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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 
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ACCUMULATION IN FRESH OIL PALM FRUIT (Elaeis guineensis Jacq.)

By 

SHEHU UMAR ETSU 

November 2019 

Chairman : Associate Professor Mohd Noriznan Mokhtar, PhD 

Faculty : Engineering 

Crude palm oil (CPO) is extracted from the fleshy mesocarp of the oil palm fruits, 

(Elaeis guineensis). The fruit has to undergo several thermo-mechanical processes 

before the oil can be extracted. However, the oil-bearing mesocarp of the fruit 

contained an endogenous enzyme (lipase), which is activated upon injury/bruised. The 

hydrolytic activity of the enzyme leads to the accumulation of free fatty acid (FFA) 

which is a major quality index of CPO. Researches have shown that over 2% of fresh 

fruit bunches(FFB) arriving at the mill are bruised and the bulkiness coupled with 

the close-knitted nature of the FFB causes ineffective heat distribution/penetration 

into the inner layers of the fruits during the steam sterilization process, which is aimed 

in inactivation of the enzyme. Hence, the need to explore alternative medium of heat 

transfer. Heating of the extracted CPO with high moisture content to facilitate 

handling in the mill triggered up thermal hydrolysis at a temperature above 100oC

(373 K). All these phenomena simultaneously led to poor palm oil quality. Therefore, a 

method for the quantification of a bruise was developed and used for this study. 

Bruise volume, storage temperature and time were found to have a significant effect 

(P<0.05) on FFA accumulation in oil palm fruits. Dynamic simulation of FFA in 

bruised fruits was used to predict the optimum temperature for FFA accumulation in 

bruised fruit to be 31oC (304 K). The GC-MS analysis of extracted CPO from bruised

fruit heat-treated in chlorinated water indicates the formation of chlorinated fatty 

acids (Palmitic acid chloride and Lauric acid chloride). A wounding assay of the 

endogenous lipase in palm fruit was carried out to quantified in-vivo activity of the 

enzyme and the FFA accumulation in the fruitlets. A time-dependent heat penetration 

simulation was also conducted using a COMSOL Multiphysics software along with 

the development of kinetic models for thermal inactivation of lipase and thermal 

hydrolysis of CPO. The model equations were solved and the parameters of the 

model estimated using gPROMS ModelBuilder. The two-way analysis of variance 

(ANOVA) shows that treatment duration and temperature had significant (P < 0.05) 

effect on the residual lipase activity. The inactivation kinetics of lipase was found to 
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be a non-elementary reaction in which initial rate constant, k0dec and inactivation 

energy, Edec were estimated to be 0.035 U-0.85/kg-mes-0.85·min and 153052 

kJ/kmol, respectively. The predicted residual activity fitted very well to the 

experimental data with relative root mean square error (rRMSE) between 0.19% and 

1.17%. The important parameters for the thermal hydrolysis model estimated were 

activation energy, E (57554 kJ/kmol) and a frequency factor of reaction, k0T 

(2.14×10-6 m3/kmol·min). The relative root means square error (rRMSE) between 

the measured and the predicted FFA accumulation is between 1.92% and 31.98%. 

This indicates a satisfactory fit between the experimental and the predicted values. 

The sensitivity analysis of the developed models (bruise, thermal inactivation of 

lipase and thermal hydrolysis) revealed that they are sensitive to the selected 

parameters kcat, nb, k0dec, nd, nw, nT and n. These kinetic models provided a basic 

understanding of the mechanism of FFA accumulation in palm fruits and CPO during 

handling and processing and may be a useful tool in further re-designing and quality 

improvement of the industrial processes of crude palm oil extraction. However, to 

mitigate against associated problems of the current steam sterilization, hot water 

sterilization should be explored. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

