UNIVERSITI PUTRA MALAYSIA

FABRICATION AND CHARACTERISATION OF MONO- AND MULTIFILAMENT Ag-SHEATHED Bi1.4Pb0.4Sr2Ca2Cu3O10 SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHNIQUE

MASRIANIS BT AHMAD

FS 2005 6
FABRICATION AND CHARACTERISATION OF MONO- AND MULTIFILAMENT Ag-SHEATHED Bi₁ₓPb₀.₄Sr₂Ca₂Cu₃O₁₀ SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHNIQUE

MASRIANIS BT AHMAD

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2005
FABRICATION AND CHARACTERISATION OF MONO- AND MULTIFILAMENT Ag-SHEATHED Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10} SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHNIQUE

By

MASRIANIS BT AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

December 2005
DEDICATION

To my husband, Isa Bin Muhzan

and my mother, Hajjah Aishah Bt Hj. Che Omar
for their love, support and understanding.....

To my family,
for their love and concern.....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

FABRICATION AND CHARACTERISATION OF MONO- AND MULTIFILAMENT Ag-SHEATHED Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10} SUPERCONDUCTOR TAPES VIA POWDER-WIRE-IN-TUBE TECHNIQUE

By
MASRIANIS BT AHMAD

Chairman: Professor Abdul Halim bin Shaari, PhD

Faculty: Science

The co-precipitation technique was used in the preparation of Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10} polycrystalline ceramic superconductor powder to fabricate Ag-sheathed superconductor tapes. Powder prepared via co-precipitation method with ultra-fine grain size was used to enhance the Bi-2223 phase formation. The tapes were prepared using the powder-in-tube and powder-wire-in-tube method. The powder-wire-in-tube (PWIT) method has been developed by packing powder together with composite wires into silver tubes at the second stage of the powder-in-tube (PIT) process. Among the different routes proposed to enhance Bi-2223 phase formation, the PWIT method showed better results. The samples were prepared with different number of filaments (number of filament = 2, 4, 6, 8; PWIT and 0, 20; PIT) and different sintering times (24 hr, 48 hr and 100 hr) heated at 850 °C. Samples heated for longer time showed enhanced 2223 phase formation for pellet and monofilament tape samples from 92 % to 96 % and 84 % to 86 % respectively. The intergranular connectivity can be improved. Sintering temperature 850° enhanced the growth of the superconductor phase, which was much faster in the ab-plane than along the c-axis.
This made the platelets form well-aligned connections with each other. The increase in the Bi-2223 XRD peak intensity with sintering time is due to the re-arrangement of the Bi-2212 crystals, which occurs in the larger volume of liquid phase. A slight preferred orientation of the grains in the c-axis direction when the samples were rolled into tapes was also observed. By increasing the sintering time the average grain size is increase from 4 μm to 14 μm and by increasing the number of filaments from 2 to 8 filaments inside the tube and core area that developed the non-superconducting phase and the secondary phase were minimized. Small filaments in multifilament tapes are more homogenous than monofilament tapes owing to the better grain orientation along the silver sheath. At 77 K and zero field, the highest transport critical current density (J_C) 11500 ± 300 A/cm2 was achieved in the tape prepared via PWIT (number of filament = 8) sintered for 100 hours compared to PIT method with transport critical current density (J_C) 7800 ± 300 A/cm2 at the same sintering duration. Therefore, critical current density increases with the sintering duration and number of filaments.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FABRIKASI DAN PENCIRIAN MONO DAN MULTIFILAMEN PITA SUPERKONDUKTOR Ag-Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ SARUNGAN-Ag MELALUI TEKNIK SERBUK-DAWAI-DALAM-TIUB

