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Almost one decade ago, a newborn fiber laser with simplified version called 
random distributed feedback fiber laser (RDFB-FL) has been a spotlight among 
the photonic research community. Despite of the natural behavior of Rayleigh 
scattering as a fundamental loss for propagating light in optical fibers, it can be 
utilized as a distributed mirror in ultra-long fiber laser. In this case, the mechanism 
of feedback is termed as random which leads to the development of RDFB-FL. 
However, the absence of physical feedback devices require a very high power to 
overcome total cavity losses to be a laser. In this research work, a simple linear 
cavity half open ended of random fiber laser (HOCRFL) consists of 36 km 
TrueWave RS fiber (TW) incorporating micro-air cavity (MAC) is proposed. The 
MAC is constructed by adjusting the air-gap distance between two optical fibers 
that produce multiple fringes based on the Fabry-Pérot cavity. At the same time, 
this MAC enhances the reflectivity to improve the overall laser performance. For 
MAC characterizations, the transmission loss increases while reflectance, 
transmittance and channel spacing decrease with the increment of air-gap 
distances. The best MAC location in the fiber laser cavity is at the opposite end of 
the output port and the optimum pumping configuration of HOCRFL is the 
bidirectional scheme. From the optimization of MAC air-gap distance from 100 μm 
to 1000 μm, smaller air-gaps (100 μm to 400 μm) are preferable for high pump 
power operation near 2 W while larger air-gaps (500 μm up to 1000 μm) are 
suitable for low pump power operation below 1.5 W. Based on the findings, it is 
found that the 200 μm and 600 μm air-gap distance produce the best lasing 
performance for these two separate pump power regions. The former air-gap 
distance generates dual-wavelength laser at 1552.48 nm and 1557.04 nm with 
18.79 dB and 18.73 dB optical signal-to-noise ratio (OSNR), respectively. On the 
other hand, for the 600 μm air-gap distance, the dual-wavelength lasers occur at 
1553.86 nm and 1555.75 nm with 14.69 dB and 13.73 dB OSNR. In comparison 
between these two air-gap distances, the 200 μm air-gap distance has better 
OSNR. However, its critical power (pump power that generate the best lasing 
performance) of 1987 mW is higher than 1240 mW obtained from 600 µm air-gap 
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distance. It is believed that the novelty of this work lies within the use of simple 
architecture of MAC in linear cavity random fiber laser to dual-emission peak 
wavelength. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Sarjana Sains 
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NORITA BINTI MOHD YUSOFF 

Mei 2019 

Pengerusi: Mohd Adzir Mahdi, PhD 
Fakulti: Kejuruteraan 
 
 
Hampir satu dekad yang lalu, laser gentian yang baru muncul dengan versi 
mudah dipanggil laser gentian maklum balas tersebar secara rawak (RDFB-FL) 
telah menjadi tumpuan di kalangan komuniti penyelidikan fotonik. Walaupun 
perilaku semulajadi Rayleigh berselerak sebagai kehilangan asas untuk 
menyebarkan cahaya dalam gentian optik, ia boleh digunakan sebagai cermin 
teragih dalam laser gentian ultra-panjang. Dalam kes ini, mekanisme maklum 
balas disebut sebagai rawak yang membawa kepada pembangunan RDFB-FL. 
Walau bagaimanapun, ketiadaan peranti maklum balas fizikal memerlukan 
kuasa yang sangat tinggi untuk mengatasi jumlah kerugian rongga untuk 
menjadi laser. Dalam kerja penyelidikan ini, sebuah rongga linear yang separuh 
terbuka dengan laser gentian rawak (HOCRFL) terdiri daripada 36 km gentian 
TrueWave RS (TW) yang menggabungkan rongga udara mikro (MAC) 
dicadangkan. MAC dibina dengan melaraskan jarak jurang udara antara dua 
gentian optik yang menghasilkan pelbagai pinggiran berdasarkan rongga Fabry-
Pérot. Pada masa yang sama, MAC ini meningkatkan pemantulan untuk 
meningkatkan prestasi laser secara keseluruhan. Untuk pencirian MAC, 
kehilangan transmisi semakin meningkat sementara pemantulan, transmisi dan 
jarak saluran menurun dengan kenaikan jarak jurang udara. Lokasi MAC terbaik 
di rongga laser gentian adalah bertentangan dengan pot pengeluaran dan 
konfigurasi pam optimum HOCRFL adalah skema dwi-arah. Dari 
pengoptimuman jarak jurang udara MAC dari 100 μm hingga 1000 μm, jurang 
udara yang lebih kecil (100 μm hingga 400 μm) lebih baik untuk operasi kuasa 
pam yang tinggi berhampiran 2 W manakala jurang udara yang lebih besar (500 
μm sehingga 1000 μm) adalah sesuai untuk operasi kuasa pam yang rendah di 
bawah 1.5 W. Berdasarkan penemuan ini, didapati jarak 200 μm dan 600 μm 
jurang udara menghasilkan prestasi laser terbaik bagi kedua-dua kawasan 
kuasa pam berasingan. Bekas jarak jurang udara menjana laser dwi-jarak 
gelombang pada 1552.48 nm dan 1557.04 nm dengan 18.79 dB dan 18.73 dB 
nisbah isyarat-ke-bunyi (OSNR) optik. Sebaliknya, untuk 600 μm jarak rongga 
udara, laser dwi-jarak gelombang berlaku pada 1553.86 nm dan 1555.75 nm 
dengan 14.69 dB dan 13.73 dB OSNR. Sebagai perbandingan antara dua jarak 
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jurang udara ini, jarak udara 200 μm udara mempunyai OSNR yang lebih baik. 
Walau bagaimanapun, kuasa kritikal (kuasa pam yang menghasilkan prestasi 
laras terbaik) 1987 mW adalah lebih tinggi daripada 1240 mW yang diperolehi 
dari jarak rongga udara 600 µm. Adalah dipercayai bahawa kebaharuan kerja ini 
terletak dalam penggunaan seni bina mudah MAC dalam rongga linear laser 
gentian rawak ke panjang gelombang puncak dwi-pelepasan. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Introduction 
 
