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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

MODIFIED QUASI-NEWTON TYPE METHODS USING
GRADIENT FLOW SYSTEM FOR SOLVING UNCONSTRAINED

OPTIMIZATION

By

YAP CHUI YING

June 2016

Chair: Leong Wah June, PhD
Faculty: Science

In this thesis, we are mainly concerned with finding the numerical solution of
nonlinear unconstrained optimization problems via gradient flow system. First,
we give some brief mathematical background and then we consider a famous class
of optimization methods called the quasi-Newton methods. Specifically, we focus
on a class of quasi-Newton method named Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method.

We investigate the possible use of control theory, particularly theory on gradi-
ent flow system to derive some modified line search and trust region methods
for optimization. The implementation of these methods in line search algorithm
in their original forms would generate a Newton-type matrix which require in-
version of a non-sparse matrix or equivalently solving a linear system in every
iteration. Thus, an approximation of the proposed methods via BFGS update is
constructed. Numerical experiments are carried out to illustrate the numerical
performance and efficiency of the proposed methods by comparing the number
of iterations, the number of function evaluations and also the CPU time in sec-
ond. Our computational results show that the proposed methods are comparable
with the existing standard methods. Other than that, we also analyse the global
convergence properties of the modified methods. It is shown that the modified
methods converge globally and the rate of convergence is superlinear convergence.

We also implement the Newton-type methods on trust region framework by using
unit step length to adjust the radius of the region to obtain desired reduction in
the objective function. We make an approximation to the proposed Newton-type
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matrix by using BFGS updating scheme and then apply this modified Newton-
type matrix to generate new quadratic approximation subproblem. Numerical
results are established to demonstrate the efficiency of our modified methods.
Our proposed methods outperform the standard trust region method in term
of lower number of function evaluations and much reduction in computational
time. It is proved under appropriate assumptions that the modified trust region
methods are globally convergent.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Sarjana Sains

UBAHSUAIAN KAEDAH KUASI-NEWTON JENIS DENGAN
SISTEM ALIRAN KECERUNAN UNTUK MENYELESAIKAN

PENGOPTIMUMAN TAK BERKEKANGAN

Oleh

YAP CHUI YING

Jun 2016

Pengerusi: Leong Wah June, PhD
Fakulti: Sains

Dalam tesis ini, kami bertumpu terhadap mencari penyelesaian berangka un-
tuk masalah pengoptimuman tak linear tak berkekangan dengan menggunakan
sistem aliran kecerunan. Pertamanya, kami memperkenalkan sedikit latar be-
lakang matematik secara ringkas dan kemudian kami mempertimbangkan suatu
kelas pengoptimuman yang terkenal disebut sebagai kaedah kuasi-Newton. Se-
cara khususnya, kami memberi tumpuan kepada satu kelas kaedah kuasi-Newton
bernama kaedah Broyden-Fletcher-Goldfarb-Shanno (BFGS).

Kami menyisat kemungkinan untuk penggunaan teori kawalan, terutamanya teori
sistem aliran kecerunan untuk mendapatkan beberapa kaedah ubahsuaian dalam
gelintaran garis dan rantau kepercayaan untuk pengoptimuman. Pelaksanaan
kaedah tersebut dalam kaedah carian talian dalam bentuk asal mereka akan
menjana matriks Newton -jenis yang memerlukan penyongsangan matriks yang
tumpat atau penyelesaian sistem linear dalam setiap lelaran. Oleh itu, suatu
anggaran terhadap kaedah yang dicadangkan melalui kemaskini BFGS telah dib-
ina. Ujikaji-ujikaji berangka dilaksanakan untuk menggambarkan prestasi be-
rangka dan kecekapan kaedah yang dicadangkan dengan membandingkan bilan-
gan lelaran, bilangan penilaian fungsi dan juga masa CPU dalam unit saat. Kepu-
tusan berangka menunjukkan bahawa kaedah yang dicadangkan adalah standing
dengan kaedah standard yang sedia ada. Selain daripada itu, kami juga men-
ganalisis sifat penumpuan sejagat untuk kaedah yang telah diubah suai. Ia me-
nunjukkan bahawa kaedah yang telah diubah suai bertumpu sejagatnya dan kadar
penumpuan adalah penumpuan superlinear.
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Kami juga melaksanakan kaedah Newton-jenis dalam rangka kerja rantau keper-
cayaan dengan menggunakan unit panjang langkah untuk menyesuaikan jejari
rantau ini untuk mendapatkan pengurangan yang diingini dalam fungsi objek-
tif . Kami membuat anggaran untuk matrik Newton -jenis yang dicadangkan
dengan menggunakan BFGS kemaskini skim dan kemudian menggunakan ma-
trik Newton-jenis ini yang diubahsuai untuk menjana penghampiran subproblem
kuadratik baru. Keputusan berangka yang ditubuhkan untuk menunjukkan ke-
cekapan kaedah diubahsuai oleh kami . Kaedah yang dicadangkan oleh kami
mengatasi kaedah rantau kepercayaan standard