Oleh

MASRIANIS BT AHMAD

December 2005

Pengerusi : Profesor Abdul Halim bin Shaari, PhD

Faculti : Sains

Teknik pemendakan bersama telah digunakan bagi menyediakan superkonduktor seramik polihabtur Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{10}$ untuk fabrikasi pita superkonduktor sarungan Ag. Serbuk disediakan dengan kaedah pemendakan bersama untuk menghasilkan serbuk bersaiz ultra-halus bagi meningkatkan pembentukan fasa Bi-2223. Pita telah disediakan menggunakan teknik serbuk-dalam-tiub dan serbuk-dawai-dalam-tiub. Teknik serbuk-dawai-dalam-tiub (PWIT) dibangunkan dengan memasukkan serbuk bersama-sama dawai ke dalam tiub Ag pada peringkat yang kedua teknik serbuk-dalam-tiub (PIT). Di antara pelbagai kaedah dalam meningkatkan pembentukan fasa Bi-2223, teknik serbuk-dawai-dalam-tiub turnt memberikan keputusan yang baik. Sampel disediakan dengan bilangan filamen yang berbeza (bilangan filamen = 2, 4, 6, 8; PWIT dan 0, 20; PIT) dan masa pembakaran yang berlainan (24 jam, 48 jm dn 100 jam) pada suhu 850 °C. Sampel yang dibakar lama menunjukkan pembentukan fasa 2223 meningkat bagi sampel pelet dan pita masing-masing dari 92 % ke 96 % dan 84 % ke 86 %. Keadaan struktur butiran antara butiran diperbaiki. Pembakaran melebihi 850° meningkatkan pertumbuhan
fasa superkonduktor yang mana ia lebih cepat dalam arah \(ab \) berbanding arah \(c \). Ini menunjukkan lapisan-lapisan disusun mudah di antara satu sama lain. Peningkatan puncak Bi-2223 dengan masa pembakaran ialah kerana hablur Bi-2212 menyusun semula menyebabkan fasa cecair bertambah. Didapati bahawa susun butiran adalah dalam arah \(c \) bagi sampel yang telah digolek. Dengan meningkat masa pembakaran, purata saiz butiran meningkat dari 4 \(\mu m \) ke 14 \(\mu m \) dan dengan menambah bilangan filamen dari 2 ke 8 filamen ke dalam tiub Ag menyebabkan kawasan tengah yang di pelopori oleh fasa bukan superkonduktor dan fasa sekunder dapat di kurangkan. Filamen halus dalam pita multifilamen adalah lebih homogen berbanding monofilamen disamping menghasilkan susun butiran yang lebih baik di sepanjang permukaan perak. Pada suhu cecair nitrogen, 77 K dan tanpa medan, ketumpatan angkutan arus genting (\(J_C \)) ialah 11500 \(\pm \) 300 A/cm\(^2\) dicapai bagi pita yang disediakan menggunakan teknik serbuk-dawai-dalam-tiub (Mu08100) berbanding sampel pitl00 yang menggunakan teknik serbuk-dalam-tiub dengan ketumpatan angkutan arus genting (\(J_C \)) ialah 7800 \(\pm \) 300 A/cm\(^2\). Oleh itu, ketumpatan angkutan arus genting (\(J_C \)) meningkat dengan tempoh masa pembakaran dan bilangan filamen.
ACKNOWLEDGEMENTS

I am extremely grateful to my supervisor, Professor Dr. Abdul Halim Shaari chairman of supervisory for most of all, believing in me and for his invaluable advice, patience, guidance, ideas, criticism, encouragement and continuous discussion. My deepest gratitude goes to my co-supervisors, Professor Dr. Roslan Abdul Shukor, Universiti Kebangsaan Malaysia and Associate Professor Dr. Mansor Hashim, Universiti Putra Malaysia, members of the supervisory committee for the positive assistance, comments, suggestions and wise guidance throughout the research work.

I am very grateful for the financial assistance provided through the Intensified Research Program in Priority Area (IRPA) and PASCA. My special thanks go to Dr. Imad Hamadneh, Mr Syed Yusainee Syed Yahya and Mr Lau Kok Tee for their guidance, suggestion and support.

The assistance provided by the Department of Physics UPM for the use of their X-ray diffraction facility, Institute of Bioscience UPM for the use of their SEM facility; to Associate Prof. Dr. Fauziah Othman, Mr. Ho, Miss Azilah, Mrs. Faridah and all members of Electron Microscopy Unit, thanks a lot for your kind assistance and the librarians of UPM and UKM, is gratefully acknowledgment.

