

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION STRATEGIES, KINETICS AND MODELING OF CELL GROWTH IN CENTELLA ASIATICA CELL CULTURE

ROZITA OMAR

FSMB 2003 15

OPTIMIZATION STRATEGIES, KINETICS AND MODELING OF CELL GROWTH IN CENTELLA ASIATICA CELL CULTURE

By

ROZITA OMAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in the Fulfilment of the Requirements for the Degree of Master of Science

June 2003

To my mama and abah who believe in me, to my husband who loves me unconditionally and to my children, Hanzalah and Dayana who inspire me Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements of the degree of Master of Science

OPTIMIZATION STRATEGIES, KINETICS AND MODELING OF CELL GROWTH IN *CENTELLA ASIATICA* CELL CULTURE

By

ROZITA OMAR

June 2003

Chairman: Mohd. Azmuddin Abdullah, Ph.D.

Faculty: Food Science and Biotechnology

C. asiatica (Umbelliferae) or locally known as "pegaga" cell suspension culture is used as a model system to produce triterpenoids (TTPs). Cell growth and TTPs production were optimized at shake flask level. Different factors such as nutritional requirement and environmental conditions were screened and optimized using Response Surface Methodology (RSM) experimental design. Preliminary study of laboratory-scale bioreactor was done to study cell growth at regulated pH. Kinetics and modeling studies were carried out aimed at evaluating growth and production parameters for better understanding and control of the process. This study was conducted as foundation for production of triterpenoids at commercial scale.

Growth medium (G) was developed for optimum cell growth by manipulation of different inoculum age and size, sucrose concentration, hormone combination and concentration, incubation temperature, initial pH and light intensity. Optimization strategies by RSM has established cell growth of *C. asiatica* above 16 g L⁻¹ at 25°C, pH 5.65 and light intensity of 734 lux; medium $NH_4^+:NO_3^-$ ratio between 0.45 – 0.9, higher PO_4^{3-} at 2.6 mM, sucrose concentration around 6.68% in combination with 0.84 mg L⁻¹ IAA and 1.17 mg L⁻¹ BAP and higher total number of nitrogen around 40 mM. Maximum cell dry weight around 27 g L⁻¹ was attained with G medium. However, TTPs production was not significantly affected by all factors because of very low production.

Cell growth rate at 0.09 day⁻¹ (t_d =7.5 days) was 1.5 times higher when medium pH was controlled at pH 4 in stirred-tank bioreactor. However, maximum cell dry weight at 8.6 g L⁻¹ was 1.5 times higher when pH was not controlled, with in almost three times more efficient sucrose utilization at 0.28 g cell g⁻¹ sucrose. Higher growth rate at 0.18 day⁻¹ in bioreactor cultivation (B) was only 20% higher than shake flask cultivation However, maximum cell dry weight at 10.5 g L⁻¹ in M was 14% higher than in B. A 97% confidence was achieved by fitting three unstructured growth models; Monod, Logistic and Gompertz equations to the cell growth data. Monod equation described cell growth in all cultures adequately. The specific growth rate however cannot be predicted using Logistic and Gompertz equation with deviation up to 73 and 393%, respectively. The deviation in Logistic and Gompertz models could be due the model was developed for substrateindependent growth and fungi growth, respectively. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

STRATEGI PENGOPTIMAAN, KINETIK DAN PERMODELAN UNTUK PERTUMBUHAN SEL DARI KULTUR SEL CENTELLA ASIATICA

Oleh

ROZITA OMAR

Jun 2003

Pengerusi: Mohd. Azmuddin Abdullah, Ph.D.

