared to the 

reference catalyst with a suitable oxygen species ratio from y5+N4+ of around 0.25. 

The lattice oxygen species in the y5+ and y4+ phases which are more reactive, mobile 

and can be removed easily shown to be the main contribution for YPDM30 to gave 

high n-butane conversion. A high amount of active oxygen released from y4+ phase 

(0-_y4+ pair) was shown to be the main contribution for mechanochemi cal treated 

bismuth doped YPO catalyst, YPDBiMill to be the most active catalyst for n-butane 

oxidation. 
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Rawatan sonokimia pada V 205 dan sintesis sonokimia untuk menghasilkan 

VOP04'2H20 dimana kedua-duanya menggunakan pemancaran gelombang 

ultragema. Interkelasi-exfoliasi-penurunan menggunakan campuran pelarut berbeza 

sebagai agen penurunan untuk menghasilkan VOHP04·O.5H20 dan rawatan 

mekanokimia juga diaplikasikan pada VOP04'2H20 dan VOHP04·0.5H20. Selain 

itu, kesan-kesan dari Bi sebagai dopan juga tumt dikaji.  Mangkin-mangkin telah 

disintesis dengan mengkalsinkan prekurser, VOHP04·0.5H20 dalam aliran n-butana 

selebihnya udara (0.75 % n-butana dalam udara) selama 18 jam pada suhu 733 K. 

Sifat-sifat fizikal-kimia mangkin telah dicirikan dengan menggunakan pembelauan 

sinar-X (XRD), pengukuran luas permukaan BET, penitratan redox, plasma 

gandingan teraruh-spektoskop pancaran atom (ICP-AES), mikroskop elektron 

imbasan (SEM), mikroskop elektron pemancaran (TEM) dan penurunan suhu 

terprogram dalam aliran H2 (H2-TPR). Sifat pemangkinan untuk mangkin terpilih 

telah dijalankan dengan menggunakan tindak balas suhu terprogram (TPRn) dan 

sistem rektor mikro on-line. Keputusan-keputusan eksperimen telah menunjukkan 

bahawa V 205 yang telah mengalami pancaran gel om bang ultragema selama 30 min 

memberi penukaran n-butana yang tinggi (94%) disebabkan ia mempunyai morfologi 
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yang berbeza daripada struktur asalnya dan ia juga memiliki kinetik oksigen spesies 

yang reaktif. Tambahan pula, struktur nanG mangkin YPO yang dihasilkan 

menggunakan Y 20S yang dirawat dengan sonokimia selama 30 min sebagai bahan 

pemulaan juga menunjukkan peningkatan yang drastik pada penukaran n-butana 

(9%) berbanding dengan mangkin rujukan yang telah disintesiskan melalui Ialuan 

organik. YOP04·2H20 yang dihasilkan melalui cara sistesis sonokimia 

mengurangkan masa sistesis secara mendadak kepada 15 min berbanding dengan 

cara refluks secara konvensional yang memerlukan masa sebanyak 24 h. Mangkin 

YPO yang dihasilkan dengan cara sintesis sonokimia selama 120 min (YPOS 120) 

menunjukkan peningkatan penukaran n-butana secara mendadak (36%)- disebabkan 

diameter dan ketebalan kepingannya yang kecil yang secara langsungnya 

meningkatkan tapak aktif mangkin bagi pengoksidaan n-butana. Oi samping itu, 

mangkin YPDS 120 mempunyai lebihan peratus y4+ yang secara langsungnya 

mengakibatkan peningkatan jumlah kuantiti oksigen yang aktif dan bergerak yang 

terikat dengan fasa y4+ (pasangan 0--y4+). Mangkin YPO yang dihasilkan melalui 

kaedah interkelasi-exfoliasi-penurunan menggunakan campuran 2-butanoI dan etanol 

sebagai agen penurunan disamping didop 1 % bismuth sebagai promoter, IERC(2Bu­

Et)RBi 1 memberi selektiviti maleik anhidrida yang tertinggi disebabkan spesies 02-

yang reaktif yang dibebaskan dari tam bah an kristal yS+ yang terbentuk (pasangan 02-

