UNIVERSITI PUTRA MALAYSIA

MODIFICATION OF MICRO- AND NANO-STRUCTURES OF VANADIUM OXIDE-BASED CATALYST FOR PARTIAL OXIDATION OF n-BUTANE

WONG YEE CHING

FS 2009 26
MODIFICATION OF MICRO- AND NANO-STRUCTURES OF VANADIUM OXIDE-BASED CATALYST FOR PARTIAL OXIDATION OF n-BUTANE

By

WONG YEE CHING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2009
Especially Dedicated To

My Dearest Mum & Dad
Wong Lee Min
Lim Ho

My Dear Brother
Wong Yee Seng

My Dear Sister
Wong Yee Chiek

Without their love and continued support, this thesis would not have been possible.
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

MODIFICATION OF MICRO- AND NANO-STRUCTURES OF VANADIUM OXIDE-BASED CATALYST FOR PARTIAL OXIDATION OF n-BUTANE

By

WONG YEE CHING

August 2009

Chairman: Professor Taufiq Yap Yun Hin, PhD, CChem, FRSC (UK)

Faculty: Science

Sonochemical treatment on V₂O₅ and sonochemical synthesis were employed to produce VOPO₄·2H₂O both using ultrasound irradiation. Intercalation-exfoliation-reduction using different mixture of solvent as reducing agent to produce VOHPO₄·0.5H₂O and mechanochemical treatment were employed on both VOPO₄·2H₂O and VOHPO₄·0.5H₂O. Besides, the effects of Bi dopant addition also have been studied. The catalysts were synthesised by calcining the precursor, VOHPO₄·0.5H₂O in a flow of n-butane in air (0.75% n-butane in air) for 18 h at 733 K. The physico-chemical properties of the catalysts were characterised by using X-ray diffraction (XRD), BET surface area measurement, redox titration, inductively coupled plasma-atomic emission spectroscope (ICP-AES), scanning electron microscope (SEM), transmission electron microscope (TEM) and temperature programmed reduction in H₂ flow (H₂-TPR). The catalytic properties of the selected catalysts were carried out by using temperature programmed reaction (TPRn) and on-line microreactor system. The experimental results indicated that V₂O₅ that undergoes ultrasound irradiation for 30 minutes showed an extremely high n-butane conversion (94%) due to its morphology which different from its bulk structures and
with the present of kinetically reactive oxygen species. Moreover, nanostructured VPO catalyst produced using sonochemical treated V₂O₅ for 30 min as starting material also shows drastic increment in n-butane conversion (9%) compared to the reference catalyst synthesised via organic route. VOPO₄·2H₂O produced through sonochemical synthesis technique drastically reduced the synthesis time to only 15 min compared to the conventional reflux method that consumed the synthesis time up to 24 h. The VPO catalyst produced which undergo sonochemical synthesis for 120 min (VPDS120) shows a drastic increment in n-butane conversion (36%) due to its diameters and thickness of platelets which are smaller thus directly increase the active site of the catalyst for oxidation of n-butane. Furthermore, VPDS120 catalyst contains more V⁴⁺ percentage which directly lead to the increment of the total amount of active and mobile oxygen attached to V⁴⁺ phase (O⁻-V⁴⁺ pair). VPO catalyst produced through intercalation-exfoliation-reduction technique using mixture of 2-butanol and ethanol as reducing agent while doping 1 % bismuth as promoter, IERC(2Bu-Et)RBil gave the highest maleic anhydride (MA) selectivity due to reactive O²⁻ species released from the additional crystalline V⁵⁺ phase formed (O²⁻-V⁵⁺ pair) at relative lower temperature. Mechanochemical treated VPO catalyst, VPDM30 shows both reduction peaks occurred at lower temperature compared to the reference catalyst with a suitable oxygen species ratio from V⁵⁺/V⁴⁺ of around 0.25. The lattice oxygen species in the V⁵⁺ and V⁴⁺ phases which are more reactive, mobile and can be removed easily shown to be the main contribution for VPDM30 to gave high n-butane conversion. A high amount of active oxygen released from V⁴⁺ phase (O⁻-V⁴⁺ pair) was shown to be the main contribution for mechanochemical treated bismuth doped VPO catalyst, VPDBiMill to be the most active catalyst for n-butane oxidation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODIFIKASI STRUKTUR MIKRO DAN NANO BAGI MANGKIN DASAR VANADIUM OKSIDA UNTUK PENGOKSIDAAN SEPARA n-BUTANA

