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C. asiatica (Umbelliferae) or locally known as "pegaga" cell suspension 

culture is used as a model system to produce triterpenoids (TTPs). Cell growth and 

TTPs production were optimized at shake flask level. Different factors such as 

nutritional requirement and environmental conditions were screened and optimized 

using Response Surface Methodology (RSM) experimental design. Preliminary 

study of laboratory-scale bioreactor was done to study cell growth at regulated pH. 

Kinetics and modeling studies were carried out aimed at evaluating growth and 

production parameters for better understanding and control of the process. This 

study was conducted as foundation for production of triterpenoids at commercial 

scale. 

Growth medium (G) was developed for optimum cell growth by 

manipulation of different inoculum age and size, sucrose concentration, hormone 

combination and concentration, incubation temperature, initial pH and light intensity. 
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Optimization strategies by RSM has established cell growth of C. asiatica above 16  

g L-! at 25°C, pH 5 .65 and light intensity of 734 lux; medium NH/:N03- ratio 

between 0.45 - 0.9, higher pol- at 2.6 mM, sucrose concentration around 6.68% in 

combination with 0.84 mg L-! IAA and 1 . 17 mg L-! BAP and higher total number of 

nitrogen around 40 mM. Maximum cell dry weight around 27 g L-! was attained 

with G medium. However, TTPs production was not significantly affected by all 

factors because of very low production. 

Cell growth rate at 0.09 day"! (td=7.5 days) was 1 .5 times higher when 

medium pH was controlled at pH 4 in stirred-tank: bioreactor. However, maximum 

cell dry weight at 8.6 g L-! was 1 .5 times higher when pH was not controlled, with in 

almost three times more efficient sucrose utilization at 0.28 g cell g-! sucrose. 

Higher growth rate at 0. 1 8  day"l in bioreactor cultivation (B) was only 20% higher 

than shake flask cultivation However, maximum cell dry weight at 1 0.5 g L-1 in M 

was 14% higher than in B.  A 97% confidence was achieved by fitting three 

unstructured growth models; Monod, Logistic and Gompertz equations to the cell 

growth data. Monod equation described cell growth in all cultures adequately. The 

specific growth rate however cannot be predicted using Logistic and Gompertz 

equation with deviation up to 73 and 393%, respectively. The deviation in Logistic 

and Gompertz models could be due the model was developed for substrate­

independent growth and fungi growth, respectively. 
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ROZITA OMAR 

Jun2003 

Pengerusi: Mohd. Azmuddin Abdullah, Ph.D. 

Fakulti: Sains Makanan dan Bioteknologi 

Kultur cell ampaian C. asiatica (Umbelliferae) atau dikenali sebagai pegaga 

digunakan sebagai sistem model untuk menghasilkan triterpenoids (TTPs). 

Pertumbuhan sel dan penghasilan TTPs dioptimakan di peringkat kelalang 

bergoncang. Faktor-faktor yang berbeza seperti kepeduan nutrisi dan keadaan 

persekitaran disaring dan dioptimakan menggunakan rekabentuk eksperimen Kaedah 

Permukaan Respon (RSM). Kajian saringan menggunakan bioreactor berskala 

makmal telah dijalankan untuk mengkaji pertumbuhan sel dalam pH yang dikawal. 

Kajian kinetik dan permodelan telah dijalankan untuk menilai parameter 

pertumbuhan sel dan penghasilan produk bagi pemahaman dan kawalan proses yang 

lebih baik. Kajian ini telah dijalankan sebagai asas untuk penghasilan triterpenoids 

berskala komersial. 

Media pertumbuhan (G) telah dibangunkan untuk mengoptimakan 

pertumbuhan sel dengan memanipulasi umur dan saiz inokulum, kepekatan sukrosa, 
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kombinasi dan kepekatan hormon, suhu pengeraman, pH awal dan keamatan cahaya 

yang berlainan. Strategi pengoptimaan menggunakan eksperimen RSM 

membuktikan bahawa pertumbuhan sel C. asiatica telah ditingkatkan melebihi 1 6  g 

L-l pada 25°C, pH 5.65 dan keamatan cahaya 734 lux; nisbah NH/:N03- yang 

sederhana di antara 0.45 - 0.9, pol- yang tinggi pada 2.6 mM, kepekatan sukrosa di 

sekitar 6% dengan kombinasi 0.84 mg L-1 lAA dan 1 . 1 7  mg L-1 BAP; dan jumlah 

nitrogen sekitar 40 mM. Kepekatan cell kering maksima sebanyak 27 g L -I telah 

dihasilkan dengan G medium. Walaubagaimanapun, penghasilan TTPs tidak 

dipengaruhi secara signifikan oleh semua factor kerana penghasilah yang sangat 

rendah. 

