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RAHAYU EMILIA MOHAMED KHAIDIR 

 

 

August 2019 

 

 

Chair  : Yap Wing Fen, PhD  

Faculty  : Institute of Advanced Technology 

 
 

Nowadays, researchers have been working on to produce glass phosphors using waste 

materials for optical application purpose but lack of study in producing europium (Eu3+) 

doped zinc silicate (Zn2SiO4) glass ceramics derived from rice husk as raw material. 

Firstly, X-ray fluorescence spectroscopy (XRF) had confirmed white rice husk ash 

(WRHA) contains 90.926% of silica which suitable to produce zinc silicate glass (ZnO-

SiO2). Based on the X-ray diffractometer (XRD) analysis of different glass compositions, 

60:40 ratio of zinc oxide (ZnO) against WRHA shows amorphous phase which made it 

optimum composition to produce Zn2SiO4 glass ceramics. Hence, a study on structural 

and optical properties with subject to sintering temperature (600-1000°C) and dopant 

concentration (1-5 wt.%) has been done. XRD revealed the intensity of α-Zn2SiO4 phases 

become sharper indicating good crystallization as temperature increased but drastically 

dropped due to structural distortion as dopant was added. Field emission scanning 

electron microscopy (FESEM) shows the particles have good connectivity due to 

crystallization when sintered while dopant addition had reduced the surface porosity. 

Meanwhile, Fourier transform infrared spectrometer (FTIR) analysed at 400-2000 cm-1 

wavenumber had revealed that the broad bands of SiO4 were getting narrower due to 

increase in the crystallinity while the presence of Eu3+ dopants had weakened the band 

by lattice defects. Ultra-violet visible spectroscopy (UV-Vis) analysis in the wavelength 

range of 220-800 nm shows the absorption at ~250-400 nm were uplifted towards higher 

wavelength due to crystal growth thus band gap values were decreasing from 4.01 eV to 

2.98 eV as temperature increased. However, dopant addition increased band gap values 

from 3.39 eV to 3.67 eV as absorbance shifted to shorter wavelength due to lattice 

distortion. Photoluminescence spectroscopy (PL) analysis shows red emission exhibited 

at wavelength 612 nm due to Eu3+ transitions under 400 nm excitation. Therefore, this 

zinc silicate glass ceramics appeared to be a potential phosphor material for electronic 

devices. 

 

 

  



© C
OPYRIG

HT U
PM

ii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

 

SINTESIS DAN PENCIRIAN SERAMIK KACA WILLEMITE DOP EUROPIUM 

BERASASKAN DARIPADA SEKAM PADI 

 

 

Oleh 

 

 

RAHAYU EMILIA MOHAMED KHAIDIR 

 

 

Ogos 2019 
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Pada masa kini, para penyelidik telah berusaha untuk menghasilkan bahan fosfor 

menggunakan bahan terbuang untuk kegunaan aplikasi optikal namun kurang kajian 

dalam menghasilkan europium (Eu3+) dop seramik kaca zink silica (Zn2SiO4) daripada 

sekam padi sebagai bahan asas. Pertamanya, pendarfluoran sinar-X (XRF) telah 

mengesahkan abu putih sekam padi (WRHA) mengandungi 90.926% silika dimana ia 

sesuai untuk menghasilkan kaca zink silika (ZnO-SiO2). Berdasarkan analisa 

pembelauan sinar-X (XRD) tentang komposisi kaca yang berlainan, nisbah 60:40 dari 

zink (ZnO) dan WRHA menunjukkan fasa amorfus yang membuatkan ia komposisi 

optima untuk menhasilkan Zn2SiO4. Dengan itu, pembelajaran tentang sifat-sifat struktur 

and optikal bergantung pada suhu pembakaran (600-1000°C) dan kepekatan dopan (1-5 

wt.%) telah dijalankan. XRD menunjukkan keamatan fasa α-Zn2SiO4 menjadi lebih 

tinggi menandakan penghabluran yang baik apabila suhu meningkat namun menurun 

secara drastic disebabkan distortasi struktur apabila dopan ditambah. Mikroskop 

pelepasan bidang imbasan elektron (FESEM) menunjukkan zarah-zarah mempunyai 

sambungan yang baik disebabkan oleh penghabluran semasa pembakaran sementara 

tambahan dopan telah mengurangkan liang permukaan. Sementara itu, spektroskopi 

inframerah (FTIR) dianalisa pada 400-2000 cm-1 telah menunjukkan jalur lebar SiO4 