Fakulti: Sains Makanan dan Bioteknologi

Kultur cell ampaian *C. asiatica* (Umbelliferae) atau dikenali sebagai pegaga digunakan sebagai sistem model untuk menghasilkan triterpenoids (TTPs). Pertumbuhan sel dan penghasilan TTPs dioptimakan di peringkat kelalang bergoncang. Faktor-faktor yang berbeza seperti keperluan nutrisi dan keadaan persekitaran disaring dan dioptimakan menggunakan rekabentuk eksperimen Kaedah Permukaan Respon (RSM). Kajian saringan menggunakan bioreactor berskala makmal telah dijalankan untuk mengkaji pertumbuhan sel dalam pH yang dikawal. Kajian kinetik dan permodelan telah dijalankan untuk menilai parameter pertumbuhan sel dan penghasilan produk bagi pemahaman dan kawalan proses yang lebih baik. Kajian ini telah dijalankan sebagai asas untuk penghasilan triterpenoids berskala komersial.

Media pertumbuhan (G) telah dibangunkan untuk mengoptimakan pertumbuhan sel dengan memanipulasi umur dan saiz inokulum, kepekatan sukrosa, kombinasi dan kepekatan hormon, suhu pengeraman, pH awal dan keamatan cahaya yang berlainan. Strategi pengoptimaan menggunakan eksperimen RSM membuktikan bahawa pertumbuhan sel *C. asiatica* telah ditingkatkan melebihi 16 g L^{-1} pada 25°C, pH 5.65 dan keamatan cahaya 734 lux; nisbah NH₄⁺:NO₃⁻ yang sederhana di antara 0.45 – 0.9, PO₄³⁻ yang tinggi pada 2.6 mM, kepekatan sukrosa di sekitar 6% dengan kombinasi 0.84 mg L^{-1} IAA dan 1.17 mg L^{-1} BAP; dan jumlah nitrogen sekitar 40 mM. Kepekatan cell kering maksima sebanyak 27 g L^{-1} telah dihasilkan dengan G medium. Walaubagaimanapun, penghasilan TTPs tidak dipengaruhi secara signifikan oleh semua factor kerana penghasilah yang sangat rendah.

Kadar pertumbuhan sel pada 0.09 hari⁻¹ (t_d =7.5 hari) adalah 1.5 kali lebih tinggi apabila pH media dikawal pada pH 4 di dalam bioreaktor berpengaduk mekanikal. Manakala kepekatan maksimum sel pada 8.6 g L⁻¹ adalah lebih 1.5 kali lebih tinggi apabila pH tidak dikawal dengan pengambilan sukrosa hampir tiga kali lebih efisien pada 0.28 g sel g⁻¹ sukrosa. Kadar pertumbuhan yang lebih tinggi di paras 0.18 per hari di dalam kultur bioreaktor (B) adalah hanya 20% lebih tinggi daripada kultur kelalang bergoncang. Walaubagaimanapun, kepekatan maksimum sel pada 10.5 g L⁻¹ di dalam M hanya 14% lebih tinggi daripada B. 97% keyakinan telah dicapai dengan memadankan tiga model pertumbuhan sel. Persamaan Monod, Logistic dan persamaan Gompertz kepada data pertumbuhan sel. Persamaan Monod dapat meramalkan pertumbuhan sel di dalam ketiga-tiga kultur. Kadar pertumbuhan spesifik maksimum tidak boleh diramalkan menggunakan persamaan Logistic dan Gompertz dengan sisihan sehingga 73 dan 393%, masing-masing. model tersebut dibangunkan untuk pertumbuhan bebas-substrat dan pertumbuhan fungi, masing-masing.

