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Dye sensitizers are one of the key factors that affects the performance of dye-sensitized 

solar cells (DSSCs). One of the limitation of ruthenium bipyridyl sensitizer is the 

limited light absorption in infrared region. Hence, extended cyclic π-conjugated 

bipyridyl derivative was studied to overcome this limitation. Potential DSSC 

sensitizers such as 2,2’-bipyridine (bpy), dipyrido[3,2-a:2′,3′-c]-phenazine (dppz) and 

11,12-dimethyldipyrido[3,2-a:2′,3′-c]-phenazine (dppx)-based ruthenium complexes 

were synthesized and characterized in this study. Three heteroleptic ruthenium 

complexes, namely cis-[Ru(dcbpy)(bpy)(NCS)2] (Rubpy), cis-

[Ru(dcbpy)(dppz)(NCS)2] (Rudppz), and cis-[Ru(dcbpy)(dppx)(NCS)2] (Rudppx), 

where dcbpy = 2,2’-bipyridyl-4,4’-dicarboxylic acid, NCS- = isothiocyanate, were 

synthesized using a one-pot synthesis method and evaluated for their potential as dye-

sensitized solar cells (DSSCs) sensitizers. Spectroscopic, electrochemical and electron 

impedance spectroscopic analysis were performed on the as-synthesized ruthenium 

complexes. The commercial dye sensitizer, cis-[Ru(dcbpy)2(NCS)2] (N719) was used 

as a benchmark. The introduction of the dimethyl groups in the Rudppx complex 

resulted in a bathochromic shift (10 nm) in the intraligand absorption maximum at 384 

nm, an enhancement in the molar absorption coefficient of the metal-to-ligand charge 

transfer band (λ = 500 nm), and the destabilization of both the ground and excited state 

molecular orbitals of the complex, compared to Rudppz. In terms of photovoltaic 

performance, Rubpy exhibited higher short circuit current density (2.07 mAcm-2) and 

power conversion efficiency (ɳ = 0.57%) as compared to Rudppz which had a short 

circuit current density of 1.52 mAcm-2 and  a power conversion efficiency of 0.40%, 

demonstrating that the lower cyclic π-conjugation of the bipyridine ligand contributed 

to the lowest unoccupied molecular orbital in Rubpy that favoured electron injection. 

Rudppx exhibited improved power conversion efficiency (ɳ = 0.61%) as compared to 

Rudppz upon the introduction of the dipyrido [3,2-a: 2′,3′-c] -phenazine ligand which 

had dimethyl groups. The dimethyl groups behaved as electron-donating substituents 

that increased the electron density of the 11,12-dimethyldipyrido [3,2-a: 2′,3′-c] -
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phenazine ligand which helped in alternating the lowest occupied molecular orbital of 

Rudppx to enhance electron injection, resulting in an improved short circuit current 

density of 1.93 mAcm-2 from 1.52 mAcm-2 (Rudppz). The criteria for an efficient 

DSSC ruthenium-based sensitizer were drawn based on structure-property relationship 

studies of the ruthenium sensitizers in this study.  
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Salah satu faktor utama yang menentukan prestasi sel solar  pewarna peka (DSSC)  

ialah pewarna. Salah satu had kemampuan pewarna bipiridil ruthenium ialah 

penyerapan cahaya terhad di kawasan infra merah. Oleh itu, derivatif bipiridil yang 

dilanjutkan dengan kitaran π-konjugasi telah dikaji untuk mengatasi had kemampuan 

tersebut. Pewarna DSSC seperti kompleks ruthenium berasaskan 2,2-bipiridina (bpy), 

dipyrido[3,2-a:2′,3′-c]-phenazine (dppz) atau 11,12-dimetildipirido[3,2-a:2′,3′-c]-

phenazine (dppx) telah dibuat dan dikaji. Tiga kompleks ruthenium heteroleptik iaitu 

