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THE DEVELOPMENT OF ELECTROMYOGRAPHY CONTROLLED 3D 
PRINTED ROBOT HAND AND SUPERVISED MACHINE LEARNING FOR 

SIGNAL CLASSIFICATION 

By 

MOHAMAD AIZAT ABDUL WAHIT 

November 2019 

Chairman : Siti Anom Ahmad, PhD 
Faculty  : Engineering 

Developing a device which resembles the human hand called Anthropomorphic 
Robotic Hand (ARH) has become a relevant research field due to the needs for 
the purpose to help the amputees to live their life as normal people. However, 
the current research state is unsatisfactory, especially in terms of structural 
design, robot system and the robot control method. In this research, an EMG 
controlled 3D printed robot hand prototype with improved features and advance 
hand posture classification method based on EMG signal pattern were proposed.  
The current state of the robot hand structure development, the structure features 

do not resemble the human hand functionality with less durability and poor 

movement capability. In this research, the structural design of the robot hand 

with five individual actuated fingers and tendon-driven actuator mechanism was 

designed using the Inventor Professional 2018 software and fabricated it using 

3D printing technology. The durability and movement capability of the structure 

were evaluated through Static analysis (simulation), and validate it through the 

Load test and Motion capture analysis. As a result, the hand robot structure 

which made from PLA material can withstand load with 1.5kg while the structure 

made from ABS material only able to withstand load with 1.4kg in the Static 

Analysis. After that, the simulation results were validated in the Load Test, and 

it shows that structure made from PLA material was able to withstand load with 

1.7kg while the structure made from ABS material is only able to withstand load 

with 1.6kg. The result obtained from these experiments shows that the structure 

made from PLA has better durability than ABS. In another hand, the movement 

accuracy analysis of the hand robot motion range was performed by comparing 

the expected motion range and the motion range achieved by 3D printed hand 

robot. The comparison shows that the similarity percentage achieved is about 

72.62% - 98.43%. The accurate motion range and the decent durability were 
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able to achieve by improving the structural design with the tendon-driven 

actuator mechanism.  

 

In the system development aspect, the electromyography (EMG) sensors were 

applied as the main control interface of the system which used to control the 

hand robot movement transparently to perform the tasks given. The electronic 

hardware and hand robot structure were integrated to develop an EMG 

controlled hand robot prototype, and its functionality was tested through three 

stages: muscular activity detection only, object detection only and the integration 

of both detection in an algorithm to control the hand robot structure movement 

to perform opened hand palm and some grasping postures with two trial for each 

stage. The tasks were performed without any failure and show the developed 

robot hand is reliable.  

 

Furthermore, the Support vector machine (SVM) and Linear discriminant 

analysis (LDA) machine learning for the hand posture classification based on the 

EMG signal pattern were investigated and compared in term of classification 

performance. The current study of the hand posture classification requires a 

higher number of EMG sensor used to achieve an accurate classification 

performance that leads the system to be complicated. In this research, the LDA 

gives as higher as 85.8% of accuracy with six units of the sensors used 

compared to SVM which is 85% of accuracy percentage with five units of the 

sensors used. However, the EMG signal pattern classification was done by SVM 

has better performance than LDA due to less significant difference in the 

accuracy percentage, and a fewer number of sensors used by the SVM. The 

result was achieved with K=15 of fold cross-validation, without PCA and five 

EMG sensors used that located on the Extensor carpi ulnaris, Extensor 

digitorum, Extensor carpi radialis, Flexor carpi ulnaris, and Flexor digitorum 

superficial muscles.  

 

In conclusion, the electromyography controlled hand robot prototype was 

successfully developed with improved features, optimal structural durability, 

higher accurate movement capability, reliable system and lower number of 

sensor used with higher accuracy of the signal pattern classification. 
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KLASIFIKASI SIGNAL 
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MOHAMAD AIZAT ABDUL WAHIT 

November 2019 

Pengerusi : Siti Anom Ahmad, PhD 
Fakulti : Kejuruteraan 

Pembinaan tangan robot yang menyerupai tangan manusia sebenar yang 
dikenali sebagai Anthropomorphic Tangan Robotik menjadi satu kajian yang 
relevan kerana keperluan untuk membantu orang yang bertangan kudung 
melakukan aktivity harian mereka seperti manusia yang sempurna. Walau 
bagaimanapun, terdapat kekangan dalam kajian sedia ada, terutama dalam 
design struktur, system robot dan kaedah kawan robot yang digunakan.   Dalam 
kajian ini, prototaip robot tangan kawalan penderia Elektromyografi (EMG) 
dengan ciri-ciri yang telah ditambahbaik dan pengkelasan postur tangan yang 
maju berdasarkan signal EMG telah dicadangkan.  