ACKNOWLEDGEMENTS

Alhamdulillah to Almighty Allah who has given me the strength and patience to finish this Masters degree until the very end. To my beloved hubby, baby Hans, adik, mama, abah, along, oji, anis, lin and raof, I appreciate you all for your unending love and support. I would like to dedicate my utmost gratitude to my supervisor Dr. Mohd. Azmuddin Abdullah for his guidance through out these four years of my life. My special appreciation for Prof. Marziah Mahmood for her helping hand in giving me financial assistance as much as moral support. Also my sincere thanks to Prof. Madya Dr. Mohd Ali Hassan and Dr. Rosfarizan and Dr. Abdul Reezal Abdul Latiff for their advice in making my thesis close to perfection. My special appreciation to Universiti Putra Malaysia who has trusted me to become one of the tutors and awarded me with this scholarship. Also thank you to MMBPP officials who enable me to finish up this project without a lot of financial worries. My heartfelt gratitude to my fellow colleagues especially Chong Tzer Miin, Anna, Sobri, Helen Tan, Mardihah, Siti Suhaila, Siti Habsah and Rosli for lending me their hands, knowledge and time throughout one of my toughest times of my life. My very special thanks to En. Rosli and Pn. Fadhilah who have never said 'No' to my unending asking of help. Also my thanks to Dr. Tan Siang Hee, Dr. Lai Oi Ming, Prof. Madya Dr. Harikrishna, Prof. Madya Dr. Norihan and Prof. Abdul Manaf Ali for assisting me in many ways. My warmest thanks to Kak Roby, Kak Zie, Chung, Mad, Kavitha, Sham, Kong Ching, Lin, Su, Susan, Chiang Lim, Ziha, Bobby, Ita, Ida, CY, Sri, Ibu Iteu, Des and those names I forgot to put down for their help in any ways.

TABLE OF CONTENTS

	Pag
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APRROVAL SHEETS	ix
DECLARATION FORM	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	9
	Properties, Application and Biosynthesis of Triterpenoids	9
	Plant Cell Culture as a Source of Triterpenoids Production	14
	Physical, Nutritional and Environmental Factors	14
	Effect of Inoculum Age and Size	14
	Effect of Carbohydrate Source	16
	Effect of Nitrogen Sources	18
	Effect of Phosphate	20
	Effect of Plant Growth Regulators	21
	Effect of pH	22
	Effect of Temperature	25
	Effect of Light	25
	Growth and Production Medium	27
	Experimental Designs: Screening and Response Surface	
	Methodology	30
	Designs Resolutions	30
	Full and Fractional Factorial Design	31
	Response Surface Methodology	33
	Analysis of Experimental Designs	35
	RSM Experiments in Cell Culture	36
	Large Scale Culture	40
	Bioreactor System in Plant Cell Culture	40
	Modes of Operation	41
	Kinetics of Cell growth, Product formation and Nutrient Uptake in	
	Batch Culture	43
	Estimation of Kinetic Parameters of Cell Growth	45
	Rate of Substrate Consumption	46
	Rate of Product Formation	47
	Development of Mathematical Models for Cell Growth	49
	Monod Kinetic Model	49
	Logistic Kinetic Model	51

	Gompertz Equation Kinetic Models of Plant Cell Culture Computer Programming of Berkeley Madonna and ISIM [™]	51 53 59
3	BROAD-BASED SCREENING FOR IMPORTANT PHYSIOLOGICAL, ENVIRONMENTAL AND NUTRITIONAL FACTORS IN <i>CENTELLA ASIATICA</i> CELL SUSPENSION CULTURE	60
	Introduction	60
	Materials and Methods	61
	Cell Suspension Cultures	61
	Analytical procedures	62
	Statistical Analysis Results and Discussion	63 64
	Effect of Inoculum Age and Density	64
	Effect of Initial pH, Incubation Temperature and Light	01
	Intensity	72
	Effect of Carbohydrate Sources and Concentrations	77
	Effect of Plant Growth Regulators (PGRs)	83
	Conclusions	88
4	RESPONSE SURFACE METHODOLOGY FOR LEVEL	
	OPTIMIZATION AND ELUCIDATING INTERACTION	89
	BETWEEN VARIABLES Introduction	89 89
	Materials and Methods	90
	Cell Suspension Cultures	90
	Analytical procedures	91
	Response Surface Experimental Design	91
	Results and Discussion	92
	Optimization of Temperature and pH on Cell Growth	92
	Optimization of Macronutrients and Their Interactions	98
	Optimization and Development of Growth Medium Conclusion	111 121
	Conclusion	121
5	PRELIMINARY STUDY ON GROWTH OF CENTELLA	
	ASIATICA CELL SUSPENSION CULTURE IN STIRRED-TANK	122
	BIOREACTOR	100
	Introduction	122
	Materials and Methods Cell Suspension Cultures	123 123
	Bioreactor Inoculum Preparations	123
	Bioreactor System	123
	Antifoaming Agent	128
	Analytical Procedures	128
	Results and Discussion	131
	Initial pH as a Critical Factor for Cell Growth and TTP	
	Production	131
	Cell Growth and pH Profile in Uncontrolled pH and pH-stat 4 Culture	134

