

DYNAMIC MATHEMATICAL MODELLING OF FREE FATTY ACID ACCUMULATION IN FRESH OIL PALM FRUIT (Elaeis guineensis Jacq.)

SHEHU UMAR ETSU

FK 2020 40

DYNAMIC MATHEMATICAL MODELLING OF FREE FATTY ACID ACCUMULATION IN FRESH OIL PALM FRUIT (*Elaeis guineensis* Jacq.)

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree Doctor of Philosophy

November 2019

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

I dedicate this thesis to my beloved wife in person of Hajiya Hadiza Yunusa Umar, and my children Khadijat Anisa Umar, Abubakar Sadeeq Umar, Muhammad Al-Amin Umar and Zainab Sakinat Umar for their unwavering love, sacrifice, patience, encouragement and best wishes.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DYNAMIC MATHEMATICAL MODELLING OF FREE FATTY ACID ACCUMULATION IN FRESH OIL PALM FRUIT (*Elaeis guineensis* Jacq.)

By

SHEHU UMAR ETSU

November 2019

Chairman: Associate Professor Mohd Noriznan Mokhtar, PhDFaculty: Engineering

Crude palm oil (CPO) is extracted from the fleshy mesocarp of the oil palm fruits, (Elaeis guineensis). The fruit has to undergo several thermo-mechanical processes before the oil can be extracted. However, the oil-bearing mesocarp of the fruit contained an endogenous enzyme (lipase), which is activated upon injury/bruised. The hydrolytic activity of the enzyme leads to the accumulation of free fatty acid (FFA) which is a major quality index of CPO. Researches have shown that over 2% of fresh fruit bunches(FFB) arriving at the mill are bruised and the bulkiness coupled with the close-knitted nature of the FFB causes ineffective heat distribution/penetration into the inner layers of the fruits during the steam sterilization process, which is aimed in inactivation of the enzyme. Hence, the need to explore alternative medium of heat transfer. Heating of the extracted CPO with high moisture content to facilitate handling in the mill triggered up thermal hydrolysis at a temperature above 100°C (373 K). All these phenomena simultaneously led to poor palm oil quality. Therefore, a method for the quantification of a bruise was developed and used for this study. Bruise volume, storage temperature and time were found to have a significant effect (P<0.05) on FFA accumulation in oil palm fruits. Dynamic simulation of FFA in bruised fruits was used to predict the optimum temperature for FFA accumulation in bruised fruit to be 31°C (304 K). The GC-MS analysis of extracted CPO from bruised

fruit to be S1°C (304 K). The GC-MIS analysis of extracted CPO from bruised fruit heat-treated in chlorinated water indicates the formation of chlorinated fatty acids (Palmitic acid chloride and Lauric acid chloride). A wounding assay of the endogenous lipase in palm fruit was carried out to quantified in-vivo activity of the enzyme and the FFA accumulation in the fruitlets. A time-dependent heat penetration simulation was also conducted using a COMSOL Multiphysics software along with the development of kinetic models for thermal inactivation of lipase and thermal hydrolysis of CPO. The model equations were solved and the parameters of the model estimated using gPROMS ModelBuilder. The two-way analysis of variance (ANOVA) shows that treatment duration and temperature had significant (P < 0.05) effect on the residual lipase activity. The inactivation kinetics of lipase was found to

be a non-elementary reaction in which initial rate constant, kOdec and inactivation energy, *Edec* were estimated to be 0.035 $U^{-0.85}/kg$ -mes^{-0.85}.min and 153052 kJ/kmol, respectively. The predicted residual activity fitted very well to the experimental data with relative root mean square error (rRMSE) between 0.19% and 1.17%. The important parameters for the thermal hydrolysis model estimated were activation energy, E (57554 kJ/kmol) and a frequency factor of reaction, k0T $(2.14 \times 10-6 \text{ m}^3/\text{kmol}\cdot\text{min})$. The relative root means square error (rRMSE) between the measured and the predicted FFA accumulation is between 1.92% and 31.98%. This indicates a satisfactory fit between the experimental and the predicted values. The sensitivity analysis of the developed models (bruise, thermal inactivation of lipase and thermal hydrolysis) revealed that they are sensitive to the selected parameters k_{cat} , n_b , k_{0dec} , n_d , n_w , n_T and n. These kinetic models provided a basic understanding of the mechanism of FFA accumulation in palm fruits and CPO during handling and processing and may be a useful tool in further re-designing and quality improvement of the industrial processes of crude palm oil extraction. However, to mitigate against associated problems of the current steam sterilization, hot water sterilization should be explored.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAJIAN TERHADAP AKTIVITI PENGUMPULAN ACID LEMAK BEBAS (FFA) BUAH KELAPA SAWIT MENTAH

Oleh

SHEHU UMAR ETSU

Pengerusi : Profesor Madya Mohd Noriznan Mokhtar, PhD Fakulti : Kejuruteraan

Minyak sawit mentah (CPO) diekstrak daripada mesokarpa buah kelapa sawit, (*Elaeis guineensis*). Buah ini perlu menjalani beberapa proses termal-mekanikal sebelum minyak dapat diekstrak. Walaubagaimanapun, mesocarp vang mengandungi minyak mempunyai enzim endogen (lipase), yang diaktifkan apabila diasingkan atau ketika buahnya lebam. Aktiviti hidrolisis enzim yang membawa kepada pengumpulan asid lemak bebas (FFA) yang merupakan indeks kualiti utama CPO. Penyelidikan telah menunjukkan bahawa lebih daripada 2% buah tandan segar (FFB) yang tiba di kilang telah lebam dan sebahagian besarnya digabungkan menyebabkan penyebaran haba / penembusan haba yang tidak berkesan ke lapisan dalam buah semasa proses pensterilan wap yang bertujuan untuk penyah-aktifan enzim. Untuk itu, terdapat keperluan untuk mengkaji medium alternative penyebaran haba. Semasa pemanasan CPO yang diekstrak dengan kandungan kelembapan yang tinggi untuk memudahkan pengendalian dalam kilang mencetuskan hidrolisis haba. Semua fenomena ini merendahkan kualiti minyak sawit. Kajian terbaru mengenai kualiti CPO dari kilang hanya memberi tumpuan kepada pengoptimuman parameter dan korelasi atau regresi dengan sedikit perhatian terhadap mekanisme pengumpulan FFA. Oleh kerana itu, ini menjadi keperluan untuk mengkaji kinetik pengumpulan FFA dalam CPO. Kaedah untuk mengukur lebam telah dibangunkan dan digunakan. Isipadu /kandungan lebam, suhu dan masa penyimpanan didapati mempunyai kesan yang ketara (P <0.05) terhadap pengumpulan FFA dalam buah kelapa sawit. Satu simulasi dinamik FFA dalam buah lebam digunakan untuk meramalkan suhu optimum untuk pengumpulan FFA dalam buah lebam adalah 31 °C (304 K). Analisis GC-MS CPO yang diekstrak dari haba buah lebam yang dirawat dalam air berklorin menunjukkan asid lemak monochloro-propanediol (MCPD). Ujian yang mencederakan lipase endogen dalam buah sawit dilakukan untuk mengukur aktiviti enzim in-vivo dan pengumpulan FFA dalam buah. Simulasi penembusan haba yang berkadar langsung denganmasa juga dijalankan menggunakan perisian COMSOL Multiphysics bersama-sama dengan pembangunan model kinetik untuk penyah-aktifan lipase dan hidrolisis haba CPO. Persamaan model telah diselesaikan dan parameter penting telah dianggarkan menggunakan perisian ModelBuilder gPROMS. Analisis dua hala (ANOVA)

menunjukkan bahawa tempoh rawatan dan suhu mempunyai kesan yang signifikan (P <0.05) terhadap sisa aktiviti lipase. Kinetik *lipase* yang tidak aktif didapati sebagai tindak balas bukan asas di mana kadar permulaan, k_{0dec} dan tenaga tidak aktif, E_{dec} dianggarkan berjumlah 0.035 U^{-0.85} / kg-mes^{-0.85}.min dan 153052 kJ / kmol. Kajian ini juga mendedahkan bahawa tidak terdapat pengumpulan FFA yang ketara disebabkan hidrolisis termal dalam suhu kajian 35 °C (308 K) - 70 °C (343 K).Sisa aktiviti yang diramalkan dan pengumpulan FFA berpadanan dengan sangat baik dengan data eksperimen dengan ralat min(rRMSE) antara 0.19% dan 1.173%. Parameter penting untuk model hidrolisis terma yang dianggarkan adalah tenaga pengaktifan, E (57554 kJ / kmol) dan faktor tindak balas frekuensi, k_{0T} (2.14 × 10⁻⁶ m^3 / kmol · min). Ralat (rRMSE) antara pengukuran dan pengumpulan FFA yang diramalkan adalah antara 1.92% dan 31.98. Ini menunjukkan kesesuaian antara percubaan dan nilai yang diramalkan. Analisis sensitiviti model (kelebaman, suhu lipase tidak aktif, dan hidrolisis termal) menunjukkan bahawa mereka sensitif terhadap parameter k_{cat} , n_b , k_{odec} , n_d , n_w , n_T dan n_c yang dipilih. Model kinetik yang dibangunkan memberikan pemahaman kepada asas mekanisme pengumpulan FFA dalam buah sawit dan CPO semasa aktiviti pasca-tuaian dan boleh menjadi alat yang berguna dalam mereka bentuk semula dan meningkatkan kualiti proses pengekstrakan minyak sawit. Walaubagaimanapun, perindustrian untuk mengurangkan permasalahan berkaitan pensterilan wap pada masa kini, pensterilan menggunakan air panas perlu dikaji.