Dalam struktur tangan robot sedia ada, ciri-ciri struktur masih tidak menyerupai 
kefungsian tangan manusia yang mempunyai ketahanan dan kemampuan 
pergerakan yang lemah. Dalam kajian ini, struktur tangan robot ini mempunyai 
lima jari yang bergerak bebas dan mekanisme penggerak tendon yang didesign 
menggunakan perisian Inventor Professional 2018 dan dibina menggunakan 
teknologi  cetakan 3D.  Ketahanan dan kemampuan pergerakan struktur diuji 
melalui Analisis Statik (simulasi) dan disahkan melaui Ujian bebanan dan Analisi 
tangkapan gerakan. Hasil dapatan menunjukkan struktur robot tangan yang 
diperbuat dari material PLA mampu menahan 1.5kg manakala material ABS pula 
hanya mampu menahan bebanan sebanyak 1.4kg sahaja melalui Analisis Statik. 
Selepas itu, keputusan ini disahkan dengan ujian bebanan dan ia menunjukkan 
bahawa struktur yang diperbuat daripada material PLA mampu mehanan 
bebanan sebanyak 1.7kg manakala ABS hanya mampu menahan bebanan 
sebanyak 1.6kg sahaja.  Dapatan yang diperoleh dari kedua-dua eksperimen 
menunjukkan material PLA mempunyai ketahanan yang tinggi berbanding 
material ABS. Selain itu, analisis ke atas pergerakan bahagian yang bergerak 
pada robot dijalankan dan juga dibandingkan dengan pergerakan yang 
sepatutnya dicapai oleh struktur yang telah dicetak 3D. Perbandingan 
menunjukkan, peratusan persamaan telah mencapai 72.62%-98.43%. 
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Ketepatan pergerakan dan ketahanan yang cukup memuaskan dapat dicapai 
dengan menambahbaik design struktur dengan mekanisme pengerak tendon.  
Di dalam aspek pembangunan sistem pula, penderia elektromyografi digunakan 
sebagai muka kawalan utama untuk mengawal pergerakan robot dalam 
melakukan sebarang tugasan. Perkakas elektronik dan struktur tangan robot 
digabungkan untuk membina prototaip robot tangan kawalan elektromyografi 
and kefungsiannya diuji melalui tiga tahap: pengesan aktiviti otot, pengesan 
objek sahaja dan penggambugan kedua-dua pengesanan dalam satu algorithma 
untuk mengawal tangan robot dalam melakukan postur struktur seperti tangan 
terbuka dan menggenggam untuk dua percubaan bagi setiap tahap. Prototaip 
ini mampu melakukan tugasan yang telah diberikan tanpa mengalami sebarang 
kegagalan.  
 
 
Selain itu, Mesin Vektor Sokongan dan Analisis Diskriminasi Lurus untuk 
pengkelasan postur tangan menggunakan signal EMG dikaji dan dibandingkan 
dalam persembahan pengkelasan. Kajian sediaada mengenai pengkelasan 
postur tangan memerlukan penderiaan EMG yang banyak untuk mencapai 
ketepatan yang tinggi yang merumitkan lagi system yang dibina. Dalam kajian 
ini, LDA menghasilkan peratusan yang tinggi iaitu 85.8% dengan enam unit 
penderia berbanding SVM hanya 85% ketepatan dengan lima unit penderia. 
Namun begitu, pengkelasan paten isyarat EMG yang dihasilkan oleh SVM 
memberi persembahan yang terbaik berbanding LDA. Hal ini kerana peratusan 
yang dihasilkan tidak menunjukkan perbezaan yang ketara Antara kedua-dua 
jenis mesin pembelajaran dan SVM menggunakan sedikit bilangan penderia. 
Tambahan pula, SVM menggunakan K=15 Lipatan Pengesahan Silang, tanpa 
PCA dan lima unit penderia yang ditampalkan ke otot Extensor Carpi Ulnaris, 
Extensor Digitorum, Extensor Carpi Radialis, Flexor Carpi Ulnaris, dan Flexor 
Digitorum Superficial.  
 
