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Energy and environmental issues are the two major problems that our world is facing 

today. These, combined with developing consumer demands have stirred researchers’ 

interest in inexpensive, environmentally friendly functional materials. With Malaysia 

as an indicator, and based on a projected annual production of palm oil in Malaysia of 

over 15.4 million metric tons by 2020, it is estimated that about 46.6 tons of 

lignocellulosic wastes will be generated. Transforming these wastes into wealth could 

be integrated into a global paradigm shift towards sustainable development.  

 

 

Thus, in this research, a new approach was proposed to produce reduced graphene 

oxide (rGO) from graphene oxide (GO), and activated carbons (AC) using various oil 

palm by-product materials, namely oil palm leaves (OPL), palm kernel shells (PKS) 

and empty fruit bunches (EFB). The effect of heating temperature on the formation of 

graphitic carbon and the yield was examined prior to the GO and rGO synthesis. 

Carbonization of the starting materials was conducted in a furnace under nitrogen gas 

for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 

°C/min. The GO was further synthesized from the as-carbonized materials using the 

‘improved synthesis of graphene oxide’ method. Subsequently, the GO was reduced 

by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 

1 h to produce rGO.  

 

 

It was found that the IG/ID ratio calculated from the Raman spectral analysis increases 

with the increasing of the degree of the graphitization in the order of rGO from oil 

palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial 

graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 
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1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the 

as-prepared materials were performed using the Brunauer Emmett Teller (BET) 

nitrogen adsorption-desorption method. The lower BET surface area of 8 and 15 m2g−1 

observed for rGOCG and rGOOPL, respectively could be due to partial restacking of 

GO layers and locally-blocked pores. Relatively, this lower BET surface area is 

inconsequential when compared to rGOPKS and rGOEFB, with a surface area of 114 

and 117 m2 g−1, respectively.  

 

 

Furthermore, electrochemical energy storage performances of the rGOs, and also the 

as-prepared activated carbons were also all carried out using cyclic voltametry (CV) 

method, and were found to be good electrode materials for supercapacitors 

applications. One of the OPL-based AC electrodes was found to have very high 

capacitance values of 434 F g−1 at 5 mVs−1, which is much higher than the specific 

capacitance value (343 F g−1) of the only oil palm leaf-derived porous carbon 

nanoparticles ever reported in the literature.  

 

 

On the other hand, a novel phase change material (PCM) made of n-nonadecane 

infused by capillary forces in a compressed reduced graphene oxide-activated carbon 

composite matrix was also investigated. Reduced graphene oxide (rGOEFB) -

activated carbon (AC) composite was successfully prepared and exhibited an 

improved thermal conduction property, and was used as a matrix or framework for the 

fabrication of shape-stabilized composite phase change material (SCPCM). During 

this SCPCM set-up, which was achieved by simple impregnation method, the pores of 

the rGOEFB-AC composite serves as the matrix/framework while n-nonadecane as 

the central envelope. The molten n-nonadecane was successfully stabilized by this 

porous carbon matrix via the capillary force and surface tension forces which 

mitigated the seepage of the molten n-nonadecane throughout the phase change cycle. 

The phase change temperatures and latent heats of composite SCPCM-5 were 37.25 

and 25.58 oC and 82.72 and -62.22 J/g, respectively. On the whole, the novel carbon-

based nanomaterials produced in this project demonstrate excellent features that 

enabled them to be used as both thermal and electrochemical energy storage materials. 
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Antara permasalahan besar yang dihadapi masyarakat dunia hari ini adalah isu-isu 

berkaitan tenaga dan alam sekitar. Di samping itu, permintaan pengguna yang semakin 

meningkat turut menggalakkan kajian berkaitan bahan berfungsi yang murah dan 

mesra alam. Dengan menggunakan Malaysia sebagai indikator dan berdasarkan 

jangkaan produksi minyak kelapa sawit Malaysia yang akan melebihi 15.4 juta tan 

matrik pada tahun 2020, dijangka bahawa sebanyak 46.6 tan sisa lignoselulosa akan 

dijana. Kemampuan untuk menukar sisa tersebut kepada bahan bernilai mungkin 

boleh diintegrasikan ke dalam usaha perubahan paradigma dunia ke arah 

pembangunan mampan. 