	Uptake Profiles of Sugar, Ammonium, Nitrate and Phosphate Conclusion	139 14:
6	KINETICS AND MODELING OF CELL GROWTH, SUBSTRATE UPTAKE IN OF CENTELLA ASIATICA CELL CULTURES Introduction Materials and Methods Cell Suspension Cultures and Bioreactor Experiments Analytical Procedures Kinetic Models and Parameter Estimations Statistical Analysis	144 146 146 146 146 147 147
	Results and Discussion	147
	Kinetics of Cell Growth, Culture pH and Triterpenoids Production Kinetics of Sugar Uptake Kinetic of Ammonium, Nitrate and Phosphate Uptake Modeling of Cell Growth and Substrate Uptake Kinetics Conclusion	147 153 156 158 164
7	GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS	165
APPE	ERENCES ENDICES DATA OF THE AUTHOR	170 195 201

LIST OF TABLES

Table

- 1 Potential plant cell cultures products to be commercialized and their 4 world requirements
- 2 Effect of production medium in secondary product synthesis in cell 29 cultures
- 3 Growth kinetic parameter values of *C. asiatica* cell cultures from 68 different inoculum age and density (D7 and D12 from 7 and 12 day old culture, respectively; A and B for 12.5% (v/v) and 20% (v/v) inoculum density, respectively)
- 4 Effect of environmental conditions on growth of *C. asiatica* cell 75 suspension cultures in maintenance medium
- 5 Effect of carbohydrate sources and concentration on cell growth and 81 triterpenoids production of *C. asiatica* cell suspension cultures
- 6 Effect of sucrose concentrations on cell growth and triterpenoids 82 production of *C. asiatica* cell suspension cultures
- 7 Broad-based screening of PGRs combinations at 5% sucrose on cell 87 growth and triterpenoids production of *C. asiatica* cell suspension cultures
- 8 Effect of environmental conditions on growth of *C. asiatica* cell 95 suspension culture
- 9 Effect of NO_3^- , NH_4^+ and PO_4^{3-} concentration in the medium on growth 102 of *C. asiatica* cell suspension cultures: Optimization Experiment
- 10 Experimental run to test the predictability of cell dry weight of C. 105 *asiatica* cell suspension cultures fitted to model as in Equation (63)
- 11 Maximum star point, maximum, central, minimum and minimum star 113 points of central composite design for sucrose, IAA and BAP
- 12 Central composite design matrix defining composition of sucrose, IAA 114 and BAP, their coded values, experimental and predicted data of dry cell weight of *C. asiatica* cell culture
- 13 Dimensions and relative dimensions of the stirred-tank bioreactor used in 127 this study
- 14 Effect of initial pH on cell DW and TTPs production in *C. asiatica* cell 133 culture

- 15 Summary of selected kinetic parameter values of B1 and B2 cultures 142
- 16 Comparison of the kinetic parameter values of *C. asiatica* cell culture in 151 shake flask (M) and bioreactor (B) systems
- 17 Comparison of the performance and the kinetic parameter values of cell 162 growth in batch culture by *C. asiatica* using shake flask (M) and bioreactor (B)