cis-[Ru(dcbpy)(bpy)(NCS)2] (Rubpy), cis-[Ru(dcbpy)(dppz)(NCS)2] (Rudppz), dan 

cis-[Ru(dcbpy)(dppx)(NCS)2] (Rudppx), di mana dcbpy = 4,4’-dikarbosilik-2,2’-

bipiridina, NCS = isothiocyanate, telah dibuat melalui sintesis satu langkah dan diguna 

sebagai pewarna berpotensi untuk sel solar pewarna peka (DSSC).  Analisis 

spektroskopik, elektrokimia dan impedans elektron telah dilakukan pada kompleks 

ruthenium tersebut. Pewarna komersial, cis-[Ru(dcbpy)2(NCS)2] (N719) telah 

digunakan sebagai penanda aras  untuk kompleks tersebut. Pernambahan kumpulan 

dimetil dalam struktur Rudppx menjadikan peralihan batrokromik (10 nm) maksima 

penyerapan intraligan di 384 nm, pernambahan penyerapan molar pemindahan caj dari 

logam ke ligan (λ = 500 nm), dan perubahan orbit molekular ruthenium kompleks, 

berbanding dengan Rudppz. Berdasarkan prestasi fotovoltaik, Rubpy mempunyai JSC 

(2.07 mAcm-2) dan kecekapan penukaran kuasa (ɳ = 0.57%) yang lebih tinggi daripada 

ketumpatan arus litar pintas (1.52 mAcm-2) dan kecekapan penukaran kuasa (ɳ = 0.40%) 

Rudppz, ini menunjukkan konjugasi π kitaran ligan bipyridin menyumbang kepada 

suntikan elektron ke HOMO Rubpy. Rudppx mempunyai kecekapan penukaran kuasa 

(ɳ = 0.61%) daripada Rudppz selepas pernambahan dimetil atas ligan dipyrido[3,2-

a:2′,3′-c]-phenazine. Dimetil yang berfungsi sebagai penderma elektron meningkatkan 

ketumpatan elektron ligan 11,12-dimethyldipyrido[3,2-a:2′,3′-c]-phenazine yang 

membantu mengubahsuaikan orbital molekul terendah kosong Rudppx untuk 

menambahbaikan suntikan elektron, menjadikan peningkatan ketumpatan arus litar 
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pintas  dari 1.52 mAcm-2 ke 1.93 mAcm-2
.
  Kriteria pewarna ruthenium untuk DSSC 

yang berkesan telah ditentukan melalui hubungan struktur dan ciri pewarna tersebut.   
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Dye-sensitized Solar Cells (DSSCs) 

Dye-sensitized solar cells (DSSCs) have been recognized as a promising third 

generation solar cells employing facile fabrication methods and low cost materials 

while harnessing light energy at comparable efficiencies to first generation solar cells 

(efficiency around 15% to 20%) and second generation solar cells (efficiency around 

10% to 15%) (Roy-Mayhew et al., 2010; Xue et al., 2012). A basic DSSC contains a 

nanocrystalline titanium dioxide (TiO2) layer on an indium tin oxide (ITO) glass 

substrate, a monolayer of light absorber (dye sensitizer) on the TiO2 surface, an 

electrolyte containing an iodide/triiodide redox mediator (I3
-/I-) which acts as a hole 

transmitting medium, and a Pt counter electrode. When sunlight is irradiated onto the 

dye-absorbed TiO2 photoanode, electrons in the dye molecules are excited by the 

photons and are injected into the conduction band (CB) of TiO2 creating a current 

called photocurrent. The oxidized dye molecules are reduced by a redox couple in the 

electrolyte which are then regenerated at the Pt counter electrode (Roy et al., 2010). 

The common types of dye sensitizers that have gained vast research attention include 

metal complex-based sensitizers (ruthenium (II) and cobalt (II)), metal-free organic 

dyes, and zinc-based porphyrin sensitizers (L. L. Li & Diau, 2013; Mishra et al., 2009; 

Qin & Peng, 2012).  