ACKNOWLEDGEMENTS

All praise belongs to Allah, the Most Gracious and the Most Merciful. May the peace and blessing of Allah be upon our prophet Muhammad (SAW), upon his family and companion. First I would like to testify the favour and blessing of Allah in my life. Alhamdulillah, Alhamdulillah. I am extremely grateful for the excellent support, guidance and advice from the Chairman of my supervisory committee Associate Prof. Mohd Noriznan Mokhtar (Dr.- Ing.). A big thank you to the committee members Associate Prof. Dr. Azhari Samsu Baharuddin and Dr. Nazmi Bin Mat Nawi. All of you have been absolutely wonderful.

My sincere appreciation and gratitude goes to my friends who welcome me to UPM Dr. Suleiman Musa, Dr. Suleiman Hong and Dr. Abdullahi Magaji Yusufu. A very big thanks to my study mates Dr. Mrs. Zahrau N. Bamali, Musa Halilu and Mustapha Jibril. We created home away from home in Malaysia for ourselves. It was indeed a memorable experience. I would also like to thank my fellow PhD candidates in the Bioprocess research group Dr. Safwan, Ahmed Tarmezee Bin Talib and Chu Chang Jie for your assistance in one way or the other. And to the staff of the Department of Process and Food Engineering UPM I remain indebted.

I am very thankful to my funding agency, the Tertiary Education Trust Fund (TETFund) base in Abuja, Nigeria for providing funding in the form of scholarship award to me and thousand others in support of higher and qualitative education. Similarly, my appreciation goes to the Research Universiti Grant of the Universiti Putra Malaysia for funding the research. I would not forget to put on record the contribution of the management of Kaduna Polytechnic and the staff of the Department of Agricultural and Bioenvironmental Engineering, Kaduna Polytechnic Kaduna, Nigeria for their support and encouragement to undertake these studies.

A very special thanks to my colleagues Engr. Dahir Mohammed, Engr. Umar Mohammed Maradun, Engr. Amina Abdulsalam and Engr. Hadiza Kwajaffa all of the Department of Agricultural and Bio-Environmental Engineering, Kaduna Polytechnic. I want to acknowledge many other people too many to mention here, who, throughout my life, have helped me reach the point of completing my PhD.

 \bigcirc

Finally, I express my deepest gratitude to my family especially my wife Hajiya Hadiza Yunusa Umar for all of her hard work, for taking care of our children, and for her never ending support throughout all of my education and encouraging me to pursue what I enjoy most. I also thank my parents for sowing the seed of learning in me. I also sincerely appreciate my parents-in-law for their help in my life. Thanks again to all of you who accompany me on this journey. This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Noriznan Mokhtar, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Azhari Samsu Baharuddin, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Nazmi bin Mat Nawi, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

> ZALILAH MOHD SHARIFF, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date:

Name and Matric No.: Shehu Umar Etsu (GS44961)

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	
Name of Chairman	
of Supervisory	Associate Professor
Committee:	Dr. Ing Mohd Noriznan Mokhtar
Signature:	
Name of Member	and the second sec
of Supervisory	Associate Professor
Committee:	Dr. Azhari Samsu Baharuddin
Signature:	
Name of Member	
of Supervisory	
Committee:	Dr. Nazmi bin Mat Nawi

TABLE OF CONTENTS

			Page
ABS	ГКАСТ	ſ	i
ABST	TRAK	L	iii
ACK	NOWL	LEDGEMENTS	V
APPI	ROVAI		vi
DEC	LARA	ΓΙΟΝ	viii
LIST	OF TA	ABLES	xiv
LIST	OF FI	GURES	XV
LIST	OF AI	PPENDICES	XX
LIST	OF AI	BBREVIATIONS AND NOMECLATURE	xxi
СНА	PTER		
1	INTE	RODUCTION	1
	1.1	Overview of the Chapter	1
	1.2	Background of the Study	1
	1.3	Problem Statements	3
	1.4	Research Objectives	5
	1.5	Significance and scope of study	5
	1.6	Outline of the study	5
2	LITE	ERATURE REVIEW	8
-	2.1	Overview of the Chapter	8
	2.2	Oil Palm Fruit	8
		2.2.1 Factors that Lead to FFA Accumulation in CPO	10
		2.2.1.1 Crop Factors	10
		2.2.1.2 Field Factors	11
		2.2.1.3 The Milling Factors	14
	2.3	Composition of CPO	18
		2.3.1 Triglyceride in CPO	19
		2.3.2 Fatty Acid Composition of CPO	20
	2.4	Quality Assessment of CPO	20
	2.5	Quality Degradation of CPO During Processing	21
		2.5.1 Enzymatic Degradation of CPO	21
		2.5.1.1 Effect of Bruise on Enzymatic Degradation	l
		of CPO	22
		2.5.1.2 Lipase Activity in the Oil Palm Mesocarp	23
		2.5.1.3 Analytical Methods for Detection and	l
		Measurement of Lipase Activity	24
		2.5.1.4 Thermal Inactivation of Lipase	25
		2.5.2 Thermal Degradation of CPO	26
		2.5.3 Postharvest Heat Treatment of Fruits	27
		2.5.3.1 Hot water dips and sprays	28
		2.5.3.2 Hot air	28
	2.6	Kinetics of the Hydrolysis of TAG	28
	2.7	Mathematical Modelling Kinetics of Enzyme Inactivation	29

	2.8	Modelling and simulation of heat and mass transfer du	ring
		heat treatment of biological materials	31
		2.8.1 Heat Transfer	31
		2.8.1.1 Heat Transfer by Conduction	31
		2.8.1.2 Heat Transfer by Convection	33
		2.8.2 Mass Transfer	35
		2.8.2.1 Total continuity equation	36
		2.8.2.2 Component continuity equation	37
		2.8.3 Modelling of heat penetration and distribution in	fruit
		during heat treatment	37
		2.8.4 Commercial software for simulation modelling	38
		2.8.4.1 COMSOL	38
		2.8.4.2 gPROMS	39
	2.9	Summary	40
3	EFFE	CTS OF MECHANICAL INJURY/BRUISE A	ND
	STOF	AGE CONDITIONS OF OIL PALM FRUITLETS	ON
	FFA	ACCUMULATION IN THE FRUITS MESOCA	ARP
	BEFC	DRE STERILIZATION	41
	3.1	Introduction	41
	3.2	Materials and Methods	43
		3.2.1 Sample Collection	43
		3.2.2 Quantification of Bruise Volume	44
		3.2.3 Classification of bruise	44
		3.2.4 Sampling	45
		3.2.5 Experimental Procedure	45
		3.2.5.1 Extraction of CPO	45
		3.2.5.2 Determination of FFA	46
	3.3	Statistical Analysis	46
	3.4	Modelling FFA Accumulation in Bruised Mesocarp of O	PF 47
		3.4.1 Model Development	47
		3.4.2 Parameter Estimation and Dynamic Simulation	49
		3.4.3 Model Performance	49
		3.4.4 Sensitivity Analysis	50
	3.5	Results and Discussions	50
		3.5.1 Experimental Results	50
		3.5.2 Simulation Results	52
		3.5.2.1 Parameter Estimation	52
		3.5.2.2 Model Performance	54
		3.5.2.3 Sensitivity Analysis	54
	3.6	Summary	55
4	SIMU	LATION OF HEAT PENETRATION THROUGH (JPF
		NG HEAT IKEAIMENT	56
	4.1	Introduction Model Development	56
	4.2	Model Development	5/
		4.2.1 Geometric Modelling of a Palm Fruit	5/
		4.2.2 Governing Equation	58
		4.2.3 Physics Setting	59