KAJIAN TERHADAP AKTIVITI PENGUMPULAN ACID LEMAK BEBAS 

(FFA) BUAH KELAPA SAWIT MENTAH 

Oleh 

SHEHU UMAR ETSU 

Pengerusi : Profesor Madya Mohd Noriznan Mokhtar, PhD 

Fakulti : Kejuruteraan 

Minyak sawit mentah (CPO) diekstrak daripada mesokarpa buah kelapa sawit, 

(Elaeis guineensis). Buah ini perlu menjalani beberapa proses termal-mekanikal 

sebelum minyak dapat diekstrak. Walaubagaimanapun, mesocarp yang 

mengandungi minyak mempunyai enzim endogen (lipase), yang diaktifkan apabila 

diasingkan atau ketika buahnya lebam. Aktiviti hidrolisis enzim yang membawa 

kepada pengumpulan asid lemak bebas (FFA) yang merupakan indeks kualiti utama 

CPO. Penyelidikan telah menunjukkan bahawa lebih daripada 2% buah tandan 

segar (FFB) yang tiba di kilang telah lebam dan sebahagian besarnya digabungkan 

menyebabkan penyebaran haba / penembusan haba yang tidak berkesan ke lapisan 

dalam buah semasa proses pensterilan wap yang bertujuan untuk penyah-aktifan 

enzim. Untuk itu, terdapat keperluan untuk mengkaji medium alternative 

penyebaran haba. Semasa pemanasan CPO yang diekstrak dengan kandungan 

kelembapan yang tinggi untuk memudahkan pengendalian dalam kilang 

mencetuskan hidrolisis haba. Semua fenomena ini merendahkan kualiti minyak 

sawit. Kajian terbaru mengenai kualiti CPO dari kilang hanya memberi tumpuan 

kepada pengoptimuman parameter dan korelasi atau regresi dengan sedikit 

perhatian terhadap mekanisme pengumpulan FFA. Oleh kerana itu, ini menjadi 

keperluan untuk mengkaji kinetik pengumpulan FFA dalam CPO. Kaedah untuk 

mengukur lebam telah dibangunkan dan digunakan. Isipadu /kandungan lebam, 

suhu dan masa penyimpanan didapati mempunyai kesan yang ketara (P <0.05) 

terhadap pengumpulan FFA dalam buah kelapa sawit. Satu simulasi dinamik FFA 

dalam buah lebam digunakan untuk meramalkan suhu optimum untuk pengumpulan 

FFA dalam buah lebam adalah 31 oC (304 K). Analisis GC-MS CPO yang diekstrak 

dari haba buah lebam yang dirawat dalam air berklorin menunjukkan asid lemak 

monochloro-propanediol (MCPD). Ujian yang mencederakan lipase endogen dalam 

buah sawit dilakukan untuk mengukur aktiviti enzim in-vivo dan pengumpulan FFA 

dalam buah.  Simulasi penembusan haba yang berkadar langsung denganmasa juga 

dijalankan menggunakan perisian COMSOL Multiphysics bersama-sama dengan 

pembangunan model kinetik untuk penyah-aktifan lipase dan hidrolisis haba   CPO. 

Persamaan model telah diselesaikan dan parameter penting telah dianggarkan 

menggunakan perisian ModelBuilder gPROMS. Analisis dua hala (ANOVA) 
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menunjukkan bahawa tempoh rawatan dan suhu mempunyai kesan yang signifikan 

(P <0.05) terhadap sisa aktiviti lipase. Kinetik lipase yang tidak aktif didapati 

sebagai tindak balas bukan asas di mana kadar permulaan, k0dec dan tenaga tidak 

aktif, Edec dianggarkan berjumlah 0.035 U-0.85 / kg-mes-0.85.min dan 153052 kJ / 

kmol.  Kajian ini juga mendedahkan bahawa tidak terdapat pengumpulan FFA yang 

ketara disebabkan hidrolisis termal dalam suhu kajian 35 oC (308 K) - 70 oC (343 

K).Sisa aktiviti yang diramalkan dan pengumpulan FFA berpadanan dengan sangat 

baik dengan data eksperimen dengan ralat min(rRMSE) antara 0.19% dan 1.173%.  

