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ABSTRACT 

 

Thiamine or vitamin B1 composes of a pyrimidine moiety and a thiazole moiety. 

Thiamine pyrophosphate (TPP), the active form of thiamine, acts as a cofactor for 

various major enzymes for example transketolase (TK), α-ketoglutarate 

dehydrogenase (KGDH) and pyruvate dehydrogenase (PDH). In this study, THIC 

and THI1/THI4 gene transcripts, the first two enzymes in thiamine biosynthesis 

pathway were identified and amplified in oil palm. Primers were designed based on 

sequence comparison of the genes from Arabidopsis thaliana, Zea mays, Oryza 

sativa and Alnus glutinosa. The responses of oil palm through the expression profiles 

of thiamine biosynthesis genes (THIC and THI1/THI4), in response to polyethylene 

glycol (PEG) which induce osmotic stress were examined. This is due to the 

suggestion that TPP has another important role, which is protecting plants against 

abiotic and biotic stresses. The expression of gene transcripts were detected using 

reverse transcriptase polymerase chain reaction (RT-PCR) and from the 8 sets of 

primers designed, primer 3 (F3) for THIC gene and primer 8 (F8) for THI1/THI4 

successfully amplified the transcripts. The results showed that THIC gene expression 

increases (200% of increase in treated plant compared to non-treated plant) in the 

presence of 1% PEG. The expression of THI1/THI4 gene caused by stress showed 

similar results to that of THIC gene but in accumulation of no more than 2.0-fold 

(100% of increase in treated plant compared to non-treated plant). The results agreed 

with the suggestion that thiamine may play important function in plant defence 

against stresses as these findings may lead to an overexpression of thiamine in 

general.       
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ABSTRAK 

 

Thiamina atau vitamin B1 dikomposisikan dengan gegelang pirimidina dan gegelang 

tiazol. Thiamina dalam bentuk aktifnya, thiamina pirofosfat (TPP) berfungsi sebagai 

kofaktor bagi beberapa enzim utama seperti dehidrogenase piruvat, dehidrogenase α-

ketoglutarate dan transketolase. Dalam kajian ini, gen transkrip THIC dan 

THI1/THI4, kedua-dua gen yang pertama wujud dalam laluan biosintesis thiamina 

telah dikenalpasti dan diamplifikasi dalam kelapa sawit. Primer telah direka 

berdasarkan perbandingan jujukan gen daripada Arabidopsis thaliana, Zea mays, 

Oryza sativa dan Alnus glutinosa. Tindak balas kelapa sawit melalui profil ekpresi 

gen biosintesis thiamina (THIC dan THI1/THI4) dari segi potensi osmotik apabila 

dikenakan tekanan yang disebabkan oleh polietilena glikol (PEG) telah dikaji juga. 

Ini disebabkan oleh cadangan bahawa TPP memainkan peranan yang penting, iaitu 

merintang terhadap tekanan abiotik dan biotik dalam tumbuh-tumbuhan. Ekpresi gen 

telah dikesan dengan menggunakan RT- PCR dan daripada 8 pasangan primer, 

primer 3 (F3) bagi gen THIC dan primer 8 (F8) bagi gen THI1/THI4 menunjukkan 

peningkatan ekpresi dalam kelapa sawit yang mengalami tekanan. Hasil kajian 

menunjukkan peningkatan ekpresi bagi gen THIC (200% lebih tinggi ekpresi dalam 

kelapa sawit yang telah diberi tekanan berbanding dengan kelapa sawit yang tidak 

diberi tekanan) dalam aplikasi 1% PEG. Perubahan akibat tekanan dalam ekpresi 

bagi gen THI1/THI4 sama dengan gen THIC tetapi menunjukkan peningkatan tidak 

melebihi 2.0 kali ganda (100% lebih tinggi ekpresi dalam kelapa sawit yang telah 

diberi tekanan berbanding dengan kelapa sawit yang tidak diberi tekanan). 

Keputusan yang diperolehi menyokong cadangan bahawa thiamina mungkin 

memainkan peranan yang penting dalam pertahanan tumbuhan terhadap tekanan 

kerana ianya menjurus kepada ekpresi thiamina yang berlebihan secara umum.          
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CHAPTER 1 

INTRODUCTION 
 

    Thiamine or vitamin B1 is important for all living organism as it serves vital 

functions in carbohydrate metabolism, nicotinamide adenine dinucleotide phosphate 

(NADPH) and adenosine triphosphate (ATP) synthesis and also nucleic acids 

formation (Nosaka, 2006). Thiamine pyrophosphate (TPP), the active form of 

thiamine acts as a cofactor for various key enzymes for example pyruvate 

dehydrogenase, transketolase and α-ketoglutarate dehydrogenase (Frank et al., 2007). 

Animals and humans must consume thiamine through their diets because they cannot 

manufacture it themselves while plants and microorganism can biosynthesize it de 

novo (Moulin et al., 2013). Therefore, study of thiamine biosynthesis in plants is 

very important as it is crucial to meet human nutrition and also for the plant to 

function efficiently.  