I am extremely grateful to my lab mates, Dr. Lim Kean Pah, Dr. Abdullah Chik, Dr. Kabashi, Huda Abdullah, Lee Oon Jew, Mustafa Awang Kechik, Priscilla Ibai, Mohd Faisal Mohd Aris and Walter Charles Primus. Thanks a lot for their tremendous
assistance and support throughout this study. To my friends who never fail to encourage me at UKM until the end; Puan Hajjah Rokiah Mohd Yasin, Puan Norazilah, Miss Yip, Mr. Lee Chee Hong, Mr David and Mr Lee Teik Huye, my special thanks go to all of you. I am very thankful to Mr Razak Harun, Mr. Razi, and other technical staff in the Physics Department for their technical favours.

To my late father, my mother, brothers; Mr Udanis Ahmad and his wife, Mr Adam Ahmad, Mr Ustazanis Ahmad and Mr Al-Qurannis and my sister, Mrs Surianis Bt Ahmad, their love and support keep me going. Last but not least, to my husband, Isa Bin Muhsan, thank you for your love, continuous support, encouragement and understanding.
I certify that an Examination Committee has met on 23rd December 2005 to conduct the final examination of Masrianis Bt Ahmad on her Master of Science thesis entitled “Fabrication And Characterisation of Mono- And Multifilament Ag-Sheathed Bi₁₋₆ Pb₃Sr₂Ca₂Cu₃O₁₀ Superconductor Tapes via Powder-Wire-In-Tube Technique” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Shaharin Ibrahim, PhD
Associate Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Sidek Hj Ab. Aziz, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zaidan Abd. Wahab, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Muhammad Yahaya, PhD
Professor
Faculty of Science and Tecnology
Universiti Kebangsaan Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 MAR 2006
This thesis submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements of the degree of Master of Science. The members of the Supervisory Committee are as follows:

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mansor Hashim, PhD
Associated Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Roslan Abd. Shukor, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **13 APR 2006**
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Date: 20/3/2006

MASRIANIS BT AHMAD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 History of superconductor

1.2 Basic Properties of Superconductors

1.2.1 Zero Resistance

1.2.2 Perfect Diamagnetism

1.3 Relation Between Critical Temperature, Critical Current and Critical Field

1.4 Critical current density in superconducting wire

1.4.1 Type-I superconducting wire

1.4.2 Type-II superconducting wire

1.4.2.1 Flux pinning

1.4.3 Limitation of Critical Current Density in Wire and Tape

1.4.3.1 Weak links

1.5 Application Of Superconducting Devices

1.5.1 Small-scale applications of HTS superconductors

1.5.2 Large-scale applications

1.6 Research objectives

2 BACKGROUND OF RESEARCH AND THEORIES

2.1 Background of research

2.2 High Temperature Oxide Superconductor

2.2.1 Family of Bi-Sr-Ca-Cu-O system – Bi-2212 and Bi-2223

2.3 Wire and tape conductor

2.3.1 Bi-2223 tapes

2.4 Models for the Current Transport

xii
METHODOLOGY

3.1 Sample Preparation and Experimental Details
- 3.1.1 Mixing the chemicals
- 3.1.2 Powder calcinations
- 3.1.3 Second calcinations
- 3.1.4 Preparation tape and pellet samples
- 3.1.5 Final Sintering

3.2 Experimental Research Design

3.3 Standard characterization of the samples
- 3.3.1 Resistance at various temperature
- 3.3.2 Critical Current Density, J_C in zero magnetic field
- 3.3.3 Critical Current Density, J_C in magnetic field
- 3.3.4 X-ray Diffraction (XRD)
- 3.3.5 Microstructure Analysis

RESULTS AND DISCUSSIONS

4.1 Resistance Measurement

4.2 Transport Critical Current Density
- 4.2.1 Temperature dependences of tape samples in zero magnetic field ($B = 0T$)
- 4.2.2 Transport critical current density in magnetic field