Parameter penting untuk model hidrolisis terma yang dianggarkan adalah tenaga 

pengaktifan, E (57554 kJ / kmol) dan faktor tindak balas frekuensi, k0T (2.14 × 10-6 

m3 / kmol · min).  Ralat (rRMSE) antara pengukuran dan pengumpulan FFA yang 

diramalkan adalah antara 1.92% dan 31.98.  Ini menunjukkan kesesuaian antara 

percubaan dan nilai yang diramalkan. Analisis sensitiviti model (kelebaman, suhu 

lipase tidak aktif, dan hidrolisis termal) menunjukkan bahawa mereka sensitif 

terhadap parameter kcat, nb, k0dec, nd, nw, nT dan n.  yang dipilih. Model kinetik yang 

dibangunkan memberikan pemahaman kepada asas mekanisme pengumpulan FFA 

dalam buah sawit dan CPO semasa aktiviti pasca-tuaian dan boleh menjadi alat yang 

berguna dalam mereka bentuk semula dan meningkatkan kualiti proses 

perindustrian pengekstrakan minyak sawit. Walaubagaimanapun, untuk 

mengurangkan permasalahan berkaitan pensterilan wap pada masa kini, pensterilan 

menggunakan air panas perlu dikaji.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview of the Chapter 

This chapter describes the background of the study on postharvest activities of oil palm 

fruit, its composition, increasing demand and concern for quality sustainability. 

Quality parameters, unit operations and practices during the extraction of crude palm 

oil (CPO) that contribute to oil degradation as results of free fatty acid (FFA) 

accumulation along the process line are highlighted. The problems associated with the 

current methods of fruits handling and processing, the objectives set to be achieved 

and the scope of work are also presented. 

1.2 Background of the Study 

Oil palm fruit (OPF) is a drupe fruit from palm tree (Elaeis guineensis). It is reddish 

in colour and grows in bunches. Each fruit is made up of an oily, fleshy outer layer 

(the mesocarp), with a single seed (the palm kernel). The oil extracted from the fruit 

mesocarp is known as crude palm oil (CPO) and the one from its kernel is called palm 

kernel oil. It is among the most economically important plant source for edible and 

industrial oil. According to European Palm Oil Alliance (EPOA, 2016), “the global 

palm oil production has increased from 15.2 million tons in 1995 to 62.6 million tons 

in 2015. This is the highest production volume of all vegetable oils, exceeding the 

second biggest oilseed crop by more than 10 million tons”. The main reasons behind 

this growth could be attributed to the high productivity nature of OPF, the discovery 

and development of new applications beyond the traditional food use such as 

production of biodiesel. 

However, Malaysian Palm Oil Council (MPOC, 2018) reported that the global palm 

oil production for 2018 was projected at 70 million tonnes with Malaysia and 

Indonesia as leading producers. Malaysian palm oil production is projected to reach 

20.3 million tonnes, in 2018 due to better yields. In addition, “the global consumption 

of palm oil which rose from 14.6 million tons in 1995 to 61.1 million tons in 2015 is 

estimated by World Bank to double by 2020 making it as the most consumed oil in the 

world” (EPOA, 2016). 

Red palm oil is distinctive among vegetable oils because of its fatty acid (FA) and 

TAG composition. It also contains some minor components such as free fatty acids 

(FFA), monoacylglycerols (MAG), diacylglycerols (DAG), metals, phospholipids, 

peroxides, chlorophylls, carotenoids, phenolic compounds, and tocopherols (Lin, 

2011). The mesocarp of the oil palm fruit also contains an endogenous enzyme (lipase), 

which is at a dormant state in an intact fruit but activated when the fruit is bruised 

(Ngando-Ebongue et al., 2006).  
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The bruising of the fruits caused mixture of the TAG and the cytoplasm fluid (water) 

to mix up forming an emulsion within the damaged area. TAG- water mixture is a 

favourable interface for hydrolytic activity of the endogenous lipase. The opening 

created by the bruised action also makes the fruits to be prone to invasion by 

microorganisms. The combined hydrolytic activities of both endogenous and 

microbial lipases inside the fruits before the commencement of any milling activity 

leads to FFA accumulation in the un-processed fruits. 