 

 

Sehubungan dengan itu, kajian ini memperkenalkan kaedah baru untuk penghasilan 

grafen oksida terturun (rGO) daripada grafen oksida (GO) dan karbon teraktif (AC) 

menggunakan produk sampingan industri kelapa sawit iaitu daun kelapa sawit (OPL), 

tempurung sawit (PKS) dan tandang kosong kelapa sawit (EFB). Kesan suhu 

pemanasan terhadap penghasilan karbon grafitik dikaji sebelum proses sintesis GO 

dan rGO. Karbonasi bahan mentah  telah dijalankan di dalam relau berisi gas nitrogen 

selama 3 jam pada suhu antara 400 ke 900 °C dengan kadar pemanasan  10 °C/min. 

Kemudian GO telah disintesis menggunakan bahan yang telah dikarbonasi dengan 

menggunakan kaedah Hummers’ yang telah ditambah baik. Seterusnya, GO 

diturunkan menggunakan kaedah penurunan penyepuhlindapan suhu rendah pada 

suhu 300 °C di dalam relau berisi nitrogen selama 1 jam untuk menghasilkan rGO. 

 

 

Didapati bahawa nisbah IG/ID yang dikira daripada analisis spektroskopi Raman 

bertambah dengan pertambahan kadar pengrafitan mengikut urutan berikut; rGO 
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daripada daun kelapa sawit (rGOOPL) < rGO daripada tempurung sawit (rGOPKS) < 

rGO daripada graphit komersil (rGOCG) < rGO daripada tandan kosong kelapa sawit 

(rGOEFB) dengan nilai IG/ID masin-masing 1.06, 1.14, 1.16 and 1.20. Analisis luas 

permukaan dan isipadu liang bahan-bahan yang disintesis telah dikaji menggunakan 

keadah penjerapan-penyahjerapan nitrogen Brunauer Emmett Teller (BET). Luas 

permukaan yang rendah telah didapati untuk rGOCG dan rGOOPL (8 dan 15 m2g−1) 

adalah berkemungkinan disebabkan oleh penyusunan semula lapisan GO serta liang 

yang tersumbat. Secara relatif, luas permukaan BET yang rendah ini tidak penting jika 

dibanding dengan nilai luas permukaan BET rGOPKS dan rGOEFB, iaitu masing-

masing, 114 and 117 m2 g−1.  

 

 

Di samping itu, prestasi penyimpanan kuasa elektrokimia oleh rGO dan karbon 

teraktif yang dihasilkan telah dikaji menggunakan kaedah voltametri berkitar (CV). 

Didapati bahawa semua rGO dan karbon teraktif menunjukkan prestasi baik sebagai 

elektrod untuk aplikasi superkapasitor. Salah satu elektrod AC berasaskan OPL 

menunjukkan nilai kapasiti yang tinggi iaitu 434 F g−1 pada 5 mVs−1. Nilai ini lebih 

tinggi jika dibandingkan dengan nilai kapasiti bahan partikel nanokarbon berasaskan 

daun kelapa sawit tunggal yang pernah dilaporkan dalam literatur (343 F g−1). 

 

 

Selain itu, bahan berubah fasa (PCM) baru yang dihasilkan menggunakan komposit 

grafen oksida terturun (rGOEFB) /karbon teraktif (AC) dan n-nonadekana turut dikaji.  