Oleh

WONG YEE CHING

Ogos 2009

Pengerusi: Profesor Taufiq Yap Yun Hin, PhD, CChem, FRSC (UK)

Fakulti: Sains

Rawatan sonokimia pada V₂O₅ dan sintesis sonokimia untuk menghasilkan VOPO₄·2H₂O dimana kedua-duanya menggunakan pemancaran gelombang ultragema. Interkelasi-exfoliasi-penurunan menggunakan campuran pelarut berbeza sebagai agen penurunan untuk menghasilkan VOHPO₄·0.5H₂O dan rawatan mekanokimia juga diaplikasikan pada VOPO₄·2H₂O dan VOHPO₄·0.5H₂O. Selain itu, kesan-kesan dari Bi sebagai dopan juga turut dikaji. Mangkin-mangkin telah disintesis dengan mengkalsinkan prekurser, VOHPO₄·0.5H₂O dalam aliran n-butana selebihnya udara (0.75 % n-butana dalam udara) selama 18 jam pada suhu 733 K. Sifat-sifat fizikal-kimia mangkin telah dicirikan dengan menggunakan pembelauan sinar-X (XRD), pengukuran luas permukaan BET, penitratan redox, plasma gandingan teraruh-spektoskop pancaran atom (ICP-AES), mikroskop elektron imbasan (SEM), mikroskop elektron pemancaran (TEM) dan penurunan suhu terprogram dalam aliran H₂ (H₂-TPR). Sifat pemangkinan untuk mangkin terpilih telah dijalankan dengan menggunakan tindak balas suhu terprogram (TPRn) dan sistem rektor mikro on-line. Keputusan-keputusan eksperimen telah menunjukkan bahawa V₂O₅ yang telah mengalami pancaran gelombang ultragema selama 30 min memberi penukaran n-butana yang tinggi (94%) disebabkan ia mempunyai morfologi
yang berbeza daripada struktur asalnya dan ia juga memiliki kinetik oksigen spesies yang reaktif. Tambahan pula, struktur nano mangkin VPO yang dihasilkan menggunakan V$_2$O$_5$ yang dirawat dengan sonokimia selama 30 min sebagai bahan pemulaan juga menunjukkan peningkatan yang drastik pada penukaran n-butana (9%) berbanding dengan mangkin rujukan yang telah disintesiskan melalui laluan organik. VOPO$_4$·2H$_2$O yang dihasilkan melalui cara sintesis sonokimia mengurangkan masa sintesis secara mendadak kepada 15 min berbanding dengan cara refleks secara konvensional yang memerlukan masa sebanyak 24 h. Mangkin VPO yang dihasilkan dengan cara sintesis sonokimia selama 120 min (VPDS120) menunjukkan peningkatan penukaran n-butana secara mendadak (36%) disebabkan diameter dan ketebalan kepingannya yang kecil yang secara langsungnya meningkatkan tapak aktif mangkin bagi pengoksidaan n-butana. Di samping itu, mangkin VPDS120 mempunyai lebihan peratus V$^{4+}$ yang secara langsungnya mengakibatkkan peningkatan jumlah kuantiti oksigen yang aktif dan bergerak yang terikat dengan fasa V$^{4+}$ (pasangan O$^{-}$-V$^{4+}$). Mangkin VPO yang dihasilkan melalui kaedah interkelasi-exfoliasi-penurunan menggunakan campuran 2-butanol dan etanol sebagai agen penurunan disamping didop 1 % bismuth sebagai promoter, IERC(2Bu-Et)RBi1 memberi selektiviti maleik anhidrida yang tertinggi disebabkan spesies O$^{2-}$ yang reaktif yang dibebaskan dari tambahan kristal V$^{5+}$ yang terbentuk (pasangan O$^{2-}$-V$^{5+}$) pada suhu relatif yang lebih rendah. Mangkin VPO yang dirawat dengan mekanokimia, VPDM30 menunjukkan kedua-dua puncak penurunan wujud pada suhu yang lebih rendah berbanding mangkin rujukan dengan nisbah spesies oksigen dari V$^{5+}$/V$^{4+}$ yang bersesuaian iaitu sekitar 0.25. Kikisi spesies oksigen dari fasa V$^{5+}$ dan V$^{4+}$ yang lebih reaktif dan mobir mampu dipindahkan dengan lebih senang menjadi sumbangan utama bagi VPDM30 untuk memperoleh penukaran n-butana.
yang tinggi. Sejumlah oksigen aktif yang tinggi dibebaskan dari fasa V^{4+} (pasangan $O^- - V^{4+}$) menjadi sumberan utama bagi mangkin VPO yang dirawat dengan mekanokimia dan didop dengan bismuth, VPDBiMill sebagai mangkin yang paling aktif untuk pengoksidaan n-butana.
ACKNOWLEDGEMENTS