At the time of harvest, the level of FFA in ripe, unbruised fruit is between 0.2% to 

0.7% (Wahyu et al., 2016) but in-appropriate handling can cause the FFA to rise 

rapidly. FFA contents increment to about 40% in 15 minutes after mesocarp damage 

has been reported by Pahoja and Sethar (2002) and Ngando-Ebongue et al. (2006). 

Between the period of harvesting and processing of FFB at the mill, the bunches are 

also subjected to a series of handling and transportation methods in which they are 

exposed to physical/mechanical damage often referred to as bruise. The damage is due 

to the falls of the fruit bunch from the tree during harvesting, machinery and 

mishandling during transportation. 

Research has shown that about 2.88% of harvested FFBs are bruised (Hadi et al., 

2009). This certainly will contribute to the amount of FFA that will accumulate in the 

fruits before the fruits reach the mill reception ramp. The rate of increase in FFA of 

the fruit is directly proportional to the severity of bruise to the fruits (Xern, 2017), 

which is a function of the amount and method of transportation and handling of the 

bunches. The increase in FFA is also dependent on the time elapsed between 

harvesting and sterilization. 

According to Abdull Rani et al. (2015), the quality of CPO is commonly measured by 

five parameters, i.e. FFA content, the deterioration of bleachability (DOBI), iodine 

value, moisture content and carotene content. However, Constant et al. (2017) reported 

that the quality of palm oil is assessed mainly by its FFA content and impurities. The 

accumulation of FFA has a strong impact on the quality of CPO because FFA content 

above 5% is thought to be unfit for human consumption (Ngando-Ebongue et al., 

2006). Hence, FFA content can be said to be the most cardinal parameter in the quality 

assessment of CPO as it influences consumer decision and trading of the commodity. 

The first step towards curtailing FFA accumulation in CPO is to minimised mechanical 

damage/bruise to the mesocarp and to carryout effective heat treatment to inactivate 

the endogenous lipase. However, heat treatment of FFB to inactivate the endogenous 

lipase is indispensable but care must be taken to deliver adequate heat needed to 

inactivate the enzyme. Apart from the enzymatic reactions that may take place during 

sterilization, Noerhidajat et al. (2016) reported that the possibility of hydrolysis 

during sterilization is high since most of the oil-bearing cells are plant tissue with 

water content. Jusoh et al. (2013) also reported the influence of heating parameters 

of the milling process on the quality of CPO. They recommended a precise study for 

the improvement of CPO quality with special attention to the FFB sterilization 
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process. 

It is therefore, pertinent to understand the interactions between the parameters of 

postharvest activity, their effects and the mechanisms of FFA accumulation in the 

extracted CPO. The ideal approach to achieve this understanding, is to model the 

kinetics of the reactions that occurred in the fruits before, during and after milling. 

Such models are currently very scarce hence, the need for this study. 

1.3 Problem Statements 

Oil palm fruit (OPF) is subjected to several mechanical and thermal processes before 

CPO can be extracted from it. The nature of palm fruit tree, the current method of 

harvesting and handling of FFB causes a lot of mechanical damage to the thin, pliable 

exocarp of the fruit. The damage to the mesocarp ruptures the oil-bearing cells, mixing 

the oil with the cytoplasm fluid (water) to form an emulsion which is a good interface 

for enzymatic hydrolysis leading to the accumulation of FFA. 

