
 
 
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 
 

FABRICATION AND CHARACTERISATION OF MONO- AND 
MULTIFILAMENT Ag-SHEATHED Bi1.Pb0.4Sr2Ca2Cu3O10 

SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHN IQUE 
 
 
 
 
 
 

MASRIANIS BT AHMAD 
 
 
 
 
 
 

FS 2005 6 
 
 
 



FABRICATION AND CHARACTERISATION OF MONO- AND 
MULTIFILAMENT Ag-SHEATHED Bil.,Pbo.4SrZCaZCu301O 

SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHN IQUE 

MASRIANIS BT AHMAD 

MASTER OF SCIENCE 
U NIVERSITI PUTRA MALAYSIA 

2005 



FABRICATION AND CHARACTERI SATION OF MONO- AND 
MULTIFILAMENT Ag-SHEATHED Bi1.6Pbo.4SrlCalCu3010 

SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE T ECHNIQUE 

By 

MASRIANIS BT AHMAD 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia 
in Fulfilment of the Requirements for the Degree of Master of Science 

December 2005 



'1'0 my lius6and; Isa <.Bin 9dulizan 
e:l 

my mother, 1fajjafi )f.isliali (]Jt 1lj. Che Omar 
for tlieir tlrve, support and utuferstantfino . .... 

'1'0 my family, 
for tlieir fove ant! concern . .... . 

II 



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirements for the degree of Master of Science 

F ABRICATION AND CHARACTERISATION O F  MON O- AND 
MULTIFILAMENT Ag-SHEATHED Bi1.6Pbo.4Sr2Ca2Cu301O 

SUPERCONDUCT OR TAPE S VIA POWDER-WIRE-IN-TUBE TECHNIQUE 

By 

MASRIANIS BT AHMAD 

December 2005 

Chairman: Pr ofessor Abdul Halim bin Shaari, PhD 

Faculty Science 

The co-precipitation technique was used in the preparation of Bi1.6Pbo.4Sr2Ca2Cu301O 

polycrystalline ceramic superconductor powder to fabricate Ag-sheathed 

superconductor tapes. Powder prepared via co-precipitation method with ultra-fine 

grain size was used to enhance the Bi-2223 phase formation. The tapes were 

prepared using the powder-in-tube and powder-wire-in-tube method. The powder-

wire-in-tube (PWIT) method has been developed by packing powder together with 

composite wires into silver tubes at the second stage of the powder-in-tube (PIT) 

process. Among the different routes proposed to enhance Bi-2223 phase formation, 

the PWIT method showed better results. The samples were prepared with different 

number of filaments (number of filament == 2, 4, 6, 8; PWIT and 0, 20; PIT) and 

different sintering times (24 hr, 48 hr and 100 hr) heated at 850 0c. Samples heated 

for longer time showed enhanced 2223 phase formation for pellet and monofilament 

tape samples from 92 % to 96 % and 84 % to 86 % respectively. The intergranular 

connectivity can be improved. Sintering temperature 8500 enhanced the growth of the 

superconductor phase, which was much faster in the ab-plane than along the c-axis. 
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This made the platelets form well-aligned connections with each other. The increase 

in the Bi-2223 XRD peak intensity with sintering time is due to the re-arrangement 

of the Bi-2212 crystals, which occurs in the larger volume of liquid phase. A slight 

preferred orientation of the grains in the c-axis direction when the samples were 

rolled into tapes was also observed. By increasing the sintering time the average 

grain size is increase from 4 J.lm to 14 J.lm and by increasing the number of filaments 

from 2 to 8 filaments inside the tube and core area that developed the non­

superconducting phase and the secondary phase were minimized. Small filaments in 

multifilament tapes are more homogenous than monofilament tapes owing to the 

better grain orientation along the silver sheath. At 77  K and zero field, the highest 

transport critical current density (Jc) 1 1 500 ± 300 A/cm
2 

was achieved in the tape 

prepared via PWIT (number of filament = 8) sintered for 100 hours compared to PIT 

method with transport critical current density (Jc) 7 800 ± 300 A/cm
2 

at the same 

sintering duration. Therefore, critical current density increases with the sintering 

duration and number of filaments. 
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FABRIKASI DAN PENCIRIAN MONO DAN MULTIFILAMEN PITA 
SUPERKONDUKTOR Ag-Bi1.6Pbo.4Sr2CazCu30IO SARUNGAN-Ag MELALUI 