-y
5+) pada suhu relatif yang lebih rendah. Mangkin YPO yang dirawat dengan 

mekanokimia, YPOM30 menunjukkan kedua-dua puncak penurunan wujud pada 

suhu yang lebih rendah berbanding mangkin rujukan dengan nisbah spesies oksigen 

dari y5+/y4+ yang bersesuaian iaitu sekitar 0.25. Kikisi spesies oksigen dari fasa y5+ 

dan y4+ yang lebih reaktif dan mobil mampu dipindahkan dengan lebih senang 

menjadi sumbangan utama bagi YPDM30 untuk memperoleh penukaran n-butana 
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yang tinggi, Sejumlah oksigen aktif yang tinggi dibebaskan dari fasa v4+ (pasangan 

0'-y4+) menjadi sumbangan utama bagi mangkin YPO yang dirawat dengan 

mekanokimia dan didop dengan bismuth, YPDBiMill sebagai mangkin yang paling 

aktif untuk pengoksidaan n-butana, 
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CHAPTERl 

INTRODUCTION 

1.1 General Introduction to Catalysis 

Berzelius in 1836 introduced the term 'catalysis' (Bond, 1987), where he derived it 

from the Greek words kala, which stands for down and lysein, which means to split 

or break. Later in 1895, Ostwald was the first to write down a definition of a catalyst: 

'"'"A catalyst is a substance that changes the rate of a chemical reaction without itself 

appearing in the products". So, it is important to note that a catalyst does not 

influence the thermodynamic equilibrium of reactants and products. Therefore, the 

current definition is slightly better, though close to Ostwald's description: '"'A 

catalyst is a substance that increases the rate of approach to thermodynamic 

equilibrium of a chemical reaction without being substantially consumed". Catalysis 

is the phenomenon of a catalyst in action (Gates, 1992). 

As befits a committee a longer, although more preCIse, description has been 

suggested by the UK Science Research Council (Hartley, 1985): A system is said to 

be '"'catalyzed" when the rate of change from state I to state II, is increased by contact 

with a specific material agent which is not a component of the system in either state 

and when the magnitude of the effect is such as to correspond to one or more of the 

following descriptions: 



(i) Essentially, measurable change from state I to state II occurs only in 

the presence of the agent. 

(ii) A similarly enhanced rate of change is found with the same sample of 

agent in repeated experiments using fresh reactants.  

(iii) The quantity of matter changed is many times greater than that of the 

agent. 

1.2 The Importance of Catalysis 

Catalysts are among the most important technological materials, being used in the 

manufacture of chemicals, fuels, foods, clothing, pharmaceuticals, and materials such 

as organic polymers (Gates, 1992). The value of the goods manufactured in the 

United States in processes that at some stage involve catalysis is about $ 1  trillion 

annually; the catalysts used in these processes cost only a few tenths of a percent of 

the value of the products. 

Today, almost 70% of all chemicals that are produced have been in contact with a 

catalyst somewhere in their synthesis process (Matthijs, 1999). This number stresses 

the importance of the role of catalysis in the chemical industry. Without a catalyst, 

processes are less clean and sometimes impossible to perform. In principal, catalysis 

can be used to abate environmental pollution in two ways: 

(i) for cleaning of outgoing waste gases or water (end-of-pipe catalysis), 
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(ii) for improvement or replacement of existing processes in such a way 

that less harmful waste is produced (process-incorporated catalysis). 

With regard to (i), two well known examples are the three-way catalyst, which is 

used to reduce the levels of CO, NOx and VOC's in automotive exhaust gases, and 

the Claus catalyst utilised to convert sulphur (H2S) from industrial exhaust gases. 

The subject of this report is closely related to catalysis of type (ii), i. e. improvement 

of an existing process to achieve a higher product yield, and thus fewer byproducts. 

It is an important for the production of bulk and fine chemicals as well as minimise 

trace pollutants and contaminants (Hodnett, 2000). 

1.3 Types of Catalysts 

Generally, catalytic reactions can be divided into two major types, such as 

homogeneous and heterogeneous (Thomas and Thomas, 1 997). 

1.3.1 Homogeneous Catalyst 

When the catalyst is of the same phase as the reactants and no phase boundary exists, 

we speak of homogeneous catalysis. This may take place either (Bond, 1 987): 

(i) In the gas phase, as, for example, when nitrogen oxide catalyses the 

oxidation of SUlphur dioxide; or 
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