I would like to acknowledge my sincere appreciation to my supervisor, Prof. Dr. Taufiq Yap Yun Hin for his supervision, invaluable discussion, guidance and patient throughout the course of this work. My special thanks also dedicated to my co-supervisors, Prof. Dr. Zulkarnain Zainal and Prof. Dr. Mohd. Zobir Hussein. Their support has made this work possible.

My sincere thanks also extended to Madam Choo Chai Syam, Puan Zaidina Md. Daud and other Science Officers in the Department of Chemistry, Faculty of Science for their assistance in the characterisation works. Not to forget officers in Electron Microscopy Unit, Institute Bioscience especially Puan Nooraini Mohd. Ain and Mr. Ho for their help and advice in running SEM and TEM analysis.

I am also very grateful to Dr. Tang Wen Jiunn, Miss Nurul Suziana Nawi @ Mohamed, Mr. Teo Siow Hwa, Mr. Lee Kian Mun, colleagues and friends for their help, support and discussion during my stay in the PutraCat Laboratory, Universiti Putra Malaysia.

Most especially, I wish to thank my parent for their love, never ending support and encouragement throughout these years.

Financial support from Universiti Putra Malaysia through Graduate Research Fellowship (GRF) is gratefully acknowledged.
I certify that a Thesis Examination Committee has met on 25 August 2009 to conduct the final examination of Wong Yee Ching on his thesis entitled "Modification of Micro- and Nano-Structures of Vanadium Oxide-Based Catalyst for Partial Oxidation of n-Butane" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Tan Yen Ping, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Kamaliah Sirat, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd. Ambar Yarmo, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 September 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Taufiq Yap Yun Hin, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohd. Zobir bin Hussein, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Zulkarnain bin Zainal, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH NOOR GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 October 2009
DECLARATION

I declare that the thesis is my original work except for the quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

WONG YEE CHING

Date: 4 September 2009
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS viii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xvi
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xxii

CHAPTER

1. INTRODUCTION 1
 1.1 General Introduction to Catalysis 1
 1.2 The Importance of Catalysis 2
 1.3 Types of Catalysts 3
 1.3.1 Homogeneous Catalyst 3
 1.3.2 Heterogeneous Catalyst 4
 1.4 The Nature of the Catalytic Process 4
 1.5 Selective Oxidation 6
 1.5.1 Dehydrogenation Reactions 7
 1.5.2 Dehydrogenation and Oxygen Insertion Reactions 7
 1.5.3 Catalytic Oxidation 8
 1.6 The Influence of Nanotechnology Towards Catalysis 11