4.3 X-ray Diffraction Analysis

4.4 Microstructure Analysis

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Future Directions

REFERENCES

APPENDIX

BIODATA OF THE AUTHOR
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chronology of the development of superconductivity</td>
</tr>
<tr>
<td>1.2</td>
<td>List of Nobel Prize winner for their special contribution to the development of superconductivity</td>
</tr>
<tr>
<td>1.3</td>
<td>The applications for HTS in bulk, wires and thin films form</td>
</tr>
<tr>
<td>2.1</td>
<td>The lattice parameters in BSCCO superconducting system</td>
</tr>
<tr>
<td>2.2</td>
<td>Summarize of critical current density of Ag-sheathed Bi-2223 phase</td>
</tr>
<tr>
<td>3.1</td>
<td>Samples heated at 850 °C for 24 hours, 48 hours and 100 hours</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of T_C-zero and T_C-onset for pure samples and tapes with various number of filament and sintering time (24 hours, 48 hours and 100 hours)</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of transport critical current density (J_C) of monofilament and multifilament Ag-sheathed Bi${1.6}$Pb${0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ heated at 850 °C for 24 hours</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of transport critical current density (J_C) of monofilament and multifilament Ag-sheathed Bi${1.6}$Pb${0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ heated at 850 °C for 48 hours</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of transport critical current density (J_C) of monofilament and multifilament Ag-sheathed Bi${1.6}$Pb${0.4}$Sr$_2$Ca$_2$Cu$_3$O$_6$ heated at 850 °C for 100 hours</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of critical current density, J_C for tape samples heated at 850 °C for 100 hours with different number of filaments</td>
</tr>
<tr>
<td>4.6</td>
<td>(a) Thickness, core area, and fill factor of monofilament tapes (b) Density of wire with different of filament</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.1</td>
<td>The evolution of critical temperature, T_c from 1911</td>
</tr>
<tr>
<td>1.2</td>
<td>The typical curve of resistivity vs. temperature for a superconducting material</td>
</tr>
<tr>
<td>1.3</td>
<td>Type-I superconductor (a) B as a function of temperature (b) The magnetic field within the material (H) as the function of applied magnetic field (B)</td>
</tr>
<tr>
<td>1.4</td>
<td>Type-II superconductor (a) B as a function of temperature (b) The magnetic field within the material (H) as the function of applied magnetic field (B)</td>
</tr>
<tr>
<td>1.5</td>
<td>Vortices are surrounded by magnetic field on the outside and non-superconducting interior form triangular lattice in the mixed state. Partial penetration of type II superconductors when the applied fields is $B_{C1} < B < B_{C2}$. The penetrating field form cores that are non-superconducting and the material is in the mixed state</td>
</tr>
<tr>
<td>1.6</td>
<td>Surface superconductivity</td>
</tr>
<tr>
<td>1.7</td>
<td>(a) A wire carrying current I in the direction indicated by the arrow and (b) cross-sectional area of the wire showing the direction of the applied field</td>
</tr>
<tr>
<td>1.8</td>
<td>The Lorentz force $F = J \times B$ that resulted when current with density J interact on a flux line</td>
</tr>
<tr>
<td>1.9</td>
<td>Impurities and defects can act as flux pinning centers. (a) impurities can interact and pin the flux (b) vortex free energy and the pinned flux (c) vortex in the presence of current flow</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic illustration of the voltage-current characteristics of different superconducting materials</td>
</tr>
<tr>
<td>2.1</td>
<td>Crystallographic structure of $\text{Bi}_2\text{Sr}2\text{Ca}n\text{Cu}{n+1}\text{O}{2n+6+8}$ system with $n = 0, 1, \text{and} 2$ (Debsikdar, 1989; Bourdillon et al., 1993)</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of the structure of high temperature superconductors</td>
</tr>
<tr>
<td>2.3</td>
<td>Fabrication process for BSCCO wires in silver matrix</td>
</tr>
<tr>
<td>2.4</td>
<td>The “Brick wall” model</td>
</tr>
</tbody>
</table>
2.5 In Bi–tapes the single grains build colonies (a) which are connected with each other by either (001) twist boundaries (b) edge colony boundaries (c) or surface colony boundaries (d).

2.6 The “Railway switch” model

2.7 A diagram of the ‘railway switch’ model with low-angle ab-axis grain boundaries at the switches shows:
(a) a special switch structure of the model containing no (001) plane
(b) a general switch structure of the model containing part of the (001) plane

2.8 Microstructure-oriented models for current transfer schematically (a) corresponds to the brick-wall model and (b) to the railway-switch model. The thick lines illustrate the percolative current transfer through the network of strongly linked boundaries.