menjadi kecil disebabkan oleh penghabluran yang meningkat sementara kehadiran 

dopant Eu3+ telah mengecilkan jalur lebar dengan kerosakan kekisi. Analisis 

spektroskopi ultraungu cahaya nampak merah (UV-Vis-NIR) dalam julat gelombang 

220-800 nm menunjukkan penyerapan pada ~250-400 nm telah terbawa ke julat 

gelombang yang lebih tinggi disebabkan oleh pertumbuhan kristal justeru menurunkan 

jurang jalur dari 4.01 eV ke 2.98 eV apabila suhu meningkat. Namun begitu, tambahan 

dopan meingkatkan nilai jurang jalur dari 3.39 eV to 3.67 eV apabila penyerapan berubah 

ke jalur gelombang yang lebih rendah disebabkan oleh distortasi kekisi. Analisis 

spektroskopi kefotopendarcahayaan PL menunjukkan pancaran merah dihasilkan pada 

gelombang 612 nm berikutan peralihan Eu3+ di bawah pengujaan pada 400 nm. Oleh itu, 

kaca zinc silika silikat nampaknya menjadi bahan fosfor yang berpotensi untuk peranti 

elektronik. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

1.1 Zinc Silicate  

 

 

Zinc silicate (Zn2SiO4), also known by its mineral name, willemite is discovered by 

Armand Lévy at Moresnet or now known as La Calamine, Belgium since the earliest 

year of 1829. The name of willemite was dedicated specially for the late King of 

Netherlands, Willem (I) of Orange-Nassau during the reign year of 1815 to 1840. Not 

long after that, willemite was getting more attention and found to be distributed to places 

such as Franklin, New Jersey and United States for its unique luminescence properties. 

In 1930s, willemite has been used as a phosphor material for fluorescent or neon lamp, 

colours television and several more displays while in present years, willemite has been 

used for more advanced technologies such as optoelectronic devices, lasers, sensor 

materials and many more electronic devices (Takesue et al., 2009a). 

 

 

Zn2SiO4 has been found to be one of the inorganic optical based materials that acts as a 

very good host matrix for many rare earth ions and transition metal dopant ions that can 

exhibit luminescent properties (Rasdi et al., 2017a). This inorganic silicate phosphor has 

been used widely not only because it has great blue, green, and red luminescence 

properties but also chemically stable (El Mir et al., 2015). Zn2SiO4 exist either in alpha-

α or beta-β phases where α-phase which is thermodynamically most stable compared to 

β-phase which is meta-stable when being treated to higher temperature (Rivera-Enríquez 

et al., 2016).  

 

 

1.2 White Rice Husk Ash 

 

 

Rice husk is a major by-product of agroindustry that can be obtained by extracting the 

hard coating on grain of rice. Rapid increase in world population has given a parallel 

impact in production demands. Most countries such as India, China and South East Asia 

are very high demands for rice productions as rice is their staple food (Pode, 2016). For 

example, Sri Lanka produces almost 3 million tons of paddy in 2002 making them at 18th 

highest country in producing paddy (De Silva & Surangi, 2017). Thus, results in an 

increase of waste products that leads to environmental pollutions due to inappropriate 

disposal. Therefore, researchers are trying to make use of the rice husks in industrial 

application to reduce the abundance of rice husk wastes. Utilizing the rice husks by 

recycling the biomass waste can either turning it into energy production to generate 

electricity by mill operation or material production such as cement and glass ceramics 

(Pode, 2016).  

 

 

Generally, rice husk contains a huge amount of carbon and some silica content at pre-

combustion process (Stochero et al., 2017). In this project, glass ceramics produced are 
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derived from the white rice husk ash (WRHA). WRHA is a solid white coloured product 

formed after burning process of the rice husks at a certain temperature. It is high of 

porosity, light in weight and silica rich rice husk for about 90% and more silica content 

(De Silva & Surangi, 2017). Other than silica, it also consist of other components such 

as lignin, cellulose, hemicellulose, oxides, alkali earth metals, chloride and aluminium. 

The difference in origin of the rice husks differs the level of impurities of the rice husks. 

It affects the performance and efficiencies of rice husk ash in the industrial applications 

and provide excellent filler-matrix interaction when proper treatments are given to the 

rice husks (Hsieh et al., 2017).  