The storage/delay time of the injured/bruise OPF is also a major problem that could 

activate the lipase and instantly brings about accumulation of FFA. The damage to the 

exocarp makes the fruit to be prone to invasion by microorganisms which also 

hydrolyses the oil (triglycerides) with their lipase. The product of the hydrolysis (FFA) 

affects CPO quality in terms of wholesomeness and commercial value. This was 

attested to by Ngando-Ebongue et al. (2006) and Kumar & Krishna (2014) who 

reported that high FFA CPO is unfit for human consumption and may lead to a loss 

of 13.6 to 19.5% neutral lipid during refining respectively. 

Apart from the above, higher FFA in CPO implies higher DAG, MAG and glycerol 

which has been reported by Taylor et al. (2013) to be precursor for the formation of 

fatty acid esters of monochloro-propanediol (MCPD) and that of glycidol. Glycidol 

and 3-MCPD pose concerns for food safety. Reports of toxicological studies have 

shown that “free 3-MCPD is carcinogenic in rats, producing kidney and reproductive 

system defects” (MacMahon et al., 2013). This therefore, necessitated the Joint Food 

and Agriculture Organization/ World Health Organization Expert Committee on Food 

Additives (JECFA) to recommend a maximum tolerable daily intake for free 3-MCPD 

to be 2 μg/kg body weight per day (MacMahon et al., 2013) 

The sterilization process carried out at 131°C (404 K) and 40 psi, to ease the 

detachment of fruitlets from spikelet and also to inactivate the lipase is also face with 

the problem of the close-knitted arrangement of spikelet. This, in addition to the whole 

loading of FFB during sterilization prevents heat to effectively penetrate through the 

fruits or evenly distribute within the bunch as well as within the cage. Thereby 

resulting in ineffective sterilization of the fruits to be responsible for low oil recovery 

and the quality of the extracted CPO (Ali et al., 2014). The ineffectiveness of the 

sterilization process could lead to the differential cooking of the fruits and 

consequently resulting to partial inactivation of the endogenous lipase in the fruits. 
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The uneven distribution of steam also causes certain parts of FFB to be overcooked 

leading to gradual accumulation of FFA due to thermal-induced chemical hydrolysis. 

Determination of the effectiveness of sterilization in-situ is practically difficult since 

the process cannot be empirically observed directly, the current process practiced in 

palm oil mills according to Yunus et al. (2015) is not well understood.  

According to Sarah and Taib (2013), several studies on palm fruit sterilization has been 

published but only a few of them reported on the enzymatic destruction kinetics of 

lipase during sterilization of oil palm fruits. The different physical parameters such 

as temperature, pressure, heating time used during processing of FFB for CPO and 

water content of the oil will cause changes in physical and chemical properties of 

the CPO. During milling, thermal hydrolysis of the TAG due to high temperature 

(>100oC) and moisture is prevalent. Extreme heat, moisture content and extended 

heating hour initiate hydrolysis of the CPO to the point that the reaction becomes 

dominant. Manral et al. (2008) reported that “repeated heating of CPO at high 

temperatures results in thermal degradation reactions leading to changes in its 

physical, chemical, nutritional and sensory properties”, thereby, reducing the 

quality of CPO produced. 

Deterioration and degradation of CPO is a major concern in the palm oil industry 

especially accumulation of FFA. Irrespective of the processing method, FFA 

accumulation could occur at all the unit operation of the palm oil milling process, 

which consequently affects its quality. Also in order to allow for efficient mitigation 

strategies of monochloro-propanediol fatty acid esters of (MCPDFE) and that of 

glycidol fatty acid esters (G-FE) in crude and refined palm oil, a robust and analytical 

study of the whole value chain of oil palm fruit is desired.  

