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A new code based on variable order and variable stepsize componentwise 

partitioning is introduced to solve a system of equations dynamically. In previous 

partitioning teclhuque researches, once an equation is identified as stiff, it will 

remain in stiff subsystem until the integration is completed. In this current 

technique, the system is treated as nonstiff and any equation that caused stiffness 

will be treated as stiff equation. However, should the characteristics showed the 

elements of nonstiffness, and then it will be treated again with Adam method. This 

process will continue switching from stiff to nonstiff vice versa whenever it is 

necessary until the interval of integration is completed. 
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Next, a block method with R-points generate R new approximate solution values;is 

a strategy for solving a system and also for parallelizing ODEs. Partitioning this 

block method to solve stiff differential equations is a new strategy; it is more 

efficient and takes less computational time compared to the sequential methods. 

Two partitioning techniques are constructed, Intervalwise Block Partitioning (IBP) 

and Componentwise Block Partitioning (CBP). Numerical results are compared as 

validation of its effectiveness. 

Intervalwise block partitioning will initially treat the systems of equations as 

nonstiff and solve them using Adams method, by switching to the Backward 

Differentiation fonnula when there is a step failure and indication of stiffness. 

Componentwise block partitioning will place the necessary equations that cause 

instability and stiffness into the stiff subsystem and solve using Backward 

Differentiation Fonnula, while all other equations will still be treated as non-stiff 

and solved using Adams formula. 

Parallelizing the partitioning strategies using Message Passing Interface (MPI) is 

the most appropriate method to solve large system of equations. Parallelizing the 

right algorithm in the partitioning code will give a better perfonnance with shorter 

execution times. The graphs of its performance and execution time, visualize the 

advantages of parallelizing. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

KAEDAH PEMETAKAN DAN KESELARIAN BAGI 
MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA YANG 

KAKU. 

Oleh 

KHAIRIL ISKANDAR BIN OTHMAN 

April 2007 

Pengerusi: Profesor Madya Fudziah bt Ismail, PhD 

Fakulti: Sains 

Suatu kod baru berdasarkan peringkat berubah dan saiz langkah berubah 

pemetakan bIok komponen diperkenaIkan bagi menyelesaikan sistem 

persamaan dinamik. Dalam kaj ian teknik pemetakan sebelum ini, apabila 

persamaan dikenalpasti sebagai persamaan kaku, persamaan itu akan kekal 

dalam subsistem kaku sehingga tamat pengamiran. Dalam teknik semasa, sistem 

persamaan PBB dianggap sebagai tak kaku dan sebarang persamaan yang 

menyebabkan kekakuan akan dilayan sebagai persamaan kaku. 

Walaubagaimanapun, sekiranya terdapat ciri�iri menunjukkan ada elemen tak 

kaku, persamaan itu akan diselesaikan semula dengan kaedah Adams. Proses ini 

akan berterusan berubah dari kaku ke tak kaku dan sebaliknya apabila perlu 

sehingga tamat seIang pengamiran. 
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Seterusnya, kaedah Blok R-titik menghasilkan R- nilai anggaran penyelesaian, 

iaitu strategi selari menyelesaikan suatu sistem Persamaan Pembezaan Biasa 

(PPB). Pemetakan k�edah blok untuk menyelesaikan persamaan pembezaan 

kaku adalah suatu strategi baru yang lebih cekap dan mengurangkan masa 

pengiraan apabila dibandingkan dengan kaedah jujukan. Dua kaedah pemetakan 

dibina iaitu Pemetakan Blok Secara Selang (PBSS) dan Pemetakan Blok Secara 

Komponen (PBSK). Keputusan berangka dibandingkan untuk pengesahan 

kecekapannya. 

Dalam pemetakan blok secara selang, sistem persamaan di anggap sebagai tak 

kaku pada awalnya dan diselesaikan menggunakan kaedah Adams dan berubah 

kepada Formulasi Beza Ke Belakang (FBB) apabila berlaku langkah gagal dan 

adanya petunjuk bagi kekakuan. 

Pemetakan blok secara komponen meletakkan hanya persamaan yang 

menyebabkan ketakstabilan dan kekakuan ke dalam subsistem kaku dan 

diselesaikan dengan menggunakan FBB, manakala persamaan yang lain akan 

dianggap sebagai tak kaku dan diselesaikan dengan formula Adams. 

Keselarian strategi pemetakan menggunakan Penghantaran Mesej Antaramuka 

(MPI) merupakan kaedah yang paling sesuai bagi menyelesaikan sistem 

persamaan yang besar. Algoritma selari yang sesuai dalam kod pemetakan akan 
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mengurangkan masa pelaksanaan. Graf pelaksanaan dan masa pelaksanaan 

menggambarkan faedah keselarian. 
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CHAPTER! 