 

 

1.3  Europium as Rare Earth Ions 

 

 

In recent years, compound doped with rare-earth (RE) ions have attracted so much 

attention in developing the optical properties of glass ceramics. RE doped with glasses 

allow a various applications such as fluorescent display devices, white light emitting 

diode (W-LED), radiation detection sensor and optical fibres used for lasers. RE ions 

proved that they are most important functional materials due to the rich 4f-4f transitions 

in 4fth ions specially for optical technologies and luminescence display (Qin et al., 2014). 

Thus, due to their 4f intra shell transitions, it gives RE ions to have better luminescent 

material because of their sharp and intense emission which is easier for human eyes to 

detect the monochromatic colours (Krishna et al., 2007). There are a few of RE elements 

that are usually being used in forming glass ceramics which are cerium (Ce3+), 

neodymium (Nd3+), samarium (Sm3+), europium (Eu3+), erbium (Er3+), thulium (Tm3+), 

ytterbium (Yb3+) and others. Other than high in luminescence efficiencies in various host 

materials, they are also widely used due to the broad emission spectral range (Padlyak et 

al., 2014). 

 

 

In this project, europium (III) oxide, Eu2O3 has been chosen to be the main dopant 

material to form europium doped zinc silicate glass ceramics samples that is derived from 

waste rice husks. Eu3+ is one of the RE elements that has been widely investigated 

structurally related to its great luminescence. Eu3+ has enormous potential in various 

applications among the lanthanides and it is frequently used in order to emit strong and 

sharp red or orange luminescence (Krishna et al., 2007). Considering this, Eu3+ ions are 

exceptionally useful since red emission phosphor is needed to develop W-LED that is 

considered as next-generation source of light due to its high brightness, good efficiencies, 

long lifetime and also environmental friendly as it could save up to 70% of energy (Jeon 

et al., 2015). 
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1.4 Glass-Ceramics 

 

 

Glass ceramics can be formed when a pure amorphous glass sample with optimum 

composition is being treated with some sufficient amount of heat thus undergoes 

controlled crystallization to lower energy crystallize state or what we called as 

devitrification of glass. It has one or more crystalline phase that makes the glass ceramic 

is structurally polycrystalline. In 1953, glass ceramic was discovered by Stanley Donald 

Stookey when he accidentally overheated his lithium silicate glass sample in the furnace 

for about 900°C and surprised by the toughness of the sample after he observed a white 

material that is physically unchanged from the heat treatment (Zanotto, 1953). In recent 

years, development of glass ceramics have been given a lot of attention by the researchers 

due to the various different waste can be used to produce the glass ceramics. Not only 

because of it is environmental friendly by using waste materials, but also worthy as the 

glass ceramics produced have low thermal expansion coefficient, good transparency in 

the visible wavelength range for cooking ware, high in strength, chemically and 

physically high durability and low hardness for dental applications. Forming a glass 

ceramic is a heterogeneous transformation where it involves two stages, firstly a 

nucleation stage and next is a growth stage. During the nucleation process, stable volume 

and crystalline phases are formed in the parent glass. The rate of nucleation depends on 

the temperature (Janković et al., 2014). Once a stable nucleus is formed, crystal starts to 

grow in which the atoms or molecules in the sample move across the glass crystal. Other 

than that, there is also a single stage method where in this study, by using solid state 

method, where the powdered sample was compacted and sintered at high temperature to 

grow the crystallinity. This method ensures that the sample is fully sintered but not too 

rapidly that may cause unacceptable amount of porosity. 

 

 

1.5 Problem Statements 

 

 

In recent industrial development, silicate glasses are classified in a large group of 

inorganic optical based materials with other compounds such as aluminates, phosphates, 

borates, fluorides and other oxides that are widely used considering their potential in 

glass phosphor industries. Among those mentioned inorganic compounds, silicate 

glasses exhibit superior chemical resistance and are optically transparent at the excitation 

and lasing wavelengths (Zaid et al., 2012). However, the only mediocre of silicate glasses 

is its high melting temperature about 1700°C due to high purity silica content which 

requires high amount of energy resulting in high production cost (Omar et al., 2016d). 