xi

		4.2.4	Model F	Parameters	60
		4.2.5	Numerio	cal Solution of the Model	61
	4.3	Result	s and disc	cussions	61
		4.3.1	Model F	Performance	62
	4.4	Summ	ary		63
5	НЕАТ	Г TRE A	ATMENI	FON OIL PALM FRUITS	64
	5.1	Introd	uction		64
	5.2	Deterr	nination of	of average size of OPF	65
	5.3	Therm	nal Inactiv	vation of Endogenous Lipaes in OPF	66
		5.3.1	Raw Ma	iterials	66
		5.3.2	Heat Tre	eatment of Fresh Palm Fruit	66
		5.3.3	In-vivo	Lipase Assay	66
		5.3.4	Determi	nation of FFA Content	68
	5.4	Histol	ogical Lig	ght Microscopy	68
	5.5	Sampl	e Prepara	tion for Abscission Photograph	68
	5.6	Sampl	e Prepara	tion for the Investigation of the Chlorination	
		of Fat	ty Acid D	uring Heat Treatment	68
		5.6.1	Determi	nation of FFA	69
		5.6.2	GC-MS	Analysis of the Extracted CPO	69
			5.6.2.1	Sample Preparation	69
			5.6.2.2	GC-MS	69
	5.7	Statist	ical Anal	ysis	70
	5.8	Model	lling Kine	etics of Thermal Inactivation of Endogenous	
		Lipase	e in OPF		70
		5.8.1	Model I	Development	70
			5.8.1.1	Governing Equations	70
			5.8.1.2	Parameter Estimation	72
	5.0	D L	5.8.1.3	Model performance and sensitivity analysis	72
	5.9	Result	s and Dis	cussion	/3
		5.9.1	Experim	Constructional Dimension of ODE	13
			5.9.1.1	Geometrical Dimension of OPF	15
			5.9.1.2	Integrity of all Call/Clabula Mambrana	72
			5012	Effect of Het Weter Treatment on	15
			3.9.1.3	Abscission of OPE	74
			5011	FEA Accumulation (FEA_{i}) in the mesocarp	/4
			J.7.1.4	of OPE due to heat treatment	74
			5915	FEA Accumulation (FEA_{2}) in the mesocarp	/4
			5.7.1.5	of OPE due to the residual activity of the	
				linase	75
			5916	Effects of bruise and heat treatment on	15
			5.7.1.0	chlorination of fatty acids	77
		5.9.2	Simulat	ion Results	81
		<u>-</u>	5.9.2.1	Parameter Estimation and Model	01
				Performance	81
			5.9.2.2	Reaction Rate Constant	83
			5.9.2.3	Temperature and Residual Lipase Activity	
				Distribution	83

				5.9.2.4	Effect of Heat Treatment on In-vivo Lipase	0.4
				5005	Activity	84
		- 10	a	5.9.2.5	Sensitivity Analysis	85
		5.10	Summ	ary		87
	6	EFFE	CT OF	HEATIN	NG ON CRUDE PALM OIL IN A CLOSED	
		SYST	EM			88
		6.1	Introd	uction		88
		6.2	Materi	ials and N	Iethods	90
			6.2.1	Sample	Preparation	90
			6.2.2	Experim	nental Procedure	90
			6.2.3	FFA An	alysis	90
		6.3	Model	ling the	Kinetics of Thermal Hydrolysis of CPO in a	0.1
			Closed	1 System		91
			6.3.1	Model I	Development	91
				6.3.1.1	Reaction Scheme and Kinetic Models	91
				6.3.1.2	Mass Transfer and Component Balance	92
				0.3.1.3	Heat Transfer and Energy Balance	94
				0.3.1.4	Function of the Model Derformence	97
				0.3.1.3	Evaluation of the Model Performance	97
		6.4	Docult	0.5.1.0	Selisitivity Analysis	90
		0.4	641	S and Dis	cussions	90
			6.4.1	Simulat	ion Results	90
			0.4.2	6 4 2 1	Darameter Estimation	99
				6/22	Temperature and Pressure Profiles in the	77
				0.4.2.2	Reactor	99
				6423	FEA Accumulation in CPO	101
				6424	Analysis of Simulation Profiles	101
				6425	Model Performance	102
				6.4.2.6	Parameter Sensitivity Analysis	103
		6.5	Summ	ary		105
	_					
	7	CON	CLUSI	ON AND	RECCOMENDATION	106
		7.1	Conclu	usion		106
		7.2	Recon	imendatio	ons	107
		1.3	Contri	bution of	the Research	108
	REFE	RENC	ES			109
	APPE	NDICH	ES			116
	BIOD	ATA O	F STU	DENT		127
	LIST	OF PU	BLICA	TIONS		128

LIST OF TABLES

Table		Page
2.1	Ideal composition of palm fruit bunch	9
2.2	General Compositions of CPO	19
2.3	Fatty acid composition of CPO	20
2.4	Typical values of the convection heat transfer coefficient	33
3.1	ANOVA of FFA accumulation versus bruise volume, temperature and time	51
3.2	Temperature correlation	53
3.3	Parameters estimated for the model on FFA accumulation in bruised OPF	53
3.4	rRMSE and R ² between the predicted and experimental FFA	54
4.1	Dimensions of oil palm fruit (Tenera) Owolarafe et al. (2007)	57
4.2	Density and thermal properties of OPF	60
5.1	Samples used for investigation of chlorination of fatty acids	69
5.2	Summary of average geometry of palm fruit (Tenera)	73
5.3	ANOVA of the effect of temperature and time on the in-vivo residual activity of lipase in palm fruit	77
5.4	Thermally labile, chlorinated contaminant (palmitic chloride) formed during heat treatment of OPF	80
5.5	rRMSE between the measured data predicted data of the residual lipase activity	82
5.6	Estimated parameters for the kinetic of thermal inactivation of lipase	83
6.1	Empirical models or values for specific heat capacity and density of each component	97
6.2	Estimated parameters	99
6.3	rRMSE between the model and experimental data for temperature, total pressure and FFA accumulated inside the reactor	103

LIST OF FIGURES

Figure		Page
1.1	Thesis Structure	7
2.1	Fresh fruit bunch	9
2.2	Anatomy of oil palm fruit	9
2.3	Factors affecting FFA content of CPO	10
2.4	Shell types in oil palm (pisifera, tenera, and dura)	11
2.5	Bruised fresh fruit bunch (bruised fruit due to: a-tool used for harvesting, b- impact of fall and rubbing)	11
2.6	Colour changes as fruits ripens Adapted from Singh et al. (2014)	12
2.7	Different forms of transportation of FFB	15
2.8	Palm oil mill process flow diagram and potential FFA accumulation points	16
2.9	Chemical structure of TAG of palm oil	20
2.10	Transmission electron micrograph of a section through OPF mesocarp. A- fresh fruit; B- palm fruit sterilized for 30 min at 100 oC (oil globules have been partially dissolved); and C- palm fruit sterilized for 60 min at 100 oC (oil globules have been completely dissolved but mixed with fibres) CW – cell wall; O – oil globule; R – raphide; St – Sterigmata; S– silica	22
2.11	A hypothetical model of lipolytic activity of endogenous lipase activated by bruise (a-Oil globule in an un-bruised fruitlet, b-Oil globule in a bruised fruitlet	23
2.12	Reaction scheme of lipase	24
2.13	Stepwise reactions hydrolysis reaction of vegetable oil with intermediate formation of DAG and MAG	29
2.14	Heat conduction through a plane wall of thickness Δx and area A	31
2.15	Heat flux through a plane wall of thickness x and area A	32
2.16	A sphere immersed in and exchanging heat with water at different temperature	34
2.17	Movement of water molecule across water-air interface	35

2.18	Controlled volume	36
2.19	Screen short of the window interface of COMSOL	39
2.20	gPROMS structure and interface	40
3.1	Flow diagram of the study of pre-milling factors (<i>BV</i> , temperature and time on FFA accumulation in bruised OPF	42
3.2	Cleaned and sorted OPF	43
3.3	Bruising tool for creating internal bruise in fruit	44
3.4	Illustration of the procedures used for the experiment (a- bruised fruits, b- Incubator, c- mashed fruit mesocarp and c- Screw press	45
3.5	Illustration of lypolitic activity of the endogenous lipase activated by bruise	47
3.6	FFA accumulation in bruised OPF exposed to different ambient temperature after six hours delay time	50
3.7	Surface plot of the combined effects of anbient temperatures and the delay times on mean FFA accumulation in bruised OPF	51
3.8	Main effects plots of bruise volume (BV) , temperatures and times on mean FFA accumulation	52
3.9	Fitting between temperature correlation (f_T) with experimental data (ratio of FFA) at different temperatures to obtain estimated	53
3.10	Dynamic profile of FFA accumulated in mesocarp at different temperatures and degree of bruise, a) 298 K, b) 303 K, c) 307 K, and d) 310 K. Line-simulation, dot - experimental points (\Box minor (degree of bruise) $R_a = 0.032$, \circ major (degree of bruise) $R_a = 0.065$)	54
3.11	Sensitivity analysis of k_{cat} and n_b on accumulated FFA content in CPO at 34°C (307 K) and R_a of 0.0353 a) FFA dynamic profiles at ±50%, ±25% of k_{cat} changes, b) Sensitivity changes of k_{cat} , c) FFA dynamic profiles at ±50%, ±25% of n_b changes, d) Sensitivity changes of n_b	55
4.1	Chronological link between chapter four and five	56
4.2	Model geometry (ellipsoidal) of OPF in 2D Axisymmetric	57
4.3	Symmetry of the model geometry showing the two domains	57
4.4	The meshed geometry	58