 
Konklusinya, prototaip robot tangan kawalan EMG telah berjaya dicipta dengan 
struktur yang mempunyai ciri-ciri yang ditambahbaik, berketahanan optimal, 
kemampuan ketepatan dalam pergerakan yang tinggi, system yang boleh 
dipercayai dan kurang penggunaan penderia serta mampu mencapai peratusan 
yang tinggi dalam pengkelasan paten isyarat EMG. 
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CHAPTER 1 

 

INTRODUCTION 
 

As reported in the year 2012 of Statistical Bulletin by the Social Welfare 
Department of Malaysia, there are 350,000 people out of the Malaysian 
population registered themselves as a disabled person, and 34% of this number 
is categorised as upper limb amputees and paralysed physical disabilities class 
[1]. By observing the Malaysian population over the year from 2009 until 2019, 
the population number became significantly grows, as well as the percentage 
probability of the disabled person in those years. This fact shows the importance 
of research in the development of robotic hand field as an effort to help these 
people live their daily life as normal people. 
 

In the development of the robot hand device, there are two different paths called 
the Dexterous Robotic Hand (DRH) and the Anthropomorphic Prosthetic Hand 
(APH). The differences between these two routes can be differentiated based on 
the focus of the robot application and its function [2]. For example, the 
development of DRH is to emphasise the efficiency and speed response to do a 
complicated task. However, this may cause the system looks bulky. Meanwhile, 
the development of APH is to emphasise the reliability and the aesthetic value 
of the robot that resembles the human hand looks which may help the disabled 
to perform their daily tasks in a way that more natural. This system usually can 
perform simple tasks such as opened hand palm and basic grasping posture. 
 

Over the past few decades, this research had experienced the evolution of the 
robot control method, which involves the exchange of robot controlled by the 
Electromyography (EMG) sensor from the use of conventional joystick controller. 
The EMG signal is the signal collected from the human body by using EMG 
sensor do not resemble which provides a neuromuscular activity that suitable to 
be used as a signal interface for robot control [3]. This control interface is a 
transparent controller that allows the user to control the robot as their body part 
and becomes the most control interface used among the researchers to control 
the prosthesis [4]. The way to increase the number of hand posture variation, it 
requires artificial intelligence support as machine learning to recognise and 
classify the EMG signal pattern into several classes of hand postures. Recently, 
lot of researchers used different pattern recognition techniques to achieve the 
accuracy in hand posture classification that include the uses of pre-processing 
techniques, data mining techniques and machine learning technique (i.e. artificial 
neural networks, genetic algorithms, fuzzy logic, self-organizing neural network 
and support vector machine) [5, 6, 7, 8, 9].  
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In the conjunction of Industrial Revolution 4.0, the growing of the prosthetic hand 
research field has been fully supported, and it triggers onto a bigger revolution 
in term of design and fabrication of the product with the development of 3D 
printing technology. This technology encouraged the researcher to produce the 
printable prosthetic hand design. Besides, it makes the robot designed on fully 
customisable to the wearer. So, the wearer feels comfortable while wearing the 
device. The prosthetic hand now becomes the do-it-yourself device as it can be 
printed easily by anyone and anywhere virtually. 

1.1 Problem Statement and the Importance of Research 

The robot hand is a device that resembles human hand functionality that been 

used to replace the missing anatomical segments from the elbow to the hand or 

known as the below-elbow amputees. However, there are some shortcomings 

discovered in the current study regarding the structural design of the robot hand 