1.1.1 Factors Affecting the Efficiency of DSSCs 

Each component in the DSSCs have different factors that affect their efficiency. For 

the photoanode, the morphology, surface area and thickness of the TiO2 semiconductor 

layer are some factors that could affect the overall efficiency (Mohamed & Selim, 

2017). The electrolyte that has optimum redox properties and high stability helps to 

improve the efficiency (Lenzmann & Kroon, 2007). Particularly, the fact that the 

photovoltaic performance of the DSSCs are strongly dependent on the nature of the 

dye sensitizer used has prompted much research on the relationship between molecular 

structure of a dye and its performance (Hara et al., 2002). Basically, the molecular 

design of efficient dye sensitizers is associated with high absorption coefficients, high 

anchoring properties, favourable electron transfer and injection kinetics.  

1.1.2 DSSCs With Ruthenium (II)-Based Sensitizers 

The presence of metal-to-ligand charge transfer (MLCT) bands in the visible light 

spectra of polypyridyl ruthenium (II) complexes has attracted attention to the use of 

such complexes as photosensitizers in DSSCs (Fan et al., 2010). Ruthenium (II) 

polypyridyl complexes developed by Gratzel and co-workers (1991) such as cis-
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di(thiocyanato) bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) N719, have 

been the paradigm dye sensitizers for DSSCs due to their outstanding power 

conversion efficiencies (ɳ) of about 10% (M. Nazeeruddin et al., 1993). However, the 

absorption of N719 only covered the visible region up to ca. 650nm, rendering 

improvement of light absorption near the infra-red region necessary. Since then, 

various functionalized ruthenium (II) polypyridyl complexes have been synthesized 

and investigated as efficient and stable sensitizers, ranging from functionalization of 

the bipyridyl ligand with extended hydrocarbons (ɳ = 3.28%) (Sygkridou et al., 2015), 

thiophene (ɳ = 3.86%) (Lobello et al., 2014) and ion-coordinating groups (ɳ = 1.34%) 

(Cisneros et al., 2016), modification on the terpyridyl (ɳ = 5.40%) (Giribabu et al., 

2011) and quarterpyridyl ligands (ɳ = 5.7%) (Abbotto et al., 2011), to the development 

of cyclometalated (ɳ = 5.7%) (Kisserwan & Ghaddar, 2011) and thiocyanate-free 

ruthenium (II) complexes (ɳ = 10.2% (S. W. Wang et al., 2013), ɳ = 3.4%, (Colombo 

et al., 2015), ɳ = 3.4% (G. Li et al., 2015b)).  

 

 

1.1.3 Dipyrido[3,2,-A;2’,3-C]Phenazine-Based Ruthenium Complexes 

 

 

Research on dye sensitizers has also been extended to rigid and electron-rich 

heteroaromatic bipyridyl ligands such as dipyrido[3,2,-f;2’,3-h]quinoxaline and 

dipyrido[3,2,-a;2’,3-c]phenazine (dppz)  due to their ability to prevent bending or 

rotation along σ orbitals of the molecule and π-electron conjugation system which 

enabled strong and long distance electronic interactions within the aromatic system 

(Gholamkhass et al., 2001). Dppz complexes of ruthenium have been extensively 

studied as luminescent probes due to their intense photoluminescence in non-aqueous 

media attributed to their long-lived MLCT abilities (Brennaman et al., 2004; Nair et al., 

1998; Olson et al., 1997).  There has also been much focus on the photophysical 

properties (Kitao & Sugihara, 2008; Nickita et al., 2007), excited state dynamics (Peña 

et al., 2012) and electron transfer reactions (Dupont et al., 2011) of functionalized 

dppz complexes of ruthenium as well as their applications including as DSSC 

photosensitizers. A previous study has shown that heteroleptic ruthenium (II) complex 

sensitizer containing the dppz ligand exhibited a broad MLCT transition band in the 

visible light spectrum, rendering ɳ=5.3% (Onozawa-Komatsuzaki et al., 2006). It was 

also revealed that the electron injection into the TiO2 CB remained as one of the 

shortcomings of the dppz-based ruthenium(II) complexes, therefore the introduction of 

electron-donating moieties was recommended to enhance the electron injection process 

of the dye upon photoexcitation. Therefore, in their work, the dppz ligands were 

modified with electron-donating dimethyl groups to yield the 11,12-dimethyl-

dipyrido[3,2,-a;2’,3-c]phenazine (dppx) ligand.  