xvi

4.5	Screen shot of the window interface of COMSOL showing the model builder tree, setting window and the graphics window	60
4.6	Simulated dynamic temperature profile of the mesocarp of OPF immersed in hot water at 35°C (308 K) to 70°C (343 K)	61
4.7	Surface plot of the simulated temperature distribution in the fruit with T_w set at 70°C (343 K)	62
5.1	Schematic structure of the chapter	65
5.2	Geometry of oil palm fruit a) Spheroid shape, b) Correction section to measure mean radius for fruit, endocarp and kernel	65
5.3	Illustration of the procedure for the determination of in-vivo activity of endogenous lipase activity using wounding technique	67
5.4	Illustration of heat transfer to the fruit from water by convection and through the mesocarp by conduction	71
5.5	Morphology of lipid bodies in the mesocarp fibre of OPF (a-light micrograph of section through the mesocarp of un-treated OPF, b- light micrograph of section through the mesocarp of heat-treated OPF in water at 343 K for 60 min., c- light micrograph of section through the mesocarp of heat-treated OPF in water at 373 K for 60 min. (OG- Oil globule, ML- Middle lamella)	73
5.6	Photograph of a transvers section of the AZ of OPF showing dissolution of the pectin layer (a-Untreated fruit, b-Heat treated fruit at 70°C (343 K) in water for 60 min. c-Heat treated fruit in water at 100°C (373 K) for 60 min.)	74
5.7	Effect of heat treatment at 298 K t-373 K on FFA accumulation (FFA ₁) in OPF Mesocarp after for 60 min	75
5.8	FFA accumulation in OPF mesocarp (FF ₂) due to residual activity of the endogenous lipase after heat treated OPF was cool down to $37^{\circ}C$ (310 K)	76
5.9	Endogenous lipase activity lost after treatment at different temperatures for 60 min	76
5.10	GC-MS spectrum of CPO extracted from OPF samples a- Un-bruise fruits after heat treated in dry air oven at 373 K for 15 min (sample 1), b-Un-bruise fruits after heat treated in boiling tap water at 373 K for 15 min. (sample 2)	78

5.11	OPF samples after heat treatment. a- Un-bruise fruits after heat treated dry air oven at 373 K for 15 min (sample 1), b-Un-bruise fruits after heat treated in boiling tap water at 373 K for 15 min. (sample 2), c- Bruised fruits after heat treated in boiling tap water at 373 K for 15 min. (sample 3)	79
5.12	Relationship between FFA content of the samples and intensity of palmitic acid chloride	81
5.13	Simulated (line) and measured (points) relative residual lipase activity	82
5.14	Relation between reaction rate constant, k_{dec} and temperature	83
5.15	Contour plot of simulated heat distribution within OPF immersed in water at (a-318K, b-323K, c-333K and d-343K)	84
5.16	Contour plot of the simulated profile of in-vivo residual activity of lipase (U/kg-mes·min) in OPF after heat treatment at (a-318K, b-323K, c-333K and d-343K)	85
5.17	Sensitivity analysis of the developed model to changes in value of k_{0dec} with respect to predicted in-vivo residual lipase activity inside OPF after immersion in hot water at 343K for 60 minutes	86
5.18	Sensitivity analysis of the model to changes in n_d (±25%) with respect to predicted in-vivo lipase activity inside OPF after immersion in hot water at 70°C for 60 minutes	86
6.1	Schematic structure of the chapter	89
6.2	Bench top non-stirred pressure vessel	90
6.3	a-llustration of a section through the non-stirred pressure vessel (AMAR Equipment) used in this experiment. b- Illustration of heat transfers in the closed pressure vessel during the heat treatment of CPO	95
6.4	Effect of heat and water content on FFA accumulation in CPO in a closed system	98
6.5	Dynamic increment temperature profiles (<i>T</i>) of CPO-water with initial water content, a) 6.1 %, and b) 19.2 % w/w, in pressure reactor at different temperature set-points. Line-simulation, dot - experimental points (Δ 373 K100°C, \Diamond 403 K, \Box 433 K, \circ 473 K)	100
6.6 :	Dynamic profile of total pressure (P_t) in pressure reactor at different temperature set-points and different initial water contents in CPO, a) 0.8%, b) 6.1%, c) 10.9%, and d) 19.2% (w/w). Line-simulation, dot - experimental points (Δ 373 K, \Diamond 403 K, \Box 433 K, \bigcirc 473 K)	100
	··)	100

- Dynamic profile of FFA accumulated in CPO, in pressure reactor at different temperature set-points and different initial water contents, a) 0.8%, b) 6.1%, c) 10.9%, and d) 19.2%. Line-simulation, dot experimental points (Δ 373 K, ◊ 403 K, □ 433 K, ∘ 473 K)
- 6.8 Predicted dynamic profiles generated by simulation at 160°C and CPO water content of 19.2 wt, a) *T* and T_g , and b) Vapor (m_v) and water content $(m_{i=1})$
- 6.9 Sensitivity analysis of selected parameters on saturated vapor pressure at 160°C and CPO water content of 19.2 wt.%, a) \pm 30% with n_w , n_T , and B_T , and b) \pm 30% with k_{0T} and E
- 6.10 Sensitivity analysis of *n* on vapor mass flux (W_{wv}) at 433 K and water content of 19.2 wt.%, a) W_{wv} dynamic profiles, b) Sensitivity changes (20 min

104

104

101

102

LIST OF APPENDICES

Appen	Appendix						
1 A	Contour plots of the simulated temperature distribution in the fruit with T_w set at 35°C (308 K)	116					
1 B	Contour plots of the simulated temperature distribution in the fruit with T_w set at 40°C (313 K)	117					
1 C	Contour plots of the simulated temperature distribution in the fruit with T_w set at 50°C (323 K)	118					
1 D	Contour plots of the simulated temperature distribution in the fruit with T_w set at 60°C (333 K)	119					
1 E	Contour plots of the simulated temperature distribution in the fruit with T_w set at 70°C (343 K)	120					
2 A	Fatty acids derivatives in CPO extracted from sample 1	121					
2 B	Fatty acids derivatives in CPO extracted from sample 2	122					
2 C	Fatty acids derivatives in CPO extracted from sample 3	123					
2 D	Fatty acids derivatives in CPO extracted from sample 4	124					
2 E	GC-MS Instrument Setting	125					
2 F	GCMS peak report for sample 1	125					
2 G	GCMS peak report for sample 2	125					
2 H	GCMS peak report for sample 3	126					
2 I	GCMS peak report for sample 4	126					

LIST OF ABBREVIATIONS AND NOMECLATURE

FFB	Fresh fruit bunch
OPF	Oil palm fruit
TAG	Triacylglyceride
MAG	Monoglycerides
DAG	Diglycerides
FFA	Free fatty acid

Nomenclature

Symbol	Unit	Description
Ă	m ³ /kmol·min	Arrhenius constant
A_{g}	m^2	Area of heater wall-gas phase
A_h	m^2	Exposure area of heater to outside
A_l	m ²	Area of heater wall-liquid phase
A_{wv}	m^2	Surface area of liquid phase
B_T	К	Constant for ratio constant
		evaporation to condensation
C_i	kmole/m ³	Molar concentration of component <i>i</i>
C_{Pair}	kJ/kg·K	Specific heat capacity of dry air
C_{Ph}	kJ/kg·K	Specific heat capacity of heater
C_{Pi}	kJ/kg·K	Specific heat capacity of
		component <i>i</i>
C_{Pv}	kJ/kg·K	Specific heat capacity of vapor
c_E	U/kg-mes	Lipase activity
C _{mi}	kmol/kg-mes	Molar concentration of component i
C_{pm}	kJ/kg.K	Specific heat capacity of mesocarp
Cp_s	kJ/kg.K	Specific heat capacity of shell
Cp_k	kJ/kg.K	Specific heat capacity of kernel
E	kJ/kmol	Activation energy of reaction
E_{dec}	kJ/kmol	Deactivation energy
f	Dimensionless	Ratio of evaporation to
		condensation coefficient
C		Constant
ja c		Constant Mara francisco e francosco e i
Ji L	kg/kg-mes	Mass fraction of component 1
Joil cell £	kg/kg-mes	Mass fraction of oil
Ji0 C	кg/кg-mes	Iviass fraction of off
JT H	- 1_T/l	Temperature correlation
H_{eva}	KJ/Kg	Enthalpy of evaporation