 
Light properties have been extensively applied since the first demonstration of 
laser in 1960s. Figure 1.1 depicts a basic laser system requires three main 
components, specifically an optical pump source to induce population inversion, 
an active medium with a certain energy levels and optical resonator to introduce 
optical feedback [1]. Laser action consists of three continuous processes, 
namely the absorption of energy to occupy the upper levels, followed by the initial 
photons generation via spontaneous emission and the generation of coherent 
laser output from stimulated emission as illustrated in Figure 1.2 [1]. There are 
several types of laser which are described based on the gain medium, namely 
gas (carbon dioxide), solid state (ruby laser), dye (rhodamine 6G in liquid 
solutions), semiconductor and excimer laser.  

 
 

Figure 1.1: Basic laser components [2]. 
 

 
 

Figure 1.2: (a) Absorption, (b) spontaneous emission and (c) stimulated 
emission of laser [2]. 
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In the last 50 years, optical fiber has been utilized as a laser gain medium. Optical 
fibers make use of total internal reflection phenomenon inside the two different 
refractive index media (core and cladding) to guide light propagation. It is a 
promising waveguide and highly efficient compared to other lasers in the aspect 
of beam quality, stability, high power operations and thermal management. 
Optical fiber technologies have been adopted in various fields such as medical, 
communication and military [3]. Furthermore, optical fibers have the capability to 
send the information at a superior rate over very long distances, with minimal 
loss and higher bandwidth compared to copper cables [4]. Moreover, the 
installation of optical fiber is simpler than metal-based cables because it is light 
weight, relatively smaller in diameter and easier to handle. In addition, optical 
fiber is nonconductive in nature, thus the transmitted signal is not disrupted by 
electromagnetic interference (EMI) like radio frequency interference (RFI) [4]. On 
the other hand, the optical fiber can be engineered for laser applications by 
utilizing stimulated Raman scattering (SRS) [5]. 
 
 
A basic regular laser, also known as conventional Raman fiber laser needs a 
gain medium and a pair of reflectors to form a cavity [6]. In this case, the gain 
medium is the optical fiber itself. When this optical fiber is injected with high 
intensity light, SRS is naturally induced. In general, the common reflectors used 
in the basic laser system are fiber Bragg gratings (FBGs) and fiber-loop mirror 
(FLM). The reflection of FBG is restricted at specific wavelength, and can force 
the laser system to operate at single longitudinal mode. The spectral bandwidth 
of the laser system is determined by its properties [7]. On the other hand, FLM 
is constructed by using either 3 dB optical coupler or circulator which reflect the 
laser light but transmit the pump radiation [7].  
 
 
In 1966, the concept of random laser was introduced by Ambartsumyan et al. [8]. 
Random fiber laser (RFL) is different from regular laser where it does not require 
any physical reflectors in the laser cavity for light feedback. The light feedback 
mechanism comes from the multiple scatterings in disordered media. In the last 
few years, the first invention of random distributed feedback fiber laser (RDFB-
FL) has attracted a great attention among research community due to the simple 
structure and comparable power performance to the conventional laser [9]. 
Although at some aspects the performance of RFLs is much superior than 
conventional ones, the uncontrollable randomness nature of laser restricts its 
practical usage. Many research works have been done to boost up the 
performance of this laser such as the study of the point reflector’s reflectivity in 
high power forward pumped RFL system [10], powerful narrow linewidth using 
tunable fiber laser and FBG [11], high efficiency RDFB-FL utilizing short 
phosphosilicate fiber  [12], [13], linearly polarized RDFB-FL [14], variation of 
pump coupling ratios in ultra-long Raman based RDFB-FL [15] and forward 
pumped RDFB with record of high power [16]. In this research work, the 
investigation on dual wavelength RFL is proposed, where micro-air cavity (MAC) 
is implemented in an open ended cavity. The MAC is constructed based on the 
parallel alignment of two flat angled fibers. Based on the published work in [17], 
MAC is chosen due to its simple structure, low fabrication cost, and the ability to 
induce strong effect of Fresnel reflections inside the laser cavity. 
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1.2 Problem statement 