Komposit rGOEFB-AC bertindak sebagai matrik sementara n- nonadekana bertindak 

sebagai bahan berubah fasa yang utama. Pencairan n- nonadekana telah berjaya 

distabilkan menggunakan karbon matrik berongga melalui daya kapilari dan daya 

tegang permukaan yang mengurangkan rembesan pencairan n- nonadekana sepanjang 

kitaran perubahan fasa. Perubahan fasa suhu dan pengumpulan haba komposit masing 

masing, SCPCM-5 adalah 37.25 dan 25.58 oC dan 82.72 dan -62.22 J/g. Secara 

keseluruhannya, bahan-bahan nanokarbon baru yang dihasilkan di dalam kajian ini 

menunjukkan ciri-ciri unggul untuk digunakan sebagai bahan penyimpanan tenaga 

haba dan juga tenaga elektrokimia. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Background of the Research 

Oil palm-derived wastes are often becoming environmental problems in the Southeast 

Asian developing countries, especially, Malaysia, Indonesia and Thailand. The use of 

natural bioresources or biomass for carbon-based nanostructures fabrication as well as 

their energy storage-related applications are currently receiving a great deal of 

attention [1]. As a result, problems associated with the generation of bio-agricultural 

wastes are prompting researchers to find ways of utilizing them in order to protect the 

environment. Most of the natural components (especially those of lignocellulosic 

inclination) from those wastes can be utilized as carbon sources for creating innovative 

materials as a function of cost. Thus, high technology industries are compelled to find 

alternative materials to substitute the conventional materials due to economic and 

environmental challenges. These alternative materials are believed to hold some 

advantages over their counterparts (i.e. the conventional materials) in terms of 

availability/sustainability, renewability, cost effectiveness and compatibility with the 

natural environment. In summary, the establishments of sustainable and innovative 

solutions are required to tackle those sprouting problems. The main intention of this 

thesis is to contribute with new knowledge to a better understanding of the huge 

potentials of oil palm waste-based biomass materials for the fabrication of carbon-

based nanomaterials (graphene oxide, reduced graphene oxide and activated carbons) 

and to explore their thermal and electrochemical energy storage potentials.  

To begin with, nanomaterials (in general) are materials that have distinctive or novel 

properties, due to the nanoscale structuring. The materials are usually produced by 

integrating or structuring of nanoparticles. They are subdivided into nanopowders, 

nanocrystals and nanotubes and can have zero, one, two or three dimensions on the 

nanoscale. The current interest on nanomaterials is ascribed to the small scale 

dimension of the materials. Materials with nanoscale size have essentially different 

properties as compared to the bigger scale and this is attributed to increased surface 

area to volume ratios. In essence, increased interaction and reactivity is expected with 

these materials and thus potentially using less of the materials [2]. 

1.2 Graphitic Nanostructures  

Typical graphitic nanostructures comprise graphene, graphene oxides (GO), reduced 

graphene oxide (rGO), graphene quantum dots (GQDs), carbon nanotubes (CNTs), 

carbon nanofibers (CNFs), carbon nanohorns and onion-like carbon (OLC). They are 

usually synthesized using a variety of carbon sources (as the precursors) with different 

methods. In the context of this thesis, we focus largely on the preparation of GO, rGO 

and activated carbon with renewable and economical materials (biomass) as carbon 

source. 
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1.3 Carbon Nanomaterials at a Glance 

An evidence of the synthesis and application of carbon-based materials went back to 

several centuries ago. The material under discussion encompasses complete and 

diverse crystallographic structures with various shapes, dimensions, geometries and 

chemical bonds. A typical example of these materials are but not limited to, various 

sorts of graphite, synthetic and naturally occurring diamond, activated carbon, carbon-

based aerogels, carbon fibres, and their composites, carbon nanotubes, fullerenes, 

graphene and other graphene-related and derived materials, etc. In recent times, the 

controlled manipulation, reduction and modification of sample dimension into a small 

number of nanometers is getting so much attention. Researchers are captivated in the 

nanoscale due to the fact that physical and chemical properties of materials at 

nanoscale change considerably from those at a larger scale. Therefore, nanoscaled 

materials could be designed and developed through the modified, controlled and size-

selective production of nanoscale building block with tunable and enhanced physical 

and chemical properties. 