h	$kJ/m^2 \cdot K \cdot min$	Convective heat transfer
h_{hg}	$kJ/K \cdot m^2 \cdot min$	Heat transfer coefficient of heater- gas phase
h _{hl}	kJ/K·m ² ·min	Heat transfer coefficient of heater- liquid phase
K	kI/m.K.min	Thermal conductivity
K kor	m ³ /kmol.min	Frequency factor of reaction
KD	kJ/K	Derivative term constant
K_I	$kJ/K \cdot min^2$	Integral term constant
K _P	kJ/K·min	Proportional term constant
K _{li}	kmol/kg-mes	Concentration
kcat	kg-mes/U.min	Catalytic constant
k_T	m ³ /kmol·min	Rate constant
kdec	U ^{-0.85} /kg-mes ^{-0.85} ·min	Inactivation rate
k _{0dec}	U ^{-0.85} /kg-mes ^{-0.85} ·min	Initial inactivation rate
m	kg	Mass
mair	kg	Mass of dry air
M_H	kg	Mass of heater
m_i	kg	Mass of component <i>i</i>
m_{i0}	kg	Initial mass of component i
M_m	kg	Mass of mesocarp
m_{v}	kg	Mass of vapour
MW_i	kg/kmol	Molecular weight of component <i>i</i>
Ν	-	Number of measured data
n _T	Dimensionless	Power factor for temperature
		relation
n		Power factor for water fraction
n_w	Dimensionless	Reaction order
nd	Dimensionless	Reaction order
n_b	Dimensionless	Power constant of bruise
O_j	1.0	value of predicted data j
P _{air}	KPa hDa	dry air pressure
P _{atm}	kPa kDa	total processure
P_t		
Γ_{v}	KF a lzDo	saturated vapor pressure
r vs	кга kI/min	electrical power
P_{el}	KJ/IIIII	electrical power
P_j	-	value of measured data <i>j</i>
\overline{P}_{j}	-	average value of measured data j
Q_g	kJ	energy in gas phase
Q_h	kJ	energy of heater
Q_l	kJ	energy in liquid phase
\dot{Q}_{loss}	kJ/min	heat transfer rate due to loss
\dot{Q}_{lv}	kJ/min	heat transfer rate due to evaporation

6

$\dot{Q}_{\scriptscriptstyle hg}$	kJ/min	heat transfer rate from heater to gas
Ò.,	kJ/min	heat transfer rate from heater to
∠hl		liquid phase
RA	%	Relative activity Redius of fruit
$\mathbf{\Lambda}_m$	111	Radius of fruit
D		Doding of shall
R_s	III m	Radius of kernel
R_s	kJ/kmol∙ K	Gas constant
R _a	Dimensionless	Ratio of bruise volume to mesocarp volume of fruit
rel _{act}	%	Relative activity
r _{hydcpo}	kmol/m ³ ·min	reaction rate of hydrolysis of CPO
<i>r</i> hydmes	kg/kg-mes∙min	Reaction rate of hydrolysis CPO in
T	TZ CONTRACTOR	the mesocarp
1	K	temperature in liquid phase
T_0	К	initial temperature in liquid phase
Tamb	К	ambient temperature
T_g	К	temperature in gas phase
T_h	К	temperature of heater
T _{set}	K	set temperature
T_w	K	Temperature of water
T _{opt}	К	Optimum temperature
T _{max}	К	Maximum temperature
T _{min}	К	Minimum temperature
U_h	kJ/K· m ² ·min	overall heat transfer coefficient
V	m ³	vessel volume
V _{maxT}	1/min	Reaction rate constant of reaction
V _{max0T}	1/min	Initial reaction rate constant of reaction
V _{max0T}	1/min	Initial reaction rate constant of reaction
V_g	m ³	gas phase volume
V_{g0}	m_{3}^{3}	initial gas phase volume
V _i V	m^3	volume of component i
v i Vio	m^3	initial volume of component
		r

xxiii

V_{pe}	Dimensionless
$\dot{W_{\scriptscriptstyle WV}}$	kg/min·m ²
X_{wat}	kg/kg

Oil fraction specific water mass flow rate mass fraction of water

Subscripts

Subscrip	•6		
i	number of comp	oonent	
j	number of data		
k	kernel		
т	mesocarp		
S	shall		
W	water		
a	air		
Greek le	tters		
Symbol		Unit	Description
$\eta_{_{eva}}$			mass evaporation coefficient
$ ho_i$		kg/m	density of component <i>i</i>
$\eta_{_{con}}$		-	mass condensation coefficient
α		m ² /min	thermal diffusivity

CHAPTER 1

INTRODUCTION

1.1 Overview of the Chapter

This chapter describes the background of the study on postharvest activities of oil palm fruit, its composition, increasing demand and concern for quality sustainability. Quality parameters, unit operations and practices during the extraction of crude palm oil (CPO) that contribute to oil degradation as results of free fatty acid (FFA) accumulation along the process line are highlighted. The problems associated with the current methods of fruits handling and processing, the objectives set to be achieved and the scope of work are also presented.

1.2 Background of the Study

Oil palm fruit (OPF) is a drupe fruit from palm tree (*Elaeis guineensis*). It is reddish in colour and grows in bunches. Each fruit is made up of an oily, fleshy outer layer (the mesocarp), with a single seed (the palm kernel). The oil extracted from the fruit mesocarp is known as crude palm oil (CPO) and the one from its kernel is called palm kernel oil. It is among the most economically important plant source for edible and industrial oil. According to European Palm Oil Alliance (EPOA, 2016), "the global palm oil production has increased from 15.2 million tons in 1995 to 62.6 million tons in 2015. This is the highest production volume of all vegetable oils, exceeding the second biggest oilseed crop by more than 10 million tons". The main reasons behind this growth could be attributed to the high productivity nature of OPF, the discovery and development of new applications beyond the traditional food use such as production of biodiesel.

However, Malaysian Palm Oil Council (MPOC, 2018) reported that the global palm oil production for 2018 was projected at 70 million tonnes with Malaysia and Indonesia as leading producers. Malaysian palm oil production is projected to reach 20.3 million tonnes, in 2018 due to better yields. In addition, "the global consumption of palm oil which rose from 14.6 million tons in 1995 to 61.1 million tons in 2015 is estimated by World Bank to double by 2020 making it as the most consumed oil in the world" (EPOA, 2016).

 \bigcirc

Red palm oil is distinctive among vegetable oils because of its fatty acid (FA) and TAG composition. It also contains some minor components such as free fatty acids (FFA), monoacylglycerols (MAG), diacylglycerols (DAG), metals, phospholipids, peroxides, chlorophylls, carotenoids, phenolic compounds, and tocopherols (Lin, 2011). The mesocarp of the oil palm fruit also contains an endogenous enzyme (lipase), which is at a dormant state in an intact fruit but activated when the fruit is bruised (Ngando-Ebongue *et al.*, 2006).

The bruising of the fruits caused mixture of the TAG and the cytoplasm fluid (water) to mix up forming an emulsion within the damaged area. TAG- water mixture is a favourable interface for hydrolytic activity of the endogenous lipase. The opening created by the bruised action also makes the fruits to be prone to invasion by microorganisms. The combined hydrolytic activities of both endogenous and microbial lipases inside the fruits before the commencement of any milling activity leads to FFA accumulation in the un-processed fruits.

At the time of harvest, the level of FFA in ripe, unbruised fruit is between 0.2% to 0.7% (Wahyu *et al.*, 2016) but in-appropriate handling can cause the FFA to rise rapidly. FFA contents increment to about 40% in 15 minutes after mesocarp damage has been reported by Pahoja and Sethar (2002) and Ngando-Ebongue *et al.* (2006). Between the period of harvesting and processing of FFB at the mill, the bunches are also subjected to a series of handling and transportation methods in which they are exposed to physical/mechanical damage often referred to as bruise. The damage is due to the falls of the fruit bunch from the tree during harvesting, machinery and mishandling during transportation.

Research has shown that about 2.88% of harvested FFBs are bruised (Hadi *et al.*, 2009). This certainly will contribute to the amount of FFA that will accumulate in the fruits before the fruits reach the mill reception ramp. The rate of increase in FFA of the fruit is directly proportional to the severity of bruise to the fruits (Xern, 2017), which is a function of the amount and method of transportation and handling of the bunches. The increase in FFA is also dependent on the time elapsed between harvesting and sterilization.

According to Abdull Rani *et al.* (2015), the quality of CPO is commonly measured by five parameters, i.e. FFA content, the deterioration of bleachability (DOBI), iodine value, moisture content and carotene content. However, Constant *et al.* (2017) reported that the quality of palm oil is assessed mainly by its FFA content and impurities. The accumulation of FFA has a strong impact on the quality of CPO because FFA content above 5% is thought to be unfit for human consumption (Ngando-Ebongue *et al.*, 2006). Hence, FFA content can be said to be the most cardinal parameter in the quality assessment of CPO as it influences consumer decision and trading of the commodity.

The first step towards curtailing FFA accumulation in CPO is to minimised mechanical damage/bruise to the mesocarp and to carryout effective heat treatment to inactivate the endogenous lipase. However, heat treatment of FFB to inactivate the endogenous lipase is indispensable but care must be taken to deliver adequate heat needed to inactivate the enzyme. Apart from the enzymatic reactions that may take place during sterilization, Noerhidajat *et al.* (2016) reported that the possibility of hydrolysis during sterilization is high since most of the oil-bearing cells are plant tissue with water content. Jusoh *et al.* (2013) also reported the influence of heating parameters of the milling process on the quality of CPO. They recommended a precise study for the improvement of CPO quality with special attention to the FFB sterilization

process.