LIST OF FIGURES

Figure		Pag
1	Chemical structure of C. asiatica active compounds	12
2	Schematic drawings of biosynthesis of triterpenoids	13
3	Geometric representation of a)Factorial, b)Box-Behnken and c)central composite i)for $k=2$, ii)for $k=3$ designs	38
4	Response surface contour plot with maximum point	39
5	Mass balance for a single stage bioreactor system	44
6	Effect of inoculum age and density on cell growth profile of <i>C. asiatica</i> cell suspension culture. (D7 and D12 fro 7 and 12 day old culture, respectively; A and B for 12.5% (v/v) and 20% (v/v) inoculum density, respectively)	67
7	Profile of triterpenoids production from different inoculum age and density in <i>C. asiatica</i> cell suspension cultures i) D7A, ii) D7B, iii) D12A, iv) D12B	71
8	Standardized effect of temperature, pH, light and their interactions on dry weight	76
9	Pareto chart for standardized effects of initial pH and temperature on cell DW of <i>C. asiatica</i> cell suspension culture	96
10	Response surface contour plot for cell DW of <i>C. asiatica</i> cell culture with initial pH and temperature as independent variables	97
11	Pareto chart for standardized effects of NO_3^- , NH_4^+ and PO_4^{3-} effects on cell DW of <i>C. asiatica</i> cell culture in optimization experiment	103
12	Response surface contour plot for cell D W of C. asiatica cell culture with NH_4^+ and PO_4^{3-} as independent variables at 15 mM NO_3^- in optimization experiment	104
13	Pareto chart for standardized effects of $NH_4^+:NO_3^-$ ratio, total N and PO_4^{3-} effects on cell DW of <i>C. asiatica</i> cell culture in optimization experiment	106
14	Response surface contour plot for cell DW of <i>C. asiatica</i> cell culture with NH_4^+ : NO_3^- and PO_4^{3-} as independent variables at 40 mM total N in optimization experiment	107
15	Pareto chart for standardized effects of sucrose, IAA and BAP on cell DW of <i>C. asiatica</i> cell culture in growth medium	115

16	Response surface plot of DW of C. asiatica cell culture in growth medium	116
17	Schematic drawings of the stirred-tank bioreactor configuration	126
18	Profiles of (a) cell dry weight and (b) pH culture of <i>C. asiatica</i> cell cultures in uncontrolled condition (B1) and at pH-stat 4 (B2)	138
19	Profiles of sugar, nitrate and ammonium and phosphate uptake for uncontrolled pH (B1) and pH-stat 4 (B2) experiments	141
20	Profile of cell dry weight and culture pH of <i>C. asiatica</i> cell cultures in shake flask (M) and bioreactor (B) experiments	150
21	Profile of TTP production of C. asiatica cell cultures in shake flask (M)	152
22	Sucrose, glucose and fructose uptakes of <i>C. asiatica</i> cell cultures in shake flask (M) and bioreactor (B) system	155
23	Profile of nitrate, ammonium and phosphate uptakes of C . asiatica cell cultures in M and B	157
24	Comparison of calculated and experimental data for cell growth in batch culture of C . asiatica	161
25	Comparison of calculated and experimental data for sucrose uptake in batch culture of <i>C. asiatica</i> cell cultures in M and B based on Leudeking-Piret equation	163

LIST OF PLATES

Plate		Pag
1	Suspension culture in day 7 in (A) M and (B) G medium	119
2	Cells harvested from (A) M medium (pale yellow) and (B) G medium (light brown)	119
3	Micrograph of 7-day-old cells cultured in a) M medium with larger vacuole; and b) G medium with denser cytoplasmic (100 X magnification)	120
4	Biostat A assembly with the stirrer-motor mounted to the top-plate of a 2.5 L glass vessel bioreactor	125
5	Foaming and wall growth of <i>C. asiatica</i> cell cultures in a stirred-tank bioreactor	137