 

 

Four ruthenium (II) complexes, Ru(II)(bpy)(dcbpy)(NCS)2 (Rubpy), 

Ru(II)(dppz)(dcbpy)(NCS)2 (Rudppz), Ru(II)(dppx)(dcbpy)(NCS)2 (Rudppx) [bpy = 

bipyridine, dcbpy =  4,4’-dicarboxyl-2,2’-bipyridine and NCS = isothiocyanate], were 

and synthesized and characterized together with cis-bis(isothiocyanato)bis(2,2'-

bipyridyl-4,4'-dicarboxylato)ruthenium(II); N719. The ruthenium complexes are 

illustrated in Figure 1. dcbpy functioned as the anchoring ligand for TiO2 grafting, and 

isothiocyanate (NCS) was employed as the electron mediator. Based on Rudppz and 

Rudppx, the effect of the dimethyl groups in enhancing the light harvesting properties 
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and electron transfer kinetics of the metal complexes as DSSC sensitizers was studied 

via various spectroscopic, electrochemical and photovoltaic characterization 

techniques. The bipyridyl-containing ruthenium (II) complex, Rubpy was also studied 

in order to compare the effectiveness of extended heteroaromatic dppz-containing 

ruthenium (II) complexes as DSSC sensitizers. N719,  as the commercial dye, was 

studied as the benchmark for the as-synthesized sensitizers and as the analogue with 

double carboxylic anchoring groups.  

Figure 1: Molecular Structure of cis-[Ru(Dcbpy)(Bpy)(Ncs)2] (Rubpy), cis-

[Ru(Dcbpy)(Dppz)(Ncs)2] (Rudppz), cis-[Ru(Dcbpy)(Dppx)(Ncs)2] (Rudppx), and 

cis-[Ru(Dcbpy)2(Ncs)2] (N719). 
Rudppx was derived from Rudppz with the functionalisation of two dimethyl groups at 

positions 11,12 of the dppz ligand. Rubpy was used to compare with Rudppz and 

Rudppx in terms of the light harvesting ability of different cyclic π-conjugation 

moieties of the bpy and dppz/dppx ligands. © C
OPYRIG

HT U
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1.2 Problem Statement 

 

 

The key factors that affect the photovoltaic performance of DSSCs are the electron 

injection rate into the conduction band of TiO2 and the rate of electron-hole 

recombination at the TiO2/dye/electrolyte interface. The current limitation of bpy based 

ruthenium complex sensitizer is the absorption of light in near infrared region and the 

limited electron density of the bpy ligand. In this research, the dppz ligand was studied 

as a potential ligand for ruthenium(II)-based DSSC sensitizers due to its heterocyclic 

aromatic system which possessed a higher degree of cyclic π-conjugation as compared 

to that of the bpy ligand. Previous study has showed that dppz ligand possess strong 

light absorbing ability through strong metal-to-ligand charge transfer. Hence, the aim 

of this study is to study the performance of DSSC based on dpy and dppz based 

ruthenium complexes though few spectroscopic, electrochemical, electron impedance 

and photovoltaic analysis. The criteria in designing effective ruthenium (II)-based 

DSSC sensitizers are also drawn from the result.  

 

 

1.3 Objectives and Scope of Research  
 

 

In this research, three ruthenium (II) complexes with bipyridine, dppz and dppx based-

ligands were synthesized using a one-pot synthesis method. The as-synthesized 

ruthenium (II) complexes were characterized in terms of their spectroscopic 

performance including electron impedance spectroscopy and electrochemical 

performance to evaluate their potential as DSSC sensitizers. The dppx ligand with 

dimethyl moieties was bonded to ruthenium (II) to investigate its performance as a 

potential sensitizer. Lastly, the criteria in designing the molecular structure of 

ruthenium (II) complexes as effective DSSC sensitizers were determined. 
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