It is therefore pertinent to understand the kinetics of this enzyme in it native or crude 

state as most of the reported studies are done in-vitro using purified or immobilized 

lipase. To date, there is no data on the thermal effect on endogenous lipase in 

mesocarp fibre of palm fruit. Hence, the study of FFA accumulation during 

postharvest activities of fresh oil palm fruits is important to improve CPO quality 

by understanding the reaction kinetics of enzymatic hydrolysis (lipase) and heat 

induced hydrolysis. 
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1.4 Research Objectives 

The general objective of this research was to elucidate the process conditions and 

practices that affect the quality of CPO produced in palm oil mills with a view to gain 

a better understanding of oil deterioration during the processes. 

The specific objectives of this study were: 

i. To evaluate and model the effects of mechanical damage/bruise, storage/delay 

time and temperature on FFA accumulation in the fruits mesocarp of oil 

palm fruitlets. 

ii. To model and simulate heat penetration and distribution in oil palm 

fruitlets during heat treatment process. 

iii. To develop the reaction kinetics model of thermal inactivation of endogenous 

lipase responsible for the accumulation of FFA in bruised OPF using partial 

differential equation. 

iv. To develop the reaction kinetics of thermal-induced hydrolysis of crude palm 

oil with heat and mass transfers in a closed system. 

 

 

1.5 Significance and scope of study 

The main quality parameter of CPO for both human consumption and industrial use is 

FFA content. Therefore, the scope of this research is limited to laboratory-scale study 

of pre-milling and milling factors that lead to the accumulation of FFA in the extracted 

CPO and to develop a dynamic model for the kinetics of FFA accumulation in bruised 

fruits, in-vivo activity of the endogenous lipase (thermal inactivation) and thermal 

induced hydrolysis of TAG. The knowledge of the mechanisms in which lipase 

hydrolyses TAG and it thermodynamic parameters are essential for the development 

of rational approaches to enzyme inactivation. While the kinetics of quality changes 

(FFA accumulation) in CPO during processing of OPF will enables prediction of final 

quality of the product and provides a scientific tool for the improvement of the process 

through correct selection of process conditions that will enhance quality control and 

help in formulation of mitigation strategy towards curbing the formation of precursor 

of 3-MCPD in CPO during the downstream process of CPO production. 

1.6 Outline of the study 

This thesis is organized into seven Chapters. Chapter one explains the background of 

the research, providing an overview of palm fruit processing and the research gap in 

the study of oil palm fruits along with the objectives set to be achieved in the study. 

Literature related to the variety of palm fruit, harvesting and post-harvest activities that 

lead to FFA accumulation in palm fruits along with milling activities that contribute 

to FFA accumulation in the extracted CPO were reviewed in Chapter two. Also 

presented in Chapter two are literature on chemical composition and thermal properties 

of palm fruit and CPO, hydrolysis of TAG (thermal and enzymatic), its kinetics and 
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models. 

Chapter three is the study of pre-milling factors (bruise, environmental temperature 

and delay time) on FFA accumulation in OPF. The methodology used, the results and 

discussions are presented. Also present in this chapter are model development and 

simulation works carried out to achieve the set objective (objective one). 

Chapter four represent the first unit operation in the milling of OPF (heat treatment). 

Presented in this chapter is the simulation of heat penetration and distribution in the 

OPF during heat treatment. The procedures used for the simulation and the results are 

discussed. 

Chapter five contains the comprehensive experimental works and model development 

on inactivation kinetics of the endogenous lipase in OPF. Effects of heat on the 

abscission layer of OPF, the integrity of the oil globule membrane as well as in-vivo 

thermal hydrolysis of the TAG are presented and discussed. Also presented in this 

chapter is the effect of increase in FFA, DAG and MAG on the formation of lipid 

contaminants such as MCPD-FE and G-FE. 

Presented in Chapter six is the study of effect of heat and moisture content on FFA 

accumulation in the CPO extracted after sterilization. In addition, a detailed dynamic 

model of kinetics of thermal hydrolysis of CPO in a closed system is also presented. 

Chapter seven is the conclusions drawn at the end of the study and suggestions for 

further research. Figure 1 is the flow diagram/structure of this thesis. 
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