Therefore, this can be overcome by replacing the conventional silica-rich sand used to 

synthesize silicate glass by other suitable silica source which can lower the melting 

temperature of high purity silicate glass. Recently, researchers have been using 

agricultural waste products such as rice husks ash, coconut shell ash and palm oil ash 

practically as a substituent of silica source for the glass phosphor (Madakson et al., 2012; 

Prasara-a & Gheewala, 2017; Lee et al., 2017a). Among all wastes, rice husk is believed 

to contain high percentage of silica content in the white rice husk ash (WRHA) compared 

to other wastes (Fernandes et al., 2016). Hence with that, it can lower the cost of 

production as rice husks are one of a major waste products that can be easily obtained in 

most countries around Asia (De Silva & Surangi, 2017). Furthermore, it may help to 

reduce waste abundance that can leads to environmental issues by fully utilize the waste 
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products into a good benefit rather than abandoning the unwanted rice husks to be burned 

in open air by the farmers. 

 

 

In course of previous investigation, silicate glasses are often fabricated and creatively 

modified by the researchers in order to study the ability of this type of glass to go beyond 

ordinary expectations (Kilcup et al., 2015). In facts, the inorganic compound can be 

added with zinc oxide (ZnO) to produce glass composite such as zinc aluminate glass, 

zinc borate glass and zinc phosphate glass which they turned out to be great promising 

glass phosphor for various applications (Hern et al., 2003; Davesnne et al., 2014; El 

Ghoul & El Mir, 2016). Perhaps, this is because zinc oxide (ZnO) is one of the essential 

and commercialized material which has been used widely in so many fields with different 

purposes such as cosmetics, medical additives, buildings, chemical catalyst, rubbers, 

electronic and etc (Bharat et al., 2019). The usage benefits of ZnO in modern solid state 

have intrigued the researchers to invent more on new technologies, while fabricating it 

as glass phosphor for optoelectronic applications is still under investigation (Zaid et al., 

2016). Its wide band gap (3.37 eV) energy with low resistance at room temperature gives 

tremendous potential for it to have tendency in absorbing visible light within ultra violet 

(UV) range (Li et al., 2009). Other than that, ZnO is also varies in types and particle sizes 

which has been chosen differently according to their specific uses. The nanoparticles 

structured ZnO are rarely used due to its high chemical cost compared to the conventional 

ZnO powders. However, this highly cost but worth irresistible benefits of nanoparticle 

ZnO is said to be antibacterial hygienic agent, fast catalytic reactivity, thermally stable, 

chemically and optically better in performance owing to its large total surface area 

(Gunalan et al., 2013). The fine particles also help in better absorbing or scattering the 

UV radiation and useful for light emitting technologies, solar cells and piezoelectric 

devices (Kuo et al., 2010). 

 

According to that fact, the silicate glass also would likely suitable to mix up with ZnO 

to create zinc silicate glass system (ZnO-SiO2) for wide range of electronic appliances in 

our daily life. The fabrication of ZnO-SiO2 glass has encountered much attention among 

researchers because of their excellent glass forming nature and its ability to become a 

great host matrix due to its high chemical stability and physically stable properties (Wang 

et al., 2015). Their specialties can be exposed more when being doped or added with ions 

from lanthanides group such as cerium (Ce3+), europium (Eu3+), erbium (Er3+),  

neodymium (Nd3+), thullium (Tm3+), samarium (Sm3+) and ytterbium (Yb3+) where they 

can emit various luminescent colours which are useful for optical applications (Rasdi et 

al., 2017a). This is because of their location at 4f shells that well surrounded by 5s2 and 

5p6 orbitals had dominated their sharp optical spectra (Chimalawong et al., 2012). The 

study of rare earth doped glasses is very much important as the change in consequent 

properties related to glass transition and softening temperature, physical, mechanical and 

refractive index were all influenced by the change in ionic radii in the structural system 

(Wang et al., 2011). Among all rare earths ions, Eu3+ is one of the effective activators 

which can be found to be in two oxidation states of Eu3+ and Eu2+ depending on 

preparation conditions (Davesnne et al., 2014). From practical viewpoint, europium is 

the most useful for numerous applications as a result of its ability to absorb blue light 

excitation and emit broad emission bands within 250 nm to 750 nm and beyond (Cherepy 

et al., 2016). Moreover, Eu3+ doped phosphor approach is also needed to produce white 

light emitting diodes (W-LEDs) and other devices due to luminescence efficiencies in 

red spectral wavelength region mainly from 5D0 → 7F1,2 (Janković et al., 2014). However, 
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there were lack of studies in adding Eu3+ into ZnO-SiO2 glass phosphor derived from 

waste rice husks which surely has its own luminescent properties. 