1.4 Carbon Nanomaterials on the Global Energy Perspective 

According to world energy council report (WEC) [3], it is projected that the world’s 

population will expand from nearly 7 billion in 2013 to about 8.7 billion in the Jazz 

scenario and around 9.4 billion in the Symphony scenario in 2050, respectively, which 

is equivalent to a 26% boost up (36% respectively). As a result, the world energy 

demand will keep on increasing. It is forecasted that the demand may double by 2050. 

This calls for a new and efficient means to also double the energy supply in order to 

meet the challenges that forge ahead. Carbon nanomaterials are believed to be 

appropriate and promising (when used as energy materials) to cushion the threat. 

Consequently, the need and the challenge to expand and revolutionize the energy 

future to clean and sustainable one is enormous and necessary. The future outlook for 

major energy intermingles in 2050 demonstrates that increase rates will be supreme 

for renewable energy sources. The contribution of renewable energy supply will rise 

from approximately 15% in 2010 to about 20% in Jazz in 2050 and nearly 30% in 

Symphony in 2050. For clarity, ‘’Jazz as an energy scenario, has a focus on energy 

equity with priority given to achieving individual access and affordability of energy 

through economic growth. Symphony as an energy scenario on the other hand has a 

focus on achieving environmental sustainability through internationally coordinated 

policies and practices’’. 

In an attempt to offer a substantial solution to those challenges, to achieve the global 

aspiration of affordable, sustainable, and secure energy supply for all, this thesis has 

explored the potential valorization of by-product materials from oil palm to be an 

alternative and sustainable carbon sources of carbon-based nanomaterials synthesis 

and energy storage applications.  



© C
OPYRIG

HT U
PM

 

 

3 

1.5 Carbon-based Supercapacitors 

Energy storage systems are a central pillar for the success of the energy revolution. 

They contribute significantly to the integration of renewable energies and ensure a 

stable grid. The field of materials science and nanotechnology has witnessed a 

significant expansion in recent years across virtually all industrial sectors. This is due 

to number of key advantages that traditional manufacturing cannot offer. These 

include mass customization, geometrical complexity, etc. Historically, the first 

supercapacitor based on double layer mechanism was developed in 1957 by Becker 

H. I. (an engineer at General Electric) using a porous carbon electrode. Although the 

mechanism was not known at that time until 1966, however, it was believed that the 

energy was stored in the pores of the carbon material and it exhibited high capacitance 

value. Thus, for quite long time, carbon has garnered substantial attention due to its 

unique properties. It has been identified to comprise of different low-dimension 

allotropes including graphite, activated carbon, carbon nanotubes, and the C60 family 

of buckyballs, polyaromatic molecules and graphene. This distinctive ability for 

existence under diverse forms (i.e. from powders to fibres, forms, fabrics and 

composite) denotes an excellent material for electrochemical applications, particularly 

for the storage of energy in supercacitors. More so, the amphoteric nature of carbon 

also allows use of the rich electrochemical properties of this element from donor to 

acceptor state. In addition, carbon-based materials are eco-friendly. In the last couple 

of years, a huge attention has been directed on the application of renewable and 

sustainable carbons sources for electrode materials owing to their accessibility, 

transformation operational simplicity and inexpensiveness. Mostly, carbon-based 

materials are chemically stable in different solutions (from strongly acidic to basic) 

and able for performance in a wide range of temperatures. A well-established chemical 

and physical method of preparation and activation (as the case may be) allow 

fabricating materials with a developed surface area and a controlled distribution of 

pores that influence the electrode/electrolyte interface for electrochemical 

applications.  