It is therefore, pertinent to understand the interactions between the parameters of postharvest activity, their effects and the mechanisms of FFA accumulation in the extracted CPO. The ideal approach to achieve this understanding, is to model the kinetics of the reactions that occurred in the fruits before, during and after milling. Such models are currently very scarce hence, the need for this study.

1.3 Problem Statements

Oil palm fruit (OPF) is subjected to several mechanical and thermal processes before CPO can be extracted from it. The nature of palm fruit tree, the current method of harvesting and handling of FFB causes a lot of mechanical damage to the thin, pliable exocarp of the fruit. The damage to the mesocarp ruptures the oil-bearing cells, mixing the oil with the cytoplasm fluid (water) to form an emulsion which is a good interface for enzymatic hydrolysis leading to the accumulation of FFA.

The storage/delay time of the injured/bruise OPF is also a major problem that could activate the lipase and instantly brings about accumulation of FFA. The damage to the exocarp makes the fruit to be prone to invasion by microorganisms which also hydrolyses the oil (triglycerides) with their lipase. The product of the hydrolysis (FFA) affects CPO quality in terms of wholesomeness and commercial value. This was attested to by Ngando-Ebongue *et al.* (2006) and Kumar & Krishna (2014) who reported that high FFA CPO is unfit for human consumption and may lead to a loss of 13.6 to 19.5% neutral lipid during refining respectively.

Apart from the above, higher FFA in CPO implies higher DAG, MAG and glycerol which has been reported by Taylor *et al.* (2013) to be precursor for the formation of fatty acid esters of monochloro-propanediol (MCPD) and that of glycidol. Glycidol and 3-MCPD pose concerns for food safety. Reports of toxicological studies have shown that "free 3-MCPD is carcinogenic in rats, producing kidney and reproductive system defects" (MacMahon *et al.*, 2013). This therefore, necessitated the Joint Food and Agriculture Organization/ World Health Organization Expert Committee on Food Additives (JECFA) to recommend a maximum tolerable daily intake for free 3-MCPD to be 2 μ g/kg body weight per day (MacMahon *et al.*, 2013)

 \bigcirc

The sterilization process carried out at 131° C (404 K) and 40 psi, to ease the detachment of fruitlets from spikelet and also to inactivate the lipase is also face with the problem of the close-knitted arrangement of spikelet. This, in addition to the whole loading of FFB during sterilization prevents heat to effectively penetrate through the fruits or evenly distribute within the bunch as well as within the cage. Thereby resulting in ineffective sterilization of the fruits to be responsible for low oil recovery and the quality of the extracted CPO (Ali *et al.*, 2014). The ineffectiveness of the sterilization process could lead to the differential cooking of the fruits and consequently resulting to partial inactivation of the endogenous lipase in the fruits.

The uneven distribution of steam also causes certain parts of FFB to be overcooked leading to gradual accumulation of FFA due to thermal-induced chemical hydrolysis. Determination of the effectiveness of sterilization in-situ is practically difficult since the process cannot be empirically observed directly, the current process practiced in palm oil mills according to Yunus *et al.* (2015) is not well understood.

According to Sarah and Taib (2013), several studies on palm fruit sterilization has been published but only a few of them reported on the enzymatic destruction kinetics of lipase during sterilization of oil palm fruits. The different physical parameters such as temperature, pressure, heating time used during processing of FFB for CPO and water content of the oil will cause changes in physical and chemical properties of the CPO. During milling, thermal hydrolysis of the TAG due to high temperature (>100^oC) and moisture is prevalent. Extreme heat, moisture content and extended heating hour initiate hydrolysis of the CPO to the point that the reaction becomes dominant. Manral *et al.* (2008) reported that "repeated heating of CPO at high temperatures results in thermal degradation reactions leading to changes in its physical, chemical, nutritional and sensory properties", thereby, reducing the

Deterioration and degradation of CPO is a major concern in the palm oil industry especially accumulation of FFA. Irrespective of the processing method, FFA accumulation could occur at all the unit operation of the palm oil milling process, which consequently affects its quality. Also in order to allow for efficient mitigation strategies of monochloro-propanediol fatty acid esters of (MCPDFE) and that of glycidol fatty acid esters (G-FE) in crude and refined palm oil, a robust and analytical

study of the whole value chain of oil palm fruit is desired.

quality of CPO produced.

It is therefore pertinent to understand the kinetics of this enzyme in it native or crude state as most of the reported studies are done in-vitro using purified or immobilized lipase. To date, there is no data on the thermal effect on endogenous lipase in mesocarp fibre of palm fruit. Hence, the study of FFA accumulation during postharvest activities of fresh oil palm fruits is important to improve CPO quality by understanding the reaction kinetics of enzymatic hydrolysis (lipase) and heat induced hydrolysis.

1.4 Research Objectives

The general objective of this research was to elucidate the process conditions and practices that affect the quality of CPO produced in palm oil mills with a view to gain a better understanding of oil deterioration during the processes.

The specific objectives of this study were:

- i. To evaluate and model the effects of mechanical damage/bruise, storage/delay time and temperature on FFA accumulation in the fruits mesocarp of oil palm fruitlets.
- ii. To model and simulate heat penetration and distribution in oil palm fruitlets during heat treatment process.
- iii. To develop the reaction kinetics model of thermal inactivation of endogenous lipase responsible for the accumulation of FFA in bruised OPF using partial differential equation.
- iv. To develop the reaction kinetics of thermal-induced hydrolysis of crude palm oil with heat and mass transfers in a closed system.

1.5 Significance and scope of study

The main quality parameter of CPO for both human consumption and industrial use is FFA content. Therefore, the scope of this research is limited to laboratory-scale study of pre-milling and milling factors that lead to the accumulation of FFA in the extracted CPO and to develop a dynamic model for the kinetics of FFA accumulation in bruised fruits, in-vivo activity of the endogenous lipase (thermal inactivation) and thermal induced hydrolysis of TAG. The knowledge of the mechanisms in which lipase hydrolyses TAG and it thermodynamic parameters are essential for the development of rational approaches to enzyme inactivation. While the kinetics of quality changes (FFA accumulation) in CPO during processing of OPF will enables prediction of final quality of the product and provides a scientific tool for the improvement of the process through correct selection of process conditions that will enhance quality control and help in formulation of mitigation strategy towards curbing the formation of precursor of 3-MCPD in CPO during the downstream process of CPO production.

1.6 Outline of the study

This thesis is organized into seven Chapters. Chapter one explains the background of the research, providing an overview of palm fruit processing and the research gap in the study of oil palm fruits along with the objectives set to be achieved in the study. Literature related to the variety of palm fruit, harvesting and post-harvest activities that lead to FFA accumulation in palm fruits along with milling activities that contribute to FFA accumulation in the extracted CPO were reviewed in Chapter two. Also presented in Chapter two are literature on chemical composition and thermal properties of palm fruit and CPO, hydrolysis of TAG (thermal and enzymatic), its kinetics and models.

Chapter three is the study of pre-milling factors (bruise, environmental temperature and delay time) on FFA accumulation in OPF. The methodology used, the results and discussions are presented. Also present in this chapter are model development and simulation works carried out to achieve the set objective (objective one).

Chapter four represent the first unit operation in the milling of OPF (heat treatment). Presented in this chapter is the simulation of heat penetration and distribution in the OPF during heat treatment. The procedures used for the simulation and the results are discussed.

Chapter five contains the comprehensive experimental works and model development on inactivation kinetics of the endogenous lipase in OPF. Effects of heat on the abscission layer of OPF, the integrity of the oil globule membrane as well as in-vivo thermal hydrolysis of the TAG are presented and discussed. Also presented in this chapter is the effect of increase in FFA, DAG and MAG on the formation of lipid contaminants such as MCPD-FE and G-FE.

Presented in Chapter six is the study of effect of heat and moisture content on FFA accumulation in the CPO extracted after sterilization. In addition, a detailed dynamic model of kinetics of thermal hydrolysis of CPO in a closed system is also presented.

Chapter seven is the conclusions drawn at the end of the study and suggestions for further research. Figure 1 is the flow diagram/structure of this thesis.