Kadar pertumbuhan sel pada 0.09 harrl (td=7.5 hari) adalah 1 .5 kali lebih 

tinggi apabila pH media dikawal pada pH 4 di dalam bioreaktor berpengaduk 

mekanikal. Manakala kepekatan maksimum sel pada 8.6 g L-1 adalah lebih 1 .5 kali 

lebih tinggi apabila pH tidak dikawal dengan pengambilan sukrosa hampir tiga kali 

lebih efisien pada 0.28 g sel g-I sukrosa. Kadar pertumbuhan yang lebih tinggi di 

paras 0. 1 8  per hari di dalam kultur bioreaktor (B) adalah hanya 20% lebih tinggi 

daripada kultur kelalang bergoncang. Walaubagaimanapun, kepekatan maksimum 

sel pada 1 0.5 g L-1 di dalam M hanya 1 4% lebih tinggi daripada B. 97% keyakinan 

telah dicapai dengan memadankan tiga model pertumbuhan tidak berstruktur� 

Monod, Logistic dan persamaan Gompertz kepada data pertumbuhan sel. Persamaan 

Monod dapat meramalkan pertumbuhan sel di dalam ketiga-tiga kultur. Kadar 

pertumbuhan spesifik maksimum tidak boleh diramalkan menggunakan persamaan 

Logistic dan Gompertz dengan sisihan sehingga 73 dan 393%, masing-masing. 

Persisihan di dalam model-model Logistic dan Gompertz mungkin disebabkan oleh 
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model tersebut dibangunkan untuk pertumbuhan bebas-substrat dan pertumbuhan 

fungi, masing-masing. 
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CHAPTERl 

INTRODUCTION 

"A world without plant is a world without life". Being the lowest in the food 

chain, plants provide not only food through the supply of carbohydrates, vitamins, fats, 

fiber and minerals, but also oxygen via photosynthesis. Since early civilizations, plants 

have been used for medicinal purposes. For example, a book on medicinal plants "Pen 

Tsao", was compiled during the era of Chinese Emperor Chi'en Nung who rules in 3737 

to 2697 B.C. (James & Hussian, 1998). The Sumerians are reported to record their 

medical prescriptions on clay tablets from the use of crude plant extracts around 3500 

B.c. (National Institute of General Medical Sciences, 1997). The trend then changes to 

the use of pure active substances. In 18th century, Karl Scheele is the first to isolate 

organic acids from plants (Sengbusch, 2002). 

There is still widespread belief that natural medicine is safer with no side effect 

then synthetically-derived drugs. More than 20,000 different chemical compounds, 

accounting 25% of total drugs in the market have been extracted from plants. These 

compounds cannot be chemically synthesized due to complex structures, elaborate 

processes, or requirements for specific stereo isomers (Petersen & Alfermann, 1993). 



Quinine for example an anti-malarial drug from plant, has regained its popularity over 

synthetic drug for its potency on resistant malarial strain (Merillon & Ramawat, 1 999). 

The plant bioactive compounds for medicinal usage are usually secondary 

products, which are extractable from different parts such as leaves, roots, barks or fruits. 

Secondary metabolites are the result of synthesis, metabolism and catabolism of 

endogenous compounds by specialized proteins (Endress, 1994). Some secondary 

metabolites are not essential for the growth of host organisms, but could give some 

ecological advantages in terms of symbiotic relationships between plants, animals and 

human. The majority of natural products used medicinally are terpenoids, quinines, 

lignans, flavanoids and alkaloids (Phillipson, 1990). In fact, certain valuable medicinal 

products such as alkaloids, steroids and hormones can only be obtained from plants. 

For the past three decades, scientists have worked on plant organ, tissue and cell 

culture technology as alternative sources to the whole plant for the production of 

specialty drugs. Taxol, an anti-cancer drug, provides excellent example on the use of 

plant cell culture technology as a viable alternative. As only 1 gram of taxol can be 

isolated from 7 kg of the bark of Oregon yew tree (Taxus brevifolia) and other Taxus 

species, almost one million Taxus trees need to be cut to meet the demand of 200 kg 

taxol per year (Stockigt et aI., 1 995). In vitro cultivation offers several advantages over 

conventional plantation due to the possibility of controlling the environmental, 

physiological and nutritional factors; and independence from pests, diseases and political 

uncertainties. It provides opportunities for genetic manipulation of the cells or tissues to 
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