In recent times, carbon-based electrode materials for electrochemical capacitors (EC) 

have been successfully developed owing to the growing demand for an innovative type 

of accumulators of electrical energy with a high specific power and a long durability. 

The fundamental benefit of this storage appliance is the capacity of a high dynamic of 

charge transmission which is essential in the hybrid power sources for electrical 

vehicles, digital telecommunication systems, UPS for computers, etc. Another 

important benefits of the EC device is a likelihood of full discharge, and a short-circuit 

between the two electrodes is also not harmful [4]. 

In general, carbon nanomaterials (when used as electrode materials for 

supercapacitors) are very efficient energy conversion and storage devices owing to 

their good thermal, electrical, mechanical and chemical properties [5–7]. Therefore, 

they are generally believed to be the potential materials that could solve the global 

energy demand by 2050. Energy conversion and storage ability could be enhanced 

using materials with excellent morphological, electrical, optical and mechanical 

properties. In this study, carbon nanomaterials have been experimentally tested and 
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proven to possess all the requisite qualities needed to be used in this course. It should 

be emphasized that carbon-based materials were and still are the primary supplier of 

energy consumed by mankind. In sum, the amazing properties of these materials and 

greatest potentials towards greener and environment friendly synthesis methods and 

industrial scale production of carbon nanostructured materials is undoubtedly crucial 

and can therefore be glimpsed as the focal point of many researchers in science and 

technology in the 21st century.  

1.6 Synthesis, Properties and Applications of carbon nanomaterials  

The two foremost approaches employed for the fabrication of carbon nanomaterials 

like graphene and other graphene-related materials are generally known as the bottom-

up and top-down approaches. The quality and the yield of the graphene produced via 

these methods have a contrasting stance which entirely relies on the how the processes 

are used. In bottom-up approach, for example the graphene or graphene related 

materials are mainly generated using uncomplicated carbon molecule such as alkanes 

(e.g. methane) and alkanols (e.g. ethanol). However, in top-down approach (as 

employed in this work), graphene or graphene-like material layers are extracted from 

graphite. The materials produced in this thesis, and their corresponding application, 

could be extended to address the rising demand of new types of clean and sustainable 

energy storage systems, especially for electric vehicles with minor or no exhaust 

emissions. 

 

Figure 1.1 : Schematic illustration of synthesis, properties and applications of 

carbon nanomaterials 
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1.7 Problem Statement 

There is an increasing demand for carbon-based materials, particularly activated 

carbon, graphene and other graphene-related and derived nanomaterials globally, such 

as in the automotive, aerospace, energy storage and consumer product industries, etc.  

Secondly, Malaysia is one of the world's largest palm oil producers with over 950,000 

ha of oil palm land cultivated. It is estimated that annual production of palm oil in 

Malaysia may reach about 15.4 million tonnes between 2016 to 2020. In essence, a lot 

of lignocellulosic biomass are generated every day from the oil palm industries. These 

include oil palm trunks (OPT), oil palm fronds (OPF), empty fruit bunches (EFB) and 

palm pressed fibres (PPF), palm shells and palm oil mill effluent palm (POME) etc.  

It is alarming that the waste generated from oil palm activities is posing major disposal 

problems concerns.  

Consequently, there is a need for technological, cost-effective, energy balance and 

environmental considerations in a balanced proportion in order to resolve utilization 

of oil palm wastes.  

For this reason and coupled by the researcher’s inquisitiveness to explore new 

knowledge, I felt it was essential to devise an experimental means of enhancing the 

utilization and production of profitable materials from those ‘green wastes’ generated 

by oil palm industries that can match the trendy from  ‘Wastes to wealth’ mantra which 

is focused towards zero waste industry. This is believed to stimulate economic growth 

more especially in the developing countries and mitigate environmental degradation, 

and there by heading towards green technology, which is integrated into global 

paradigm shift towards sustainable development. 