TEKNIK SERBUK-DA W AI-DALAM-TIUB 

Oleh 

MASRIANIS BT AHMAD 

December 2005 

Pengerusi : Profesor Abdul HaUm bin Shaari, PhD 

Faculti Sains 

Teknik pemendakan bersama telah digunakan bagi menyediakan superkonduktor 

sarungan Ag. Serbuk disediakan dengan kaedah pemendakan bersama untuk 

menghasilkan serbuk bersaiz ultra-halus bagi meningkatkan pembentukkan fasa Bi-

2223 . Pita telah disediakan menggunakan teknik serbuk-dalam-tiub dan serbuk-

dawai-dalam-tiub. Teknik serbuk-dawai-dalam-tiub (PWIT) dibangunkan dengan 

memasukkan serbuk bersama-sama dawai ke dalam tiub Ag pada peringkat yang 

kedua teknik serbuk-dalam-tiub (PIT). Di antara pelbagai kaedah dalam 

meningkatkan pembentukan fasa Bi-2223, teknik serbuk-dawai-dalam-tiub turnt 

memberikan keputusan yang baik. Sampel disediakan dengan bilangan filamen yang 

berbeza (bilangan filamen = 2, 4, 6, 8; PWIT dan 0, 20; PIT) dan masa pembakaran 

yang berlainan (24 jam, 48  jm dn 100 jam) pada suhu 850 0c. Sampel yang dibakar 

lama menunjukkan pembentukan fasa 2223 meningkat bagi sampel pelet dan pita 

masing-masing dari 92 % ke 96 % dan 84 % ke 86 %. Keadaan struktur butiran 

antara butiran diperbaiki. Pembakaran melebihi 8500 meningkatkan pertumbuhan 
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fasa superkonduktor yang mana ia lebih cepat dalam arah ab berbanding arah c. Ini 

menunjukkan lapisan-Iapisan disusun mudah di antara satu sarn a  lain. P eningkatan 

puncak Bi-2223 dengan mas a pembakaran ialah kerana hablur Bi-22 1 2  menyusun 

semula menyebabkan fasa cecair bertambah. Didapati bahawa susunan butiran 

adalah dalan arah c bagi sampel yang telah digolek. Dengan meningkat masa 

pembakaran, purata saiz butiran meningka dari 4 flm ke 1 4  flm dan dengan 

menambah bilangan filamen dari 2 ke 8 filamen ke dalam tiub Ag menyebabkan 

kawasan tengah yang di pelopori oleh fasa bukan s uperkonduktor dan fasa  sekunder 

dapat di kurangkan. Fi lamen halus dalam pita mul tifilamen adalah lebih homogen 

berbanding monofilamen disarnping menghasilkan susunan butiran yang lebih baik 

di sepanjang permukaan perak. Pada suhu cecair nitrogen, 77 K dan tanpa medan, 

ketumpatan angkutan arus genting (Jc) ialah 1 1 500 ± 300 Ncm2 dicapai bagi pita 

yang disediakan menggunakan teknik serbuk-dawai-dalam-tiub (Mu08 1 00) 

berbanding sampel pitlOO yang menggunakan teknik serbuk-dalam-tiub dengan 

ketumpatan angkutan arus genting (Jc) ialah 7800 ± 300 Ncm2• Oleh itu, ketumpatan 

angkutan arus genting (Je) meningkat dengan tempoh masa pembakaran dan 

bilangan filamen. 
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