Figure 1.1 : Thesis Structure

REFERENCES

- Ab Hadi, A., Mohammad, A. W. and, & Takrif, M. S. (2015). The study of temperature distribution for fresh fruit bunch during sterilization. *Journal of Industrial Engineering Research*, 1(16), 16–24.
- Ab Hadi, A., Mohammad, A. W., & Takriff, S. M. (2015). Spreadsheet modelling for temperature profile inside palm oil fresh fruit bunch. *Journal of Industrial Engineering Research*, 1(September), 25–32.
- Abd Aziz, M. K. (2003). The study of heat penetration in palm oil fruitlets by developing a new technique for measuring oil content in fruitlet during sterilization process. Center of Lipid Engineering Applied Research. Faculty of Engineering, University of Technology Malaysia. Research VOT No. 72279
- Alenezi, R., Baig, M. N., Santos, R. C. D., & Leeke, G. A. (2010). Continuous flow hydrolysis of sunflower oil using sub-critical water.
- Alenezi, R., Baig, M., Wang, J., Santos, R., & Leeke, G. A. (2010). Continuous flow hydrolysis of sunflower oil for biodiesel. *Energy Sources*, *Part A*, 32(5), 460– 468. https://doi.org/10.1080/15567030802612341
- Alenezi, R., Leeke, G. A., Santos, R. C. D., & Khan, A. R. (2009). Hydrolysis kinetics of sunflower oil under subcritical water conditions. *Chemical Engineering Research and Design*, 87(6), 867–873. https://doi.org/10.1016/j.cherd.2008.12.009
- Ali, F. S., Shamsudin, R., & Yunus, R. (2014). The effect of storage time of chopped oil palm fruit bunches on the palm oil quality. *Agriculture and Agricultural Science Procedia*, 2, 165–172. https://doi.org/10.1016/j.aaspro.2014.11.024
- Ali, G., Russly, A. R., Jamilah, B., Azizah, O., & Mandana, B. (2011). Effect of heat and thermosonication on kinetics of peroxidase inactivation and vitamin C degradation in seedless guava (Psidium guajava L.). *International Food Research Journal*, 18(4), 1289–1294.
- AOCS. (1989). Official methods and recommended practices of the American Oil Chemists' Society. American Oil Chemists' Society. (Fourth Edi). Illinois.
- AOCS. (1990). Official Methods and Rcommended Practices of the American Oil Chemists' Society (Fourth edi). AOCS Press, Champaign.
- Barkai-Golan, R. and, & Phillips, D. J. (1991). Postharvest heat treatment of fresh fruits and vegetables for decay control. *Plant Dis.*, 75., 1085–1089.
- Basyuni, M., Amri, N., Agustina, L., & Putri, P. (2017). Characteristics of fresh fruit bunch yield and the physicochemical qualities of palm oil during storage in North Sumatra , Indonesia. *Indones. J. Chem.*, 17(2), 182–190. https://doi.org/10.22146/ijc.24910

- Bhushan Zare, K., Maheshwari, D., & Vardhe, P. (2007). Heat and mass transfer in food Engineering. International Journal of Innovative Research in Science, Engineering and Technology (An ISO, 3297. https://doi.org/10.15680/IJIRSET.2017.0607022
- Bond, M., & Struchtrup, H. (2004). Mean evaporation and condensation coefficients based on energy dependent condensation probability. *Physical Review E*, 70(6), 21. https://doi.org/10.1103/PhysRevE.70.061605
- Challou, F. P. (2016). Surface pasteurisation of food packages by the inversion method. In *A thesis submitted to The University of Birmingham for the degree of Doctor Of Philosophy.* Retrieved from http://etheses.bham.ac.uk/6701/1/Challou16PhD.pdf
- Chong, C. L. and, & Sambanthamurthi, R. (1993). Effects of mesocarp bruising on the rate of free fatty acid Release in Oil Palm Fruits. *International Biodeterioration & Biodegradation*, *31*, 65–70.
- Crisosto, C. H., Johnson, R. S., Luza, J., & Day, K. (1993). Incidence of physical damage on peach and nectarine skin discoloration development: anatomical studies. *Journal of the American Society for Horticultural Science*, 118(6), 796– 800. https://doi.org/10.21273/jashs.118.6.796
- Cuppett, S. (1997). Factors affecting asparagus sensory evaluation. *Journal of Food-Quality*, 20(2), 127–144.
- Dana, D., Blumenthal, M. M., & Saguy, I. S. (2003). The protective role of water injection on oil quality in deep fat frying conditions. *European Food Research* and Technology, 217(2), 104–109. https://doi.org/10.1007/s00217-003-0744-x
- Davies, R. . (2016). Physical and mechanical properties of palm fruit , kernel and nut. *Journal of Agricultural Technology*, 8, 2147–2156.
- Denys, S., Pieters, J. G., & Dewettinck, K. (2003). Combined CFD and experimental approach for determination of the surface heat transfer coefficient during thermal processing of eggs. *Journal of Food Science*, 68(3), 943–951. https://doi.org/10.1111/j.1365-2621.2003.tb08269.x
- Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. *Renewable and Sustainable Energy Reviews*, 56, 246–260. https://doi.org/10.1016/j.rser.2015.11.058
- Dota, A. M. (2011). Mass Transfer. In, *Heat and mass Transfer: Foundamental and Applications* (Fourth Edition). Yunus A. Cengel and Afshin J. Ghajar (Ed.) McGraw-Hill. Retrieved from https://slideplayer.com/slide/9352596/

- Edreder, E. A. (2010). Modelling and optimisation of batch distillation involving esterification and hydrolysis reaction systems Modelling and Optimisation of Conventional and Unconventional Batch Distillation Process : Application to Esterification of Methanol and Ethanol usin. In *Submitted to the School of Engineering, Design and Technology University of Bradford United Kingdom for the award of Degree of Doctor of Philosophy*.
- Fallik, E., Archbold, D. D., Hamilton-kemp, T. R., Loughrin, J. H., & Collins, R. W. (1997). Emission from Golden Delicious Apples, 4038–4041.
- Farid, M. (2007). Heat and Mass Transfer in Food. In Kutz, M. (Ed.), *Handbook of Farm, dairy, and Machinery* (pp. 367–390). William Andrew. Inc.
- Fatin, S. A., & Rosnah, S. (2014). Effect of chopping oil palm fruit spikelets on the free fatty acid content release rate and its mechanical properties. *IJRET: International Journal of Research in Engineering and Technology*, 03(01), 511– 516.
- Flutto, L. (2003). Pectin:Properties and Determination. *Encyclopedia of Food Sciences and Nutrition (Second Edition)*, 4440–4449.
- Galedar, M. N., Jafari, A. and, & Tabatabaeefar, A. (2008). Some physical properties of wild pistachio (Pistacia vera L.) nut and kernel as a function of moisture content. *Int. Agrophysics*, 22, 117–124. Retrieved from www.internationalagrophysics.org
- Georges F. N.E., Emmanuel Albert, M.-M., & Marcelle Astride, E. (2013). African Journal of Food Science Some quality parameters of crude palm oil from major markets of Douala, Cameroon, 7(12), 473–478. https://doi.org/10.5897/AJFS2013.1014
- Gonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2007). Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. *Journal of Food Engineering*, 81(4), 693–701. https://doi.org/10.1016/j.jfoodeng.2007.01.011
- Hamlet, C. G., Sadd, P. A., & Gray, D. A. (2004). Generation of Monochloropropanediols (MCPDs) in Model Dough Systems. 1. Leavened Doughs. *Journal of Agricultural and Food Chemistry*, 52(7), 2059–2066. https://doi.org/10.1021/jf035077w
- Han, N. M., May, C. Y. and, & Nga, M. A. (2012). Dry heating of palm fruits: effect on selected parameters. *American Journal of Engineering and Applied Sciences*, 5(2), 128–131. https://doi.org/10.3844/ajeassp.2012.128.131
- Ho, L. S., Nair, A., Mohd Yusof, H., Kulaveerasingam, H., & Jangi, M. S. (2014). Morphometry of lipid bodies in embryo, kernel and mesocarp of oil palm: Its relationship to yield. *American Journal of Plant Sciences*, 05(09), 1163–1173. https://doi.org/10.4236/ajps.2014.59129

111

- Holdsworth, S. D. (1997). *Thermal Processing of Packaged Foods*. London: Blackie Academic & Professional.
- Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). *Fundamentals of heat and mass transfer* (sixth edit). John Wiley & Sons, Inc. Retrieved from http://uotechnology.edu.iq/dep-materials/lecture/secondclass/HeatTransfer&FluidBOOKFrankPIncroperaFund amentalsofheatandmasstransfer2007.pdf
- Ismail, M. H. S., Abdul Aziz, M. K. and, & Morad, N. A. (2009). A systems approach to mathematical modeling of sterilisation process in palm oil mill. *European Journal of Scientific Research*, 35(4), 583–592.
- Khalid, K., Zakaria, Z., & Wan-Yusof, W. D. (1996). Variation of dielectric properties of oil palm mesocarp with moisture content and fruit maturity at microwave frequencies. *Elaeis*, 8(2), 83–91. Retrieved from http://jopr.mpob.gov.my/wp-content/uploads/2013/07/joprv8dec1996-kaida1.pdf
- Klein, J. D., & Lurie, S. (1992). Heat treatments for improved postharvest quality of horticultural crops, (December 2014). https://doi.org/10.21273/HORTTECH.2.3.316
- Kondapalli, S. P., Chalamalasetti, S. R., & Damera, N. R. (2015). Application of taguchi based design of experiments to fusion arc weld processes: A Review. *International Journal of Business Research and Development*, 4(3), 1–8. https://doi.org/10.24102/ijbrd.v4i3.575
- Koshizuka, S., Shibata, K., Kondo, M., & Matsunaga, T. (2018). Fundamentals of Fluid Simulation by the MPS Method. Moving Particle Semi-Implicit Method. https://doi.org/10.1016/b978-0-12-812779-7.00002-3
- Kulasiri, D., & Samarasinghe, S. (1996). Modelling heat and mass transfer in drying of biological materials: a simplified approach to materials with small dimensions. *Ecological Modelling*, 86(2–3), 163–167. https://doi.org/10.1016/0304-3800(95)00046-1
- Lurie, S. (1998). Postharvest heat treatments. *Postharvest Biology and Technology*, 14(3), 257–269. https://doi.org/10.1016/S0925-5214(98)00045-3
- Lurie, S., & Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments, (May), 1–7. https://doi.org/10.1038/hortres.2014.30
- Manral, M., Pandey, M. C., Jayathilakan, K., Radhakrishna, K., & Bawa, A. S. (2008).
 Effect of fish (Catla catla) frying on the quality characteristics of sunflower oil.
 Food Chemistry, 106(2), 634–639.
 https://doi.org/10.1016/j.foodchem.2007.06.023
- Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. *International Journal of Heat and Mass Transfer*, 44(1), 39–53. https://doi.org/10.1016/S0017-9310(00)00086-7