2. LITERATURE REVIEW 15
 2.1 The Production of Maleic Anhydride 15
 2.2 Uses of Maleic Anhydride 18
 2.3 Worldwide Demand 18
 2.4 Process of Oxidising n-Butane 20
 2.4.1 The Reaction 20
 2.4.2 Catalysts 21
 2.5 Vanadyl Pyrophosphate (VO)2P2O7 22
 2.6 Preparation of Vanadium Phosphorus Oxide Catalyst 23
 2.6.1 Method of Preparation of the Precursor 25
 2.6.2 Role of P/V Ratio 28
 2.6.3 Activation and Conditioning Procedure 29
 2.6.4 Role of Promoters 34
 2.7 Sonochemically Assisted Synthesis of Vanadium Phosphate Catalysts 42
 2.8 Mechanochemical Treatment and Mechanochemically Assisted Synthesis of Vanadium Phosphate Catalysts 45
 2.9 Scope and Objectives of This Thesis 49

3. CATALYSTS SYNTHESIS AND CHARACTERISATIONS 51
 3.1 Materials and Gases
3.2 Synthesis of Bulk Vanadium Phosphorus Oxide Catalysts 52
 3.2.1 Organic Route (VPOo) 52
 3.2.2 Dihydrate Route (VPD) 53
3.3 Preparation of Nanorod V₂O₅ via Sonochemical Treatment 54
3.4 Preparation of Nanostructured Vanadium Phosphorus Oxide Catalysts using Nanorod V₂O₅ via Organic Method 55
3.5 Modification on VOPO₄·2H₂O 55
 3.5.1 Mechanochemical Treatment 55
 3.5.2 Sonochemical Synthesis 56
3.6 Modification on Precursor (VOHPO₄·0.5H₂O) via Intercalation-Exfoliation-Reduction Technique 57
3.7 Preparation of Bismuth Doped Vanadium Phosphorus Oxide Catalysts 58
 3.7.1 Bismuth Metal Dopant 58
 3.7.2 Mechanochemical Treatment 59
3.8 Catalysts Characterisations 59
 3.8.1 X-Ray Diffraction (XRD) Analysis 59
 3.8.2 BET Surface Area Measurements 60
 3.8.3 Elemental Analysis 61
 3.8.4 Redox Titration 62
 3.8.5 Scanning Electron Microscope (SEM) 63
 3.8.6 Transmission Electron Microscope (TEM) 64
 3.8.7 Temperature Programmed Reduction (TPR in H₂/Ar) Analysis 65
 3.8.8 Temperature Programmed Reaction (TPRn in n-Butane/He) Analysis 65
3.9 Catalytic Evaluation 66

4. PREPARATION AND CHARACTERISATION OF SELF-ASSEMBLED NANOROD V₂O₅ BUNDLES 69
4.1 Introduction 69
4.2 Effect of Different Sonochemical Treatment Duration (in minutes) to the Physico-Chemical Properties of Nanorod V₂O₅ 70
 4.2.1 Phase Identification Using Powder XRD Technique 70
 4.2.2 BET Surface Area Measurements and Chemical Analysis 71
 4.2.3 Scanning Electron Microscope (SEM) 72
 4.2.4 Transmission Electron Microscope (TEM) 74
 4.2.5 Temperature Programmed Reduction (TPR in H₂/Ar) 77
 4.2.6 Temperature Programmed Reaction (TPRn in n-Butane/Helium) 79
 4.2.7 Catalytic Oxidation of n-Butane 81
4.3 Conclusions 84