 

 

For instance, this ZnO-SiO2 glass phosphor is believed to be a great host material for 

numerous applications related to optoelectronics, sensors, lasing and light emitting 

diodes due to its large band gap, high chemical stability and good transparency in UV 

region (Rashid et al., 2017). However, it must in line and considering the accurate 

composition, thermal sustainability, physical and structural endurance of the glass 

properties to produce a promising and good glass phosphor. Therefore, the ZnO-SiO2 

glass phosphors need to be conducted or annealed at certain temperature to transform 

glass into glass ceramics for better properties. Zinc silicate (Zn2SiO4) glass ceramics are 

generally used as the main host material to exhibit luminescent properties due to the wide 

and large energy band gap also excellent transparency in UV region (Zhang et al., 2001). 

The luminescence properties can be enhanced and encouraged by doping the glass 

ceramic phosphor with either rare earth ions or transition metal ions (Bharat et al., 2014). 

In this study, europium oxide (Eu2O3) was used as doping agent as it exhibits good 

emission within red spectral region (Syamimi et al., 2014). It is because of sharp 

luminescence they exhibit from 4f-5d orbital configurations (Omar et al., 2017)  

 

 

Since all the materials needed to produce Zn2SiO4 sample are designed and figured out, 

the sample preparation method should be simple and able to produce in a large amount. 

These are to ensure that the method used is not complicated and time consuming also 

low in cost in the aspect of equipment. Thus in this research, solid state method has been 

selected to prepare the Zn2SiO4 samples of all other methods. Solid state method (Omar 

et al., 2017)  is one of various methods used to fabricate the Zn2SiO4 phosphor other than 

several chemical methods such as the sol-gel method (Rasdi et al., 2017a), spray 

pyrolysis method (Sivakumar et al., 2012), hydrothermal method (Xu et al., 2010) and 

co-precipitation method (Rivera-Enríquez et al., 2016). Among these methods, solid state 

method is simpler that also save energy and time to produce large scale of Zn2SiO4 

sample compared to chemical methods. This is because chemical methods have 

complicated steps where they need longer period of time to prepare the samples. Besides, 

chemical methods require more chemicals and expensive equipment to handle the sample 

preparation thus increase the research cost.  
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1.6 Objectives 

 

 

1. To synthesis willemite phosphor (Zn2SiO4) doped with europium ions (Eu3+) by 

using conventional melt-quenching and solid state method derived from waste rice 

husk ash. 

2. To study the effect of different sintering temperatures towards structural and optical 

properties of zinc silicate doped with europium ions (Eu3+). 

3. To study the effect of doping towards structural and optical properties of zinc 

silicates doped with europium ions (Eu3+). 

 

 

1.7 Thesis Outlines 

 

 

This thesis starts with the introduction of zinc silicate and the properties of important 

raw materials used in this research which are the WRHA and rare earth europium ions 

in Chapter 1. In Chapter 2, previous and current researches by other researchers will be 

reviewed to give more information related to this research. Next in Chapter 3, the 

methodology of this research including all calculations, materials and apparatus used to 

obtain zinc silicate doped with europium ions samples will be explained in this chapter. 

Then, in Chapter 4, each and every result obtained from the characterization will be 

analysed and elaborated comprehensively in this chapter. The results include the effects 

of different sintering temperatures towards the structural and optical properties of the 

samples. Finally, the last chapter will conclude this study and suggestions for any future 

works will be given in Chapter 5.  

 

 

1.8 Scope of Studies 

 

 

This project covers the scope of studies as below: 

 

1. Fabrication of zinc silicate doped with europium ions prepared from waste white 

rice husk ashes, zinc oxide nanopowders, and europium oxide powders where the 

stoichiometric equation (ZnO0.6WRHA0.4)1-x where x = 0.01, 0.02, 0.03, 0.04 and 

0.05.   

2. Different sintering temperatures from 600°C to 1000°C were applied to sinter the 

zinc silicate doped with europium ions glass ceramic. 

3. Analysing the chemical composition of white rice husk ash by using X-ray 

fluorescence (XRF). 

4. Analysing the structural properties which include phase formations, bond 

formations and surface morphologies of the zinc silicate doped with europium ions 

samples using X-ray diffractometer (XRD), Field emission scanning electron 

microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). 

5. Analysing the optical properties which include absorption, optical band gap and 

luminescence intensity of the samples by using ultraviolet visible spectroscopy 

(UV-Vis-NIR) and Photoluminescence spectroscopy (PL) characterization.  
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