LIST OF ABBREVIATION

2,4 - D	2,4-Dichlorophenoxyacetic acid
2; † D 2iP	isopentyl-γ,γ-dimethylallyl
2 A	maximum cell concentration (Gompertz equation)
AA	Asiatic Acid
AO	Asiaticoside
B	bioreactor culture
BAP	6-benzylaminopurine
CCD	central composite design
CPA	ρ-chlorophenoxyacetic acid
DFT	Deep Flow Technique
DNA	deoxyribonucleic acid
DOT	dissolve oxygen tension
DW	dry cell weight (g L^{-1})
F'	flow rate
F_{I}	bulk liquid flow in (mass volume ⁻¹ time ⁻¹)
Fo	bulk liquid flow in (mass volume ⁻¹ time ⁻¹)
FRIM	Forest Research Institute of Malaysia
G	growth medium
GZ	Gompertz
HCl	Hydrochloric Acid
HPLC	High Performance Liquid Chromatography
IAA	Indole-3-acetic acid
IBA	indole-3-bytyric acid
k'_a	secretion constant in the non-viable cells (g prod g^{-1} cell d^{-1})
k_4	specific product hydrolysis rate (day^{-1})
k_a	secretion constant in the viable cells (g prod g^{-1} cell d^{-1})
k_d	cell death coefficient
K_d	degradation constant of product (day ⁻¹)
k_d	dry weight decay constant (day^{-1})
K_{i}	inhibition constant (mol L^{-1})
Kinetin	6-Furfurylaminopurine
k _L a	volumetric oxygen transfer coefficient
K_m	saturation constant of maintenance (g L^{-1})
K_{MS}	specific glucose consumption for maintenance (mol mol ⁻¹ h^{-1})
k _{nd}	decay constant of non-viable cells (d^{-1})
K_p	saturation constant of product $(g L^{-1})$
k_P	product hydrolysis saturation constant (g L^{-1})
K_s	saturation constant
k_{vd}	decay constant of viable cells (d ⁻¹)
K_x	saturation constants of growth (g L^{-1})
L	Logistic
m	maintenance coefficient
M	maintenance medium
MA	Madecassic Acid
MARDI	Malaysian Agricultural Research and Development Institute
MD	Monod
MIT	Massachusetts Institute of Technology
1411 1	Massachasens montale of reemiology

MO MS m_s N NA NAA NAA NAOH n_C ND n_F OUR P P_1	Madecassoside Murashige and Skoog maintenance coefficient of glucose (mol mol ⁻¹ h ⁻¹) nitrogen not applicable α -naphthaleneacetic acid Sodium Hydroxide number of center runs not detected number of full runs oxygen uptake rate product concentration (g L ⁻¹) intracellular polysaccharide concentration per volume of culture (g L ⁻¹)
<i>P</i> ₂	extracellular polysaccharide concentration per volume of culture (g L^{-1})
PGRs pH _f pH _i Pi PID <i>QB</i> <i>QC</i> <i>QE</i> <i>QL</i> <i>Qp</i> <i>Qs,max</i> R ²	plant growth regulators final pH initial pH initial pH intracellular phosphate Proportional, Integral, Derivative control specific conversion rate of structural biomass (mol mol ⁻¹ h ⁻¹) specific conversion rate of storage carbohydrates (mol mol ⁻¹ h ⁻¹) specific conversion rate of precursors (mol mol ⁻¹ h ⁻¹) specific conversion rate of lysis products (mol mol ⁻¹ h ⁻¹) specific conversion rate of product (g prod g ⁻¹ cell DW d ⁻¹) maximum specific rate of substrate utilization (g subs g ⁻¹ cell DW d ⁻¹) coefficient of determination
r _B r _C r _{C,ms}	rate of production of structural biomass (mol $L^{-1} h^{-1}$) rate of production of storage carbohydrates (mol $L^{-1} h^{-1}$) rate of storage carbohydrate consumption for maintenance (mol $L^{-1} h^{-1}$)
r_E r_L RM RNA r_d r_p r_s RSM r_x S SELDI-TOF SNP T t t t_d TTPs V	rate of production of precursors (mol $L^{-1} h^{-1}$) rate of production of lysis products (mol $L^{-1} h^{-1}$) Ringgit Malaysia ribonucleic acid rate of cell death (mass volume ⁻¹ time ⁻¹) rate of product formation (g $L^{-1} d^{-1}$) rate of substrate consumed (g $L^{-1} d^{-1}$) Response Surface Methodology rate of cell growth (g $L^{-1} d^{-1}$) substrate concentration (g L^{-1}) Surfaced Enhanced Laser Desorption /Ionization - Time of Flight Single Nucleotide Polymorphism temperature cultivation time doubling time (day) triterpenoids volume (m ³)