itself. Most researchers came out with incomplete fingers and joints robot hands 

which do not resemble the actual human hand [10]. Also, the cable-driven 

actuator mechanism is widely used by researchers to move the robot hand joints 

[11, 12, 13, 14, 15, 16]. However, there are some drawbacks of using the 

mechanism such as inaccurate motion range and poor structure durability. This 

is because of the mechanical properties of the cable that is easily changing and 

its length that often extends over the time [17, 18]. Furthermore, each of the 

fingers has not unindividual actuated fingers and the existing robot hand 

structure is bulky in size compared to the average size of the human hand [19, 

20]. The metal that often been used as a material for the robot hand structures 

makes the robot hand structure does not suitable for prosthetics use as it is 

weighty compared to the structure made of plastics [21]. The evolution of the 

robot control method happens, the electromyography (EMG) sensor widely used 

for this application instead of using the conventional joystick controller. The 

muscular activity information is measured and used as the input interface to the 

system which allows the user to control the robot as like their body part. In an 

effort to improve robot control capabilities it requires the machine learning to 

classify acquired signal patterns. Currently, the Support Vector Machine (SVM) 

and Linear Discriminant Analysis (LDA) machine learning are widely used for 

robot hand controls. However, it requires a large number of sensors to obtained 

high accuracy in signal classification which negatively affects the complexity of 

the robot hand system [9, 22, 23]. 

1.2 Aim and Research Objectives 

The project aims to develop an EMG controlled 3D printed robot hand prototype 

based on the supervised machine learning to classify the hand postures.  
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The objectives are: 

- To design the robot hand structure and fabricate it by using the 3D 

printing technology and validate the structure durability and movement 

capability;  

- To develop the EMG controlled 3D printed robot hand prototype and test 

its functionality.  

- To develop the EMG controller of the robot hand system for the hand 

posture classification by using a supervised machine learning method. 

 

1.3 Hypothesis 
 
Supervised machine learning of EMG signal classification to achieve human 
hand posture capability. 
 

1.4 Significance of the Study  
 
In this research, a real-time EMG controlled robot hand prototype with five 
independent actuated fingers, including the thumb, was developed. Moreover, 
the five fingers robot hand structure with optimal durability and movement 
capability was developed. Other than that, the signal processing analysis of the 
EMG signal pattern was done. Besides, the efficient controller for EMG signal 
classification for eight types of hand postures was proposed.  
 

1.5 Research Scope 
 
The scope of this research includes the following: 

 The research is divided into two main part, the Part I is about the 
development of electromyography controlled 3D printed robot hand 
prototype using the threshold voltage comparison method and the Part 
II is about the classification of the EMG signal pattern which is performed 
in post-processing. The combination of these two parts for the future 
works. 

 The planar rigid body motion for the structural design is limited on the 
sagittal plane only. 

 The finger structure of the robot for the index, middle, ring and baby 
finger is assumed a similar size.  

 The robot finger movement excludes the non-linearities condition. 

 The number of hand postures used for classification is only eight 
postures, and the wrist movement is excluded from the hand postures.  

 The hand postures are focusing on the movement of the five fingers of 
the right hand.  
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1.6 Thesis Outline 

This thesis is divided into five chapters. 

Chapter 2 is a literature review regarding the current robot hand device and the 

3D printed robot hand structure which are available in the market nowadays. 

There is also the description of the EMG sensor and human muscular system 

that also includes, the reviews about the structure durability validation 

techniques, the explanation of EMG signal processing analysis techniques such 

pre-processing, feature extraction, classifier, data reduction and cross-validation 

techniques.  

 

In Chapter 3, you can find the explanations of the structure of the methodology 

in comprehensive steps and procedures that includes the architecture for the 

structure and system development of the EMG controlled robot hand in details 

and the procedures of the EMG signal samples preparation techniques. There 

are also explanations of the analysis techniques on the EMG signal pattern 

classification for both SVM and LDA. Furthermore, the training and testing 

techniques also described in this chapter.  

 

In Chapter 4, the 3D printed robot hand structure designed is fabricated, and its 

durability and movement capability are evaluated. The pre-processing of the 

EMG signal analysis also performed, and the system functionality is validated by 

performing the basic task using a basic controller.  In this chapter also, the EMG 

signal classification of the system was upgraded to perform the complex task by 

using the artificial intelligent machine learning such as SVM and LDA to classify 

the EMG signal pattern.  

 

Last but not least, Chapter 5 consists of summarized outcomes, the contribution 

of the study and emphasised on the recommendation to improve future 

innovation.  
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