2.9 The “Freeway” model

2.10 Structure of roller skate powder

3.1 Flow chart for fabrication of precursor powder of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ superconducting materials

3.2 Flow chart for fabrication of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ pellet and Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ Ag-sheathed superconductor tape prepared via wire-powder-in-tube technique

3.3 Schematic diagram of the four-point probe electrical resistance measurement

3.4 (a) Schematic of I_C measurement in magnetic field (b) $B_{||}$ and B_{\perp} with respect to tape

4.1 Normalized resistance ($R/R_{(T=300\,K)}$) versus temperature for pellet sample of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ sintered at 850°C for 24 hours

4.2 Normalized resistance ($R/R_{(T=300\,K)}$) versus temperature for pellet sample of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ sintered at 850°C for 48 hours

4.3 Normalized resistance ($R/R_{(T=300\,K)}$) versus temperature for pellet sample of Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ sintered at 850°C for 48 hours

4.4 Resistance versus temperature for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ monofilament tape using PIT technique sintered at 850°C for 24 hours

4.5 Resistance versus temperature for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_x$ monofilament tape using PIT technique sintered at 850°C for 48 hours
4.6 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ monofilament tape using PIT technique sintered at 850°C for 100 hours

4.7 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 2) sintered at 850°C for 24 hours

4.8 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 2) sintered at 850°C for 48 hours

4.9 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 2) sintered at 850°C for 100 hours

4.10 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 4) sintered at 850°C for 24 hours

4.11 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 4) sintered at 850°C for 48 hours

4.12 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using PWIT technique (number of filament = 4) sintered at 850°C for 100 hours

4.13 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using WPIT technique (number of filament = 6) sintered at 850°C for 24 hours

4.14 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using WPIT technique (number of filament = 6) sintered at 850°C for 100 hours

4.15 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using WPIT technique (number of filament = 8) sintered at 850°C for 24 hours

4.16 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using WPIT technique (number of filament = 8) sintered at 850°C for 48 hours

4.17 Resistance versus temperature for Ag-sheathed Bi$_{16}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{8+delta}$ multifilament tape using WPIT technique (number of filament = 8) sintered at 850°C for 100 hours
4.18 Resistance versus temperature for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape using PIT technique (number of filament = 20) sintered at 850°C for 24 hours

4.19 Resistance versus temperature for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape using PIT technique (number of filament = 20) sintered at 850°C for 48 hours

4.20 Resistance versus temperature for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape using PIT technique (number of filament = 20) sintered at 850°C for 100 hours

4.21 T$_{C\text{-zero}}$ versus pellet and number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ tape samples sintered at 850°C for 24 hours

4.22 T$_{C\text{-zero}}$ versus pellet and number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ tape samples sintered at 850°C for 48 hours

4.23 T$_{C\text{-zero}}$ versus pellet and number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ tape samples sintered at 850°C for 100 hours

4.24 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ monofilament tape sintered at 850°C for 24 hours in zero field at 77 K, 70 K and 60 K

4.25 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ monofilament tape sintered at 850°C for 48 hours in zero field at 77 K, 70 K and 60 K

4.26 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ monofilament tape sintered at 850°C for 100 hours in zero field at 77 K, 70 K and 60 K

4.27 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 2; PWIT) sintered at 850°C for 24 hours in zero field at 77 K, 70 K and 60 K

4.28 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 2; PWIT) sintered at 850°C for 48 hours in zero field at 77 K, 70 K, 60 K and 50 K

4.29 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 2; PWIT) sintered at 850°C for 100 hours in zero field at 77 K, 70 K, 60 K, 50 K and 40 K

4.30 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 4; PWIT) sintered at 850°C for 24 hours in zero field at 77 K, 70 K and 60 K

4.31 I-E curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 4; PWIT) sintered at 850°C for 48 hours in zero field at 77 K, 70 K, 60 K, 50 K and 40 K
4.32 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =4; PWIT) sintered for 100 hours at different temperature dependences (B=0)

4.33 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =6; PWIT) sintered at 850 °C for 24 hours in zero field at 77 K, 70 K and 60 K

4.34 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =6; PWIT) sintered at 850 °C for 48 hours in zero field at 77 K, 70 K, 60 K, 50 K, 40 K and 30 K

4.35 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =8; PWIT) sintered at 850 °C for 24 hours in zero field at 77 K, 70 K and 60 K