v/v	volume per volume $(m^3 m^{-3})$
w/v	weight per volume (kg m^{-3})
X	cell concentration (g L^{-1})
л X _d	dry cell weight (g L^{-1})
л _d X _f	fresh cell weight (g L^{-1})
X_i	initial cell concentration (mass volume ⁻¹)
X_{max}	maximum cell concentration ($g L^{-1}$)
X_{max} X_{nd}	non-viable dry weight (g L^{-1})
X_{o}	initial cell concentration (g L^{-1})
ло X _{vd}	viable dry weight (g L^{-1})
Y Y	response
$Y_{ao/s}$	asiaticoside yield coefficient
$Y_{ao/s}$	asiatic acid yield coefficient
$Y_{ma/s}$	madecassic acid yield coefficient
$Y_{mo/s}$	madecassocide yield coefficient
$Y_{x/p}$	product yield coefficient
$Y_{x/s}$	growth yield coefficient
Zeatin	γ-hydroxy-methyl-adenine
α	growth associated product coefficient (g prod g ⁻¹ cell)
α	star points
β	non-growth associated product coefficient (g prod g ⁻¹ cell)
Р Кį	mortality coefficient (day ⁻¹)
λ	lag time (day)
	specific growth rate (d ⁻¹)
μ	maximum specific growth rate (d^{-1})
μ_{max}	
ω_B	concentration of intracellular compound structural biomass (mol mol ⁻¹)
ω _C	concentration of intracellular compound storage carbohydrate (mol mol ⁻¹)
ω_E	concentration of intracellular compound precursors (mol mol ⁻¹)
ω _P	concentration of intracellular compound phosphate (mol mol ⁻¹)
-	

CHAPTER 1

INTRODUCTION

"A world without plant is a world without life". Being the lowest in the food chain, plants provide not only food through the supply of carbohydrates, vitamins, fats, fiber and minerals, but also oxygen via photosynthesis. Since early civilizations, plants have been used for medicinal purposes. For example, a book on medicinal plants "Pen Tsao", was compiled during the era of Chinese Emperor Chi'en Nung who rules in 3737 to 2697 B.C. (James & Hussian, 1998). The Sumerians are reported to record their medical prescriptions on clay tablets from the use of crude plant extracts around 3500 B.C. (National Institute of General Medical Sciences, 1997). The trend then changes to the use of pure active substances. In 18th century, Karl Scheele is the first to isolate organic acids from plants (Sengbusch, 2002).

There is still widespread belief that natural medicine is safer with no side effect then synthetically-derived drugs. More than 20,000 different chemical compounds, accounting 25% of total drugs in the market have been extracted from plants. These compounds cannot be chemically synthesized due to complex structures, elaborate processes, or requirements for specific stereoisomers (Petersen & Alfermann, 1993). Quinine for example an anti-malarial drug from plant, has regained its popularity over synthetic drug for its potency on resistant malarial strain (Merillon & Ramawat, 1999).

The plant bioactive compounds for medicinal usage are usually secondary products, which are extractable from different parts such as leaves, roots, barks or fruits. Secondary metabolites are the result of synthesis, metabolism and catabolism of endogenous compounds by specialized proteins (Endress, 1994). Some secondary metabolites are not essential for the growth of host organisms, but could give some ecological advantages in terms of symbiotic relationships between plants, animals and human. The majority of natural products used medicinally are terpenoids, quinines, lignans, flavanoids and alkaloids (Phillipson, 1990). In fact, certain valuable medicinal products such as alkaloids, steroids and hormones can only be obtained from plants.

For the past three decades, scientists have worked on plant organ, tissue and cell culture technology as alternative sources to the whole plant for the production of specialty drugs. Taxol, an anti-cancer drug, provides excellent example on the use of plant cell culture technology as a viable alternative. As only 1 gram of taxol can be isolated from 7 kg of the bark of Oregon yew tree (*Taxus brevifolia*) and other *Taxus* species, almost one million *Taxus* trees need to be cut to meet the demand of 200 kg taxol per year (Stockigt et al., 1995). *In vitro* cultivation offers several advantages over conventional plantation due to the possibility of controlling the environmental, physiological and nutritional factors; and independence from pests, diseases and political uncertainties. It provides opportunities for genetic manipulation of the cells or tissues to