    Plants synthesize TPP from elementary precursors via biosynthetic pathways that 

are analogous to both bacteria and yeast (Goyer, 2010). The initial phases of TPP 

biosynthesis involve two pathways. One is alike to the mechanism found in bacteria 

which the pyrimidine branch of thiamine (4-amino-2-methyl-5-

hydroxymethylpyrimidine monophosphate, HMP-P) is synthesized from 5-

aminoimidazole ribonucleotide (AIR) and is catalysed by an enzyme which is 

encoded by THIC gene and has been identified in Arabidopsis thaliana (Raschke et 

al., 2007). The other pathways is similar to the mechanism found in yeast (Chatterjee 

et al., 2008) which the thiazole branch of thiamine (4-methyl-5-(2-hydroxyethyl)-

thiazole phosphate, HET-P) is synthesized from glycine, nicotinamide adenine 
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dinucleotide (NAD
+
) and a sulphur donor protein. THI1 gene, which has been 

identified in Zea mays and Arabidopsis (Machado et al., 1996) and its orthologues 

THI4 gene which has been recognized in bacteria encodes the main enzyme that 

synthesized HET-P.   

    THIC and THI1/THI4 are the genes that encode the first enzymes of pyrimidine 

(4-amino-2-methyl-5-pyrimidyl) and thiazole (4-methyl-5-β-hydroxyethylthiazolium) 

moieties of the thiamine biosynthesis pathway. These genes play a crucial role in 

thiamine biosynthesis yet they seem to have a non-cofactor function in DNA damage 

tolerance induced by abiotic and biotic stresses in plants (Goyer, 2010). Studies on 

THI4 gene in yeast also proved that it has dual functions, in thiamine biosynthesis 

and also in DNA damage tolerance when subjected to abiotic stresses (Machado et 

al., 1997). Research by Rapala-Kozik et al. (2008) revealed the homeostasis of 

thiamine metabolism in Zea mays seedlings under abiotic stress. Recently, 

experimentation by Tunc-Ozdemir et al. (2009) proved that under oxidative stress, 

hypoxia, high salinity and sugar deprivation, THI1 gene was accumulated. During 

different abiotic stress conditions, thiamine and TPP act as essential stress-response 

molecules that lessen oxidative stress. Since the previous studies showed that 

thiamine can improve the immune system of plants, it is believed that sustained 

accumulation of thiamine can make plants immune to severe diseases for example 

basal stem rot and upper stem rot. 

    Oil palm is economically valuable for its oil and has become one of the leading oil 

crops in the world. Malaysia, the world’s second largest producer and exporter of 

palm oil and its by-products, produced nearly 18 million tons in 2011. This crop 

produces palm kernel oil and palm oil which has given rise to a range of commercial 

products ranging from cooking oils to soap and detergents. The steadily increasing 
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world population will thus make an escalating demand on fats and oils. According to 

the Malaysian Palm Oil Board (MPOB), the growth of oil palm must increase to 

approximately 24.6% by 2020 as to balance the demand for oil palm. To fulfil the 

demand of an ever growing population, an improvement both in yield and quality of 

palm oil is necessary (Sambanthamurthi et al., 2009). Therefore, there is an urgent 

need to manage oil palm in adapting to a fast-changing environment and also to 

exploit the potential for genetic engineering in oil palm fully.    

    Abiotic stresses have negative influences on oil palm survival, palm oil production 

and crop yield. Common environmental stresses in Malaysia include water deficit, 

high temperature and salinity. Among the abiotic factors, water deficit is the most 

common stress that restricts oil palm growth, survival, distribution and productivity. 

As sessile organisms facing abiotic stresses, plants have strong adaptation at 

molecular, cellular and physiological levels toward environmental changes. 

Therefore, understanding plant tolerance toward osmotic stress mimic the condition 

of dry soil due to water deficit is necessary. Under osmotic stresses for example high 

salinity and drought, various genes functioning in stress response and tolerance are 

activated (Bartels and Sunkar, 2005).  

    An array of plant growth regulators are known to control growth and development 

of most plants under stress conditions. Thiamine is one of the plant growth factors 

needed for growth and differentiation in some plant species (Rapala-Kozik et al., 

2012). Studies have shown that thiamine biosynthesis is induced during plant 

adaptation responses to persistent abiotic stress conditions for example salting and 

flooding (Ribeiro et al., 2005), cold, heat, drought (Ferreira et al., 2006; Wong et al., 

2006) and oxidative stress (Tunc-Ozdemir et al., 2009).  
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    In this study, the expression changes of thiamine biosynthetic genes (THIC and 

THI1/THI4) in oil palm when subjected to polyethylene glycol (PEG)-induced 

osmotic stress was analysed. It is hypothesized that THIC and THI1/THI4 genes will 

show an increase in expression in treated palms compared to non-treated palms. This 

supports the suggestion that thiamine may play an important function in plant 

protection against stress as the increase of gene expressions of THIC and THI1/THI4 

may lead to an overexpression of thiamine in general. It is postulated that 

overexpression of thiamine will contribute to a more stress-tolerant oil palm variety. 

This is a very interesting topic as in Malaysia no similar research has been done so 

far. 

The objectives for this study are: 

1. To identify and sequence thiamine biosynthesis gene transcripts (THIC and 

THI1/THI4) in oil palm.  

2. To study the effect of osmotic stress induced by PEG on the expression of 

thiamine biosynthesis genes (THIC and THI1/THI4) in oil palm. 

3. To compare the level of expression of thiamine biosynthesis genes (THIC and 

THI1/THI4) in treated and non-treated palms. 

The specific objectives for this study include: 

1. To mine data and design primers of thiamine biosynthesis gene transcripts 

(THIC and THI1/THI4) in oil palm.    

2. To extract and quantitate total RNA from oil palm spear leaves. 

3. To amplify thiamine biosynthesis gene transcripts (THIC and THI1/THI4) 

using RT-PCR and to analyse the level of gene expression using ImageJ. 
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