1.8 Objectives 

Herein, four objectives were set and will follow the general objective as presented 

below: 

1.8.1 General Objective 

The main goal of this project is to produce carbon-based nanomaterials particularly 

graphene oxide (GO), reduced graphene oxide (rGO) and activated carbon from a low-

cost natural carbon feedstock (exclusively oil palm waste precursors) using unique, 

improved and highly novel process (i.e. energy saving reactions) and explore their 

new potentials in thermal and electrochemical energy storage applications. This is 

targeted towards stimulating economic growth (i.e. creating wealth from waste) and 
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mitigating environmental degradation to corroborate with the global paradigm shift 

towards sustainable development. 

1.8.2 Specific Objectives 

1. To use a scalable and cost-effective feedstocks and synthetic pathway to 

produce carbon nanomaterials (graphene oxide, reduced graphene oxide and 

activated carbon) all from various oil palm waste precursors. 

2. To characterize the as-synthesized materials using modern characterization 

techniques. 

3. To assess the appropriate reaction conditions for the synthetic pathways and 

compare the physico-chemical properties of the as-prepared carbon-based 

nanomaterials. 

4. To evaluate the electrochemical and thermal energy storage (ETES) potentials 

of the as-prepared materials. 

 

 

1.9 Hypothesis 

Natural precursors as a source of hydrocarbon (which are renewable and inexpensive), 

have the potentials to be the green alternative for laboratory and industrial scale 

production of carbon nanomaterials such as graphene, GO, rGO and activated carbon 

for ETES applications. The perception behind using natural precursors as a carbon 

feedstock for synthesizing the aforementioned materials is they are cheap, commonly 

available and have no likelihood of scarcity in the near future. Hence, this work will 

test the possibility of using oil palm wastes to synthesize carbon-nanostructured 

materials, particularly GO and rGO (as these materials have never been synthesized 

from those class of waste before), and AC and test their potential application as 

electrochemical and thermal energy storage materials  

1.10 Scope of the Thesis 

This project covered only a selective synthesis and characterization of some carbon 

nanomaterials (i.e. GO, rGO, and AC) from oil palm-derived byproduct materials. 

Thermal and electrochemical energy storage system of rGO and the activated carbon 

were also studied. 

1.11 Thesis Layout 

This thesis format is organized into six chapters. The first chapter (introduction) gives 

the general background on carbon nanomaterials; this was followed by a problem 

statement of this project, general and specific objectives of the work, hypothesis, scope 

and the thesis layout. The second chapter (Literature review) begins with extensive 

review of relevant available literature in the area. The first part of this chapter begins 

with the description of oil palm activities in Malaysia in relation to ligocellulosic waste 
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generation. The second part of the chapter talks about the potential valorization of the 

by-product materials from oil palm as an alternative carbon sources for carbon-based 

nanomaterials synthesis, current global energy crisis and the role of carbon-based 

materials as a useful materials to mitigate this problem. The last part of this chapter 

describes the commonest synthetic pathways to prepare carbon nanomaterials.  

The third chapter focused mainly on the synthesis of graphene oxides and reduced 

graphene oxides from different oil palm precursors. The results of the synthetic 

pathways and the conditions were interpreted and discussed under this chapter. This 

chapter also reported the utility of the as-prepared reduced graphene oxides as carbon-

electrode materials for supercapacitors application.  

The fourth chapter describes mainly the synthesis and characterization of activated 

carbon from oil palm leaf and palm kernel shell precursors, and their use as electrode 

materials for electrochemical energy storage application. 

The fifth chapter described the synthesis and application of new, inexpensive 

framework/ matrix based on n-nonadecane/biomass wastes-derived reduced graphene 

oxide-activated carbon composites for the preparation of shape–stabilized phase 

change material. The thermal energy storage potential of the composite material was 

studied under this chapter. 

The sixth or the last chapter is dedicated to the general conclusion and 

recommendation. Summary of all the results was given here and future 

recommendations were suggested under this chapter. 
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