4.36 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =8; PWIT) sintered at 850 °C for 48 hours in zero field at 77 K, 70 K, 60 K, 50 K and 40 K

4.37 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =8; PWIT) sintered at 850 °C for 100 hours in zero field at 77 K, 70 K and 60 K

4.38 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =20; PIT) sintered at 850 °C for 24 hours in zero field at 77 K, 70 K, 60 K, 50 K and 40 K

4.39 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =20; PIT) sintered at 850 °C for 48 hours in zero field at 77 K, 70 K, 60 K, 50 K, 40 K and 30 K

4.40 $I-E$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ multifilament tape (number of filament =20; PIT) sintered at 850 °C for 100 hours in zero field at 77 K, 70 K, 60 K, 50 K, 40 K and 30 K

4.41 Representative diagram of the $Jc-T$ space separated into regions where 2212 intergrowth are superconducting, 2212 intergrowth are normal but provide proximity coupling for the surrounding 2223 grains and the 2223 grains are fully decoupled at the 2212 intergrowth

4.42 $Jc-T$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ (a) n=1 (b) n=2 and (f) n=20 sintered at 850 °C for 24 hours in zero field

4.43 $Jc-T$ curve for Ag-sheathed $\text{Bi}_{1.6}\text{Pb}_{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_5$ (a) n=1 (b) n=2 (c) n=4 (d) n=6 (e) n=8 and (f) n=20 sintered at 850 °C for 48 hours in zero field
4.44 $J_{C}-T$ curve for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ (a) n=1 (b) n=2 (c) n=4 (d) n=6 (e) n=8 and (f) n=20 sintered at 850 °C for 100 hours in zero field

4.45 J_{C} versus number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ sample sintered at 850 °C for 24 hours at 77 K, 70 K and 60 K in zero field

4.46 J_{C} versus number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ sample sintered at 850 °C for 48 hours at 77 K, 70 K, 60 K, 50 K and 40 K in zero field

4.47 J_{C} versus number of filament for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ sample sintered at 850 °C for 100 hours at 77 K, 70 K and 60 K in zero field

4.48 Critical current density versus applied magnetic field for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ monofilament tape (PIT) sintered at 850 °C for 100 hours with different magnetic field and liquid nitrogen temperature, 77 K

4.49 Critical current density versus applied magnetic field for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ multifilament tape (number of filament = 2, PWIT) sintered at 850 °C for 100 hours with different magnetic field and liquid nitrogen temperature, 77 K

4.50 Critical current density versus applied magnetic field for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ multifilament tape (number of filament = 4, PWIT) sintered at 850 °C for 100 hours with different magnetic field and liquid nitrogen temperature, 77 K

4.51 X-ray diffraction patterns for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ pellet samples at different sintering time

4.52 X-ray diffraction patterns for Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_{6.5}$ monofilament tape samples at different sintering time

4.53 X-ray diffraction patterns for bulk and monofilament tape samples sintered in air at 850 °C for 24 hours
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A magnet levitates over a superconductor due to a combination of flux pinning and flux expulsion. This phenomenon is also known as the Meissner effect</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>(a) A SQUID device (b) Commercial HTS microwave filters from Conductus</td>
<td>27</td>
</tr>
<tr>
<td>1.3</td>
<td>American Superconductor is supplying the superconducting power cables for the Detroit Edison project. The current is carried by silver sheathed BSCCO tape. The construction of one type of cable is shown in (a). Liquid nitrogen flows through the core of the cable to provide the necessary cooling</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Scanning electron micrograph of the blue precipitates from co-precipitation method</td>
<td>124</td>
</tr>
<tr>
<td>4.2</td>
<td>SEM micrograph of fractured surface of $\text{Bi}{1.6}\text{Pb}{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ superconducting samples at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Cross section of (a) mono wire and monofilament tape sample and multi wire and multifilament tape sample (b) $n=2$, (c) $n=4$, (d) $n=6$, (e) $n=8$ and (f) $n=20$</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Longitudinal-section area of wire and multifilament tape (number of filament = 2; PWIT) using the optical microscope</td>
<td>128</td>
</tr>
<tr>
<td>4.5</td>
<td>SEM micrographs of cross-section and longitudinal direction of Ag-sheathed $\text{Bi}{1.6}\text{Pb}{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ monofilament tape using PIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr</td>
<td>134</td>
</tr>
<tr>
<td>4.6</td>
<td>SEM micrographs of cross-section and longitudinal direction of Ag-sheathed $\text{Bi}{1.6}\text{Pb}{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ multifilament tape (number of filament = 2) using PWIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr</td>
<td>135</td>
</tr>
<tr>
<td>4.7</td>
<td>SEM micrographs of cross-section and longitudinal direction of Ag-sheathed $\text{Bi}{1.6}\text{Pb}{0.4}\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_8$ multifilament tape (number of filament = 4) using PWIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr</td>
<td>136</td>
</tr>
</tbody>
</table>
4.8 SEM micrographs of cross-section and longitudinal direction of Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 6) using PWIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr

4.9 SEM micrographs of cross-section and longitudinal direction of Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 8) using PWIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr

4.10 SEM micrographs of cross-section and longitudinal direction of Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ multifilament tape (number of filament = 20) using PIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr

4.11 SEM micrographs of peel-off of the of Ag-sheathed Bi$_{1.6}$Pb$_{0.4}$Sr$_2$Ca$_2$Cu$_3$O$_8$ monofilament tape using PIT technique heat at various sintering time (a) 24 hr (b) 48 hr and (c) 100 hr
ABBREVIATIONS AND KEY WORDS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS theory</td>
<td>Bardeen, Cooper and Schrieffer theory</td>
</tr>
<tr>
<td>LBCO</td>
<td>La-Ba-Cu-O system</td>
</tr>
<tr>
<td>YBCO</td>
<td>Y-Ba-Cu-O system</td>
</tr>
<tr>
<td>Y123</td>
<td>Family member in $\text{YBa}_2\text{Cu}3\text{O}{7-x}$</td>
</tr>
<tr>
<td>Bi-2201</td>
<td>Family member in $\text{Bi}_2\text{Sr}2\text{Ca}n\text{Cu}{n+1}\text{O}{6+2n}$, $n=0$</td>
</tr>
<tr>
<td>Bi-2212</td>
<td>Family member in $\text{Bi}_2\text{Sr}2\text{Ca}n\text{Cu}{n+1}\text{O}{6+2n}$, $n=1$</td>
</tr>
<tr>
<td>Bi-2223</td>
<td>Family member in $\text{Bi}_2\text{Sr}2\text{Ca}n\text{Cu}{n+1}\text{O}{6+2n}$, $n=2$</td>
</tr>
<tr>
<td>TBCCO</td>
<td>Tl-Ba-Ca-Cu-O system</td>
</tr>
<tr>
<td>TI-2223</td>
<td>Family member in $\text{Tl}_2\text{Ba}2\text{Ca}n\text{Cu}{n+1}\text{O}{6+2n}$, $n=2$</td>
</tr>
<tr>
<td>HBCCO</td>
<td>Hg-Ba-Ca-Cu-O system</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo Gravimetric Analysis</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>Calcination</td>
<td>Heating process where the solid state reaction occur</td>
</tr>
<tr>
<td>Sintering</td>
<td>Heating process yielding for more compacting of the sample grains and improve its properties</td>
</tr>
<tr>
<td>PIT</td>
<td>Powder-in-tube</td>
</tr>
<tr>
<td>PWIT</td>
<td>Powder-wire-in-tube</td>
</tr>
<tr>
<td>B, H</td>
<td>Magnetic Field</td>
</tr>
<tr>
<td>$B_{</td>
<td></td>
</tr>
<tr>
<td>B_{\perp}</td>
<td>Magnetic field perpendicular to tape face</td>
</tr>
<tr>
<td>B_C</td>
<td>Critical magnetic field</td>
</tr>
<tr>
<td>B_{C1}</td>
<td>Lower Critical Field</td>
</tr>
<tr>
<td>B_{C2}</td>
<td>Upper Critical Field</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_C</td>
<td>Critical Temperature</td>
</tr>
<tr>
<td>$T_{C\text{-onset}}$</td>
<td>Critical Temperature onset</td>
</tr>
<tr>
<td>$T_{C\text{-zero}}$</td>
<td>Critical Temperature zero</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>E-I</td>
<td>Electric Field - Current</td>
</tr>
<tr>
<td>A</td>
<td>Surface area</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
</tbody>
</table>