 
 
RFL based on Raman gain suffer from high threshold condition due to the low 
Raman gain coefficient in silica fiber and weak feedback of Rayleigh scattering 
(RS) in the absence of reflectors [6]. Many efforts have been done to induce the 
passive feedback and subsequently lower down the threshold level which 
includes various types of reflectors utilized at one side of the laser cavity [10], 
[18], [19]. The main objective is to increase the reflectivity in addition to the RS 
feedbacks. For instance, tunable mirror using variable optical attenuator (VOA) 
in 3 dB coupler in [10] and polarization maintaining fiber (PMF) based Lyot filter 
in single mode laser cavity in [18]. However, the addition of these components 
increases the laser cavity complexities and at the same time, induces additional 
loss to the cavity. MAC offers an alternative solution to reduce the threshold level 
along with multiwavelength spectrum generation owing to the fact that it functions 
as both reflective mirror and comb filter [17], [20]–[22]. To date, the integration 
of MAC technique is limited to two types of fiber laser schemes; multiwavelength 
fiber lasers (MWFLs) [17], [20], [21], [23], [24] and mode-locked fiber laser 
(MLFL) [22]. There is still no report on MAC deployment in Raman based RFL 
systems. Hence, this research work proposes the study on the lasing 
performance characteristics of RFL integrated with MAC. 
 
 
1.3 Objectives of the research 

 
 
1) To evaluate the performance of mirrorless open cavity random fiber laser 
(MOCRFL) with various pumping schemes. 
2) To investigate the effect of MAC on half-open cavity random fiber laser 
(HOCRFL) performance with variation in micro-air gap distances. 
 
 

1.4 The scope of the research 

 
 
Figure 1.3 illustrates the scope of the research that will be investigated in this 
research work. The MOCRFL is investigated first by concentrating on the 
pumping schemes; forward, backward and bidirectional. Then, the impact of 
MAC on the lasing performance is studied by integrating it in RFL architectures. 
Besides the reflectivity, the research work also focuses on the multiwavelength 
generation in HOCRFL incorporating MAC. There are many works that have 
been reported on half-open cavity with the utilization of various type of reflectors 
to generate different output spectrum such as tunable [25], cascaded [12], [26], 
multiwavelength [18], [27]–[29], Q-switched [30] as well as narrowband laser 
[11]. MWFLs have been in the spotlight in the recent years due to their reliable 
applications such as dense wavelength division multiplexing (DWDM), 
spectroscopy and fiber sensor [29]. In this work, the dual function of MAC (as 
reflective mirror and comb filter) in Raman based RFL is proposed to achieve 
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multiwavelength laser, which simultaneously eliminates the complexity of the 
laser system in comparison to the previous reported works [18], [29], [31]–[34].  
 

 

 
Figure 1.3: The scope of research 

 
1.5 Thesis organization 

 
 
This thesis is divided into five chapters. Chapter 1 describes an overview of laser 
and fiber laser. The chapter proceeds by highlighting the issues faced by RFL, 
followed by the objectives as a solution from those issues. Lastly, the scope of 
this research work and thesis organization is also discussed in this chapter. 
Chapter 2 presents the theoretical concept of gain and feedback in Raman fiber 
laser which leads to the first demonstration of RDFB-FL. The next subchapters 
cover a review on MWFLs, the reported techniques used for multiwavelength 
random fiber lasers (MWRFLs), the basic theory of MAC technique and 
subsequently the overview on the integration of this technique in laser systems. 
Chapter 3 elaborates on the methodology and principle of operation for 
experimental works on MOCRFL. The spectral and lasing characteristics of 
MOCRFL are investigated and discussed to get the basic understanding on the 
performance of MOCRFL with different pumping schemes. Chapter 4 presents 
the detail investigation on the effect of pumping architectures, MAC locations as 
well as variation of air-gap distances from 100 μm to 1000 μm in HOCRFL with 
the deployment of MAC. Chapter 5 will encapsulate the conclusion of the 
research and the recommendations for future works. 

Random fiber 
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Ring cavityLinear cavity

Mirrorless open Half open
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