- Mazza, G., & Qi, H. (1992). Effect of after-cooking darkening inhibitors on stability of frying oil and quality of french fries. *Journal of the American Oil Chemists Society*, 69(9), 847–853. https://doi.org/10.1007/BF02636331
- Mohankumar, C., Arumughan, C., & Kaleysa raj, R. (1990). Histological localization of oil palm fruit lipase. *Journal of the American Oil Chemists' Society*, 67(10), 665–669. https://doi.org/10.1007/BF02540419
- Mrema, G. (2002). Small-scale Palm Oil Processing in Africa. FAO Agricultural Services Bulletin, (148),.
- Nagy, K., Sandoz, L., Craft, B. D., & Destaillats, F. (2011). Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants. *Food Additives and Contaminants Part A Chemistry, Analysis, Control, Exposure and Risk Assessment*, 28(11), 1492–1500. https://doi.org/10.1080/19440049.2011.618467
- Nawar, W. W. (1996). Lipids. In Fennema, O. R. (Ed.), *Food Chemistry* (Second, p. 211). New York: Marcel Dekker, Inc.
- Noerhidajat, Yunus, R., Zurina, Z. A., Syafiie, S., Ramanaidu, V., & Rashid, U. (2016). Effect of high pressurized sterilization on oil palm fruit digestion operation. *International Food Research Journal*, 23(1), 129–134.
- Opara, U. L., & Pathare, P. B. (2014). Bruise damage measurement and analysis of fresh horticultural produce-A review. *Postharvest Biology and Technology*, 91, 9–24. https://doi.org/10.1016/j.postharvbio.2013.12.009
- Orhevba, B. A., Chukwu, O., Oguagwu, V., & Osunde, Z. D. (2013). Effect of moisture content on some quality parameters of mechanically expressed neem seed kernel oil. *The International Journal of Engineering and Science*, 2(8), 1–7. Retrieved from www.savap.org.pk%5Cnwww.journals.savap.org.pk
- Owolarafe, O. K., & Faborode, M. O. (2008). Micro-structural characterisation of palm fruit at sterilisation and digestion stages in relation to oil expression. *Journal of Food Engineering*, 85(4), 598–605. https://doi.org/10.1016/j.jfoodeng.2007.08.024
- Owolarafe, O. K., Olabige, M. T., & Faborode, M. O. (2007). Physical and mechanical properties of two varieties of fresh oil palm fruit. *Journal of Food Engineering*, 78(4), 1228–1232. https://doi.org/10.1016/j.jfoodeng.2005.12.049
- Owusu, R. K., Makhzoum, A., & Knapp, J. S. (1992). Heat inactivation of lipase from psychrotrophic Pseudomonas fluorescens P38: Activation parameters and enzyme stability at low or ultra-high temperatures. *Food Chemistry*, 44(4), 261– 268. https://doi.org/10.1016/0308-8146(92)90048-7
- Persad, A. H., & Ward, C. A. (2016). Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. *Chemical Reviews*, *116*(14), 7727–7767. https://doi.org/10.1021/acs.chemrev.5b00511

- Pinto, J. S. S., & Lanças, F. M. (2006). Hydrolysis of corn oil using subcritical water. *Journal of the Brazilian Chemical Society*, 17(1), 85–89. https://doi.org/10.1590/S0103-50532006000100013
- Pokorny, J. (1998). Substrate influence on the frying process. *Grasas y Aceites*, 49(3–4), 265–270. https://doi.org/10.3989/gya.1998.v49.i3-4.726
- Recktenwald, G. (2006). Transient , One-dimensional heat conduction in a convectively cooled sphere. *MATLAB CODE*, (September 2011), 1–13.
- Rizvi, A. (2011). Introduction and basic concepts. In *Heat and Mass Transfer: Fundamentals & Applications* (Fourth Edi) Yunus A. Cengel, A. J. G. (Ed.),. McGraw-Hill.
- Roongsattham, P., Morcillo, F., Fooyontphanich, K., Jantasuriyarat, C., Tragoonrung, S., Amblard, P., ... Tranbarger, T. J. (2016). Cellular and pectin dynamics during abscission zone development and ripe fruit abscission of the monocot oil palm. *Frontiers in Plant Science*, 7(April), 1–15. https://doi.org/10.3389/fpls.2016.00540
- Sahin, S., & Sumnu, S. G. (2008). Advances In Deep-Fat Frying of Foods. Contemporary Food Engineering Series. https://doi.org/10.1017/CBO9781107415324.004
- Sambanthamurthi, R., Sundram, K., & Tan, Y. A. (2000). Chemistry and biochemistry of palm oil. *Progress in Lipid Research*. https://doi.org/10.1016/S0163-7827(00)00015-1
- Sarah, M., Taib, M. R., & Adamu, A. (2014). Enzymatic inactivation of oil palm fruits: Comparison of microwave irradiation and steam bath process. *Jurnal Teknologi* (*Sciences and Engineering*), 69(5), 55–60. https://doi.org/10.11113/jt.v69.3205
- Seyhan, F., Tijskens, L. M. M., & Evranuz, O. (2002). Modelling temperature and pH dependence of lipase and peroxidase activity in Turkish hazelnuts. *Journal of Food Engineering*, 52, 387–397. Retrieved from www.elsevier.com/locate/jfoodeng
- Silvamany, H., & Jahim, J. M. (2015). Enhancement of palm oil extraction using cell wall degrading enzyme formulation. *Malaysian Journal of Analytical Sciences*, *19*(1), 77–87. Retrieved from http://inis.iaea.org/search/search.aspx?orig_q=RN:46135554

Studios, B., & Kingdom, U. (2001). gPROMS Advanced User Guide, 44(May), 0–250.

Talib, A. T., Mokhtar, M. N., Baharuddin, A. S., & Sulaiman, A. (2014). Effects of aeration rate on degradation process of oil palm empty fruit bunch with kineticdynamic modeling. *Bioresource Technology*, 169, 428–438. https://doi.org/10.1016/j.biortech.2014.07.033

- Tiong, S. H., Saparin, N., Teh, H. F., Ng, T. L. M., Md Zain, M. Z. Bin, Neoh, B. K., ... Appleton, D. R. (2018). Natural organochlorines as precursors of 3monochloropropanediol esters in vegetable oils. *Journal of Agricultural and Food Chemistry*, 66(4), 999–1007. https://doi.org/10.1021/acs.jafc.7b04995
- Verheye, W. (2010). "Growth and production of oil palm." Land use, land cover and soil sciences. *Encyclopedia of Life Support System (EOLSS)*, 2, 1–32.
- Wahyu Krisdiarto, A., & Sutiarso, L. (2016). Study on oil palm fresh fruit bunch bruise in harvesting and transportation to quality. *Makara Journal of Technology*, 20(2), 67. https://doi.org/10.7454/mst.v20i2.3058
- Wan Ismail, W. I., Razali, M. H., & Wai Yip, L. (2011). Determination of the optimum frequency for Elaeis guineensis Jacq. detachment. *African Journal of Agricultural Research*, 6(25), 5656–5663. https://doi.org/10.5897/AJAR11.1032
- Wi, S. G., Singh, A. P., Lee, K. H., & Kim, Y. S. (2005). The pattern of distribution of pectin, peroxidase and lignin in the middle lamella of secondary xylem fibres in alfalfa (Medicago sativa). *Annals of Botany*, 95(5), 863–868. https://doi.org/10.1093/aob/mci092
- Yu, B., Jin, Z., Deng, L., Xu, X., He, L., Wang, J., ... Chen, H. (2010). Kinetic study of thermal inactivation of potato peroxidase during high-temperature short-time processing. *Journal of Food Science and Technology*, 47(1), 67–72. https://doi.org/10.1007/s13197-010-0017-1
- Yunus, R., Zurina, Z. A., Syafiie, S., & Chang, T. S. (2015). Modeling and Simulation of Heat and Mass Transfer in Oil Palm Fruit Digestion Process. *Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS)*, 6(2), 136–143.