INTRODUCTION 

Historically, differential equations have originated in chemistry, physics, and 

engineering. More recently they have also risen in models in medicine, biology, 

anthropology, and various other branches. The problem of determining the motion 

of a projectile, rocket, satellite or planet, the vibrations of a wire or a membrane, 

the steady-state flow of a viscoelastic fluid parallel to an infinite plane with 

uniform suction and the problem of determining the charge or current in an electric 

circuit are examples of problems which all can be formulated into differential 

equations. The differential equations that result from applications - particularly 

those in engineering and the natural sciences - generally cannot be solved by 

analytical techniques. Hence with the advent of high-speed electronic computers 

have led to differential equations being solved by numerical methods in which a 

finite set of points are generated. These set of points are an approximation to the 

actual solution function, y(x) and these sets are referred to as numerical solution 

to the problems. The emphasis in numerical method is the development of accurate 

and efficient techniques to solve specific problems. 

The basic approach used to solve ODE problems in numerical method is the 

algorithm. An algorithm is a complete, well-defined procedure for obtaining a 

numerical answer to a given mathematical problem. Algorithms are expressed as a 



finite number of ordered computational steps. Many techniques of classical 

mathematics are expressed as algorithms. 

In the past years, the fast development in computer industry has enabled many 

areas in science and engineering to apply numerical methods to solve large 

mathematical problems in order to increase the computational speed. Initial effort 

are mainly concentrated in achieving high performance on a single processors, but 

more recent attempt were focused in additional performance by taking 

multiprocessor route. 

The numerical solution of large ODE systems requires a large amount of 

computing power. These large problems arise in a wide variety of applications and 

these include fluid dynamic, radioactive reaction and weather prediction. Users of 

parallel computing tend to solve the mathematical problems with the desire to 

obtain faster and more accurate results (Zanariah and Suleiman, 2004). 

Objectives of the thesis 

The main objective in this thesis is to solve the system of ODEs by, 

1 .  developing a switching technique that will partition into stiff and 

nonstiff subsystem continuously. 

2. integrating the existing block method formulas and develop the 

switching techniques which partitioned the system of ODEs. 

3 .  parallelizing the partitioned block method. 
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Initially, the system of ODEs is solved sequentially by dynamic partitioning. In 

other words, the entire system is treated as nonstiff ODEs and should instability 

occur the relevant equations are brought into the stiff subsystem. However, should 

the transient reappear then the relevant equations are brought back to nonstiff 

subsystem again. 

Another strategy is by partitioning and parallelizing a 2-point block method for a 

system of equation. By using the multistep method, partitioning the system as stiff 

and nonstiff subsystem allows each steps to solve numerically 2-point for the 

system of differential equations. In the 2-point block, matrix multiplication 

operation is required in the Newton iteration and it requires a considerable amount 

of time. By parallelizing, this operation will make solving using 2-point block 

much faster. 

Outline of the Thesis 

In Chapter I, a brief introduction on the applications of numerical methods. 

Chapter II, gives a review of all related researches on partitioning, block methods 

and parallelizing block methods. 
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In Chapter III, a brief introduction of the numerical solution of ODEs is given. 

Basic theory of numerical method like convergence and stability are discussed. 

This chapter also focuses on the fundamental concepts in parallel programming. 

Basic architecture of Shared Memory, Distributed Memory and Distributed Shared 

Memory are explained briefly and some basic commands in MPI are also given in 

this chapter. Included at the end of this chapter are factors that influenced the 

performance of parallelism. 

Solving a differential equation by partitioning dynamically is discussed in Chapter 

IV by using the variable step size variable order (VSVO). A brief explanation of 

the VSVO is at the beginning of this chapter. Next, strategy to improve and 

develop the algorithm using the VSVO to solve any oscillatory system are 

discussed. An example of this system is the van der Pol equation. 

A brief explanation on deriving block method using Adams formula and Backward 

Differentiation Formula, for solving nonstiff and stiff equations are in Chapter V. 

Then using these formulas, the partitioning algorithms to solve a system of ODEs 

in block are developed in this chapter. Initially, the system of ODEs is treated as 

nonstiff and once there is an indication that stiffness has occurred, the whole 

system is treated as stiff. This algorithm is known as Intervalwise Partitioning. 

Another type of partitioning is called Componentwise Dynamic Partitioning, where 

the components that caused stiffness are placed in the stiff subsystem. Numerical 
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