5. PREPARATION AND CHARACTERISATION OF NANOSTRUCTURE VANADIUM PHOSPHORUS OXIDE CATALYSTS 86
5.1 Introduction 86
5.2 Effect of Different Sonochemical Treatment Duration on Nanorod V₂O₅ as Starting Material to the Physico-Chemical Properties of Nanostructured VPO Catalysts 87
5.2.1 Phase Identification Using Powder XRD Technique 87
5.2.2 BET Surface Area Measurements and Chemical Analysis 88
5.2.3 Scanning Electron Microscope (SEM) 89
5.2.4 Transmission Electron Microscope (TEM) 91
5.2.5 Temperature Programmed Reduction (TPR in H₂/Ar) 93
5.2.6 Catalytic Oxidation of n-Butane 96

5.3 Conclusions 98

6. INFLUENCE OF SONOCHEMICAL SYNTHESIS ON VOPO₄·2H₂O AND THE VPO CATALYST PRODUCED
6.1 Introduction 100
6.2 Effect of Different Sonochemical Synthesis Duration on VOPO₄·2H₂O and the Properties of VPO Catalyst
 6.2.1 Phase Identification Using Powder XRD Technique 101
 6.2.2 BET Surface Area Measurements and Chemical Analysis 103
 6.2.3 Scanning Electron Microscope (SEM) 104
 6.2.4 Transmission Electron Microscope (TEM) 108
 6.2.5 Temperature Programmed Reduction (TPR in H₂/Ar) 110
 6.2.6 Catalytic Oxidation of n-Butane 112
6.3 Conclusions 113

7. INFLUENCE OF INTECALATION-EXFOLIATION-REDUCTION TECHNIQUE TOWARDS THE PHYSICOCHEMICAL OF VPO CATALYSTS
7.1 Introduction 115
7.2 Phase Identification Using Powder XRD Technique 116
7.3 BET Surface Area Measurements and Chemical Analysis 119
7.4 Scanning Electron Microscope (SEM) 122
7.5 Transmission Electron Microscope (TEM) 123
7.6 Temperature Programmed Reduction (TPR in H₂/Ar) 124
7.7 Catalytic Oxidation of n-Butane 127
7.8 Conclusions 130

8. EFFECT OF MECHANOCHEMICAL TREATMENT ON THE PROPERTIES OF VPO CATALYSTS
8.1 Introduction 132
8.2 Influence of Different Mechanochemical Treatment Duration on VOPO₄·2H₂O and the Properties of VPO Catalysts
 8.2.1 Phase Identification Using Powder XRD Technique 133
 8.2.2 BET Surface Area Measurements and Chemical Analysis 136
 8.2.3 Scanning Electron Microscope (SEM) 137
 8.2.4 Temperature Programmed Reduction (TPR in H₂/Ar) 139
 8.2.5 Catalytic Oxidation of n-Butane 142
8.3 Influence of Mechanochemical Treatment on Bismuth Doped VPO Catalysts Precursor
 8.3.1 Phase Identification Using Powder XRD Technique 144
 8.3.2 BET Surface Area Measurements and Chemical Analysis 146
 8.3.3 Scanning Electron Microscope (SEM) 148
 8.3.4 Temperature Programmed Reduction (TPR in H₂/Ar) 150
 8.3.5 Catalytic Oxidation of n-Butane 152
8.4 Conclusions

9. SUMMARY AND CONCLUDING REMARKS

REFERENCES
BIODATA OF THE STUDENT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Phase Combinations for Heterogeneous Catalysis (Bond, 1987)</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Essential Catalyst Properties (Twigs, 1989)</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Common Oxide-Catalysed Selective Oxidation Reactions (Centi et al., 2001)</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Maleic Anhydride Consumption in the United States for the Year 2000 (Felthouse et al., 2001)</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Total world production and consumption of maleic anhydride (*1000 metric tons) from 1994 until 2004 (Felthouse et al., 1995)</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Total Surface Area and Chemical Analysis for Nanorod and Bulk V₂O₅</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Total amount of oxygen atoms removed from nanorod and bulk V₂O₅ by reduction in H₂/Ar</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Total amount of CO₂ produced from the nanorod and bulk V₂O₅ by TPRn in n-Butane/Helium</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>The catalytic performance of self-assembled nanorod and bulk V₂O₅ catalysts synthesised for oxidation of n-butane</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Specific BET surface area, chemical properties, average vanadium valence and percentages of V⁴⁺ and V⁵⁺ oxidation states present in nanostructured and bulk VPO catalysts</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Total amount of oxygen removed from the nanostructured and bulk VPO catalysts by reduction in H₂/Ar</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>The catalytic performance of nanostructured and bulk VPO catalysts synthesised for oxidation of n-butane</td>
<td>96</td>
</tr>
<tr>
<td>6.1</td>
<td>Specific BET surface area, chemical properties, average vanadium valence and percentages of V⁴⁺ and V⁵⁺ oxidation states present in VPD and VPDS120 catalysts</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Total amount of oxygen removed from VPD and VPDS120 catalysts by reduction in H₂/Ar</td>
<td>111</td>
</tr>
<tr>
<td>6.3</td>
<td>The catalytic performance of sonochemical synthesised VPDS120 and bulk VPD catalysts for oxidation of n-butane</td>
<td>112</td>
</tr>
</tbody>
</table>
7.1 Specific BET surface area, chemical properties, average vanadium valence and percentages of V^{4+} and V^{5+} oxidation states present in IER-VPD catalysts synthesised with different mixture of solvent

7.2 Total amount of oxygen removed from the doped and undoped IER-VPD catalysts by reduction in H$_2$/Ar

7.3 The catalytic performance of doped and undoped intercalation-exfoliation-reduction catalysts using different mixture of solvent for oxidation of n-butane

8.1 Specific BET surface area, chemical properties, average vanadium valence and percentages of V^{4+} and V^{5+} oxidation states present in mechanochemical treated and untreated catalysts

8.2 Total amount of oxygen removed from VPD, VPDM30 and VPDM60 catalysts by reduction in H$_2$/Ar

8.3 The catalytic performance of mechanochemical treated and untreated VPO catalysts for oxidation of n-butane

8.4 Specific BET surface area, chemical properties, average vanadium valence and percentages of V^{4+} and V^{5+} oxidation states present in mechanochemical treated and untreated bismuth doped catalysts

8.5 Total amount of oxygen removed from mechanochemical treated and untreated bismuth doped VPO catalysts by reduction in H$_2$/Ar

8.6 The catalytic performance of bismuth doped mechanochemical treated and untreated VPO catalysts for oxidation of n-butane
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic representation of the idealised structure of (VO)_2P_2O_7 (Cavani et al., 1985)</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Transformation of precursor to the active phase (Cavani and Trifinò, 1994)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the plug flow reactor</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>XRD patterns of sonochemical treated (S30-S240) and untreated V_2O_5</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>SEM micrographs of V_2O_5 (a) S30, (b) S60, (c) S90, (d) S120, (e) S180 and (f) S240 (with 15000× magnification)</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>TEM micrograph of untreated bulk V_2O_5</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>TEM micrographs of (a) S30, (b) S60, (c) S90, (d) S120, (e) S180 and (f) S240</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>TPR profiles for sonochemical treated and untreated V_2O_5</td>
<td>77</td>
</tr>
<tr>
<td>4.6</td>
<td>TPRn of n-Butane/Helium stream over synthesised V_2O_5</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>n-Butane conversion as a function of the duration of sonochemical treatment</td>
<td>83</td>
</tr>
<tr>
<td>4.8</td>
<td>n-Butane conversion as a function of percentage of V^{5+}</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>XRD patterns for nanostructured and bulk VPO catalysts</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>SEM micrographs of (a) VPO (5000×), (b) SRVPO30, (c) SRVPO60, (d) SRVPO90, (e) SRVPO120 and (f) SRVPO180 (with 10000× magnification)</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>TEM micrographs of (a) VPO, (b) SRVPO30, (c) SRVPO60, (d) SRVPO90, (e) SRVPO120 and (f) SRVPO180</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>TPR profiles for the nanostructured and bulk VPO catalysts</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>The catalytic performance of the nanostructured and bulk VPO catalysts as a function of the duration of sonochemical treatment</td>
<td>97</td>
</tr>
<tr>
<td>6.1</td>
<td>XRD patterns of sonochemical synthesised vanadyl phosphate dehydrate (DS15-DS120)</td>
<td>102</td>
</tr>
<tr>
<td>6.2</td>
<td>XRD patterns of VPDS120 and VPD catalyst synthesised</td>
<td>103</td>
</tr>
</tbody>
</table>
6.3 SEM micrograph of VOP04 (with 5000× magnification) 105
6.4 SEM micrograph of (a) DS15, (b) DS30, (c) DS45, (d) DS60, (e) DS90 and (f) DS120 (with 10000× magnification) 106
6.5 SEM micrograph of VPD (with 5000× magnification) 107
6.6 SEM micrograph of VPDS120 (with 5000× magnification) 108
6.7 TEM micrograph of (a) DS15, (b) DS30, (c) DS45, (d) DS60, (e) DS90 and (f) DS120 109
6.8 TPR profiles for VPD and VPDS120 catalysts 111
7.1 XRD patterns for IER-VPD precursors 117
7.2 XRD patterns for IER-VPD catalysts 118
7.3 SEM micrographs of (a) IERC(2Bu-Et), (b) IERC(2Bu-Et)RBi1, (c) IERC(isoBu-Et) and (d) IERC(isoBu) (with 15000× magnification) 122
7.4 TEM micrographs of (a) IERC(2Bu-Et), (b) IERC(2Bu-Et)RBi1, (c) IERC(isoBu-Et) and (d) IERC(isoBu) 124
7.5 TPR profiles for the IER-VPD catalysts 125
7.6 The relation between conversion (%), MA selectivity (%) and MA yield (%) of catalysts produced in n-butane oxidation 129
8.1 XRD patterns of mechanochemical treated (DM30-DM60) and untreated vanadyl phosphate dehydrate (VOPO4) 134
8.2 XRD patterns of mechanochemical treated (VPDM30-VPDM60) and untreated VPO catalysts (VPD) 135
8.3 SEM micrograph of VPD (with 5000× magnification) 138
8.4 SEM micrograph of VPDM30 (with 5000× magnification) 138
8.5 SEM micrograph of VPDM60 (with 5000× magnification) 139
8.6 TPR profiles for VPD, VPDM30 and VPDM60 catalysts 140
8.7 The catalytic performance of the synthesised VPO catalysts as a function of the duration of mechanochemical treatment 143
8.8 XRD patterns for mechanochemical treated and untreated bismuth doped vanadyl phosphate hemihydrate 144

xix
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>XRD patterns for mechanochemical treated and untreated bismuth doped VPO catalysts</td>
<td>146</td>
</tr>
<tr>
<td>8.10</td>
<td>SEM micrograph of VPDBi (with 10000× magnification)</td>
<td>149</td>
</tr>
<tr>
<td>8.11</td>
<td>SEM micrograph of VPDBiM60 (with 10000× magnification)</td>
<td>149</td>
</tr>
<tr>
<td>8.12</td>
<td>TPR profiles for mechanochemical treated and untreated bismuth doped VPO catalysts</td>
<td>150</td>
</tr>
<tr>
<td>8.13</td>
<td>MA selectivity as a function of n-butane conversion</td>
<td>153</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmet-Teller</td>
<td></td>
</tr>
<tr>
<td>FWHM</td>
<td>Full-Width at Half Maximum</td>
<td></td>
</tr>
<tr>
<td>GHSV</td>
<td>Glass Hourly Space Velocity</td>
<td></td>
</tr>
<tr>
<td>H₂-TPR</td>
<td>Temperature Programmed Reduction in Hydrogen</td>
<td></td>
</tr>
<tr>
<td>ICP-AES</td>
<td>Inductively Coupled Plasma-Atomic Emission Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standard</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Maleic Anhydride</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometer</td>
<td></td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
<td></td>
</tr>
<tr>
<td>P/V</td>
<td>Phosphorus/Vanadium</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>Round per minute</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
<td></td>
</tr>
<tr>
<td>T_{max}</td>
<td>Temperature at peak maximum</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
<td></td>
</tr>
<tr>
<td>TCD</td>
<td>Thermal Conductivity Detector</td>
<td></td>
</tr>
<tr>
<td>TPRn</td>
<td>Temperature Programmed Reaction</td>
<td></td>
</tr>
<tr>
<td>VPO</td>
<td>Vanadium Phosphorus Oxide</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction to Catalysis

Berzelius in 1836 introduced the term ‘catalysis’ (Bond, 1987), where he derived it from the Greek words *kata*, which stands for down and *lysein*, which means to split or break. Later in 1895, Ostwald was the first to write down a definition of a catalyst: “A catalyst is a substance that changes the rate of a chemical reaction without itself appearing in the products”. So, it is important to note that a catalyst does not influence the thermodynamic equilibrium of reactants and products. Therefore, the current definition is slightly better, though close to Ostwald’s description: “A catalyst is a substance that increases the rate of approach to thermodynamic equilibrium of a chemical reaction without being substantially consumed”. Catalysis is the phenomenon of a catalyst in action (Gates, 1992).

As befits a committee a longer, although more precise, description has been suggested by the UK Science Research Council (Hartley, 1985): A system is said to be “catalyzed” when the rate of change from state I to state II, is increased by contact with a specific material agent which is not a component of the system in either state and when the magnitude of the effect is such as to correspond to one or more of the following descriptions:
(i) Essentially, measurable change from state I to state II occurs only in the presence of the agent.

(ii) A similarly enhanced rate of change is found with the same sample of agent in repeated experiments using fresh reactants.

(iii) The quantity of matter changed is many times greater than that of the agent.

1.2 The Importance of Catalysis

Catalysts are among the most important technological materials, being used in the manufacture of chemicals, fuels, foods, clothing, pharmaceuticals, and materials such as organic polymers (Gates, 1992). The value of the goods manufactured in the United States in processes that at some stage involve catalysis is about $1 trillion annually; the catalysts used in these processes cost only a few tenths of a percent of the value of the products.

Today, almost 70% of all chemicals that are produced have been in contact with a catalyst somewhere in their synthesis process (Matthijs, 1999). This number stresses the importance of the role of catalysis in the chemical industry. Without a catalyst, processes are less clean and sometimes impossible to perform. In principal, catalysis can be used to abate environmental pollution in two ways:

(i) for cleaning of outgoing waste gases or water (end-of-pipe catalysis),
(ii) for improvement or replacement of existing processes in such a way that less harmful waste is produced (process-incorporated catalysis).

With regard to (i), two well-known examples are the three-way catalyst, which is used to reduce the levels of CO, NO\textsubscript{x} and VOC’s in automotive exhaust gases, and the Claus catalyst utilised to convert sulphur (H\textsubscript{2}S) from industrial exhaust gases.

The subject of this report is closely related to catalysis of type (ii), \textit{i.e.} improvement of an existing process to achieve a higher product yield, and thus fewer byproducts. It is an important for the production of bulk and fine chemicals as well as minimise trace pollutants and contaminants (Hodnett, 2000).

1.3 Types of Catalysts

Generally, catalytic reactions can be divided into two major types, such as homogeneous and heterogeneous (Thomas and Thomas, 1997).

1.3.1 Homogeneous Catalyst

When the catalyst is of the same phase as the reactants and no phase boundary exists, we speak of homogeneous catalysis. This may take place either (Bond, 1987):

(i) In the gas phase, as, for example, when nitrogen oxide catalyses the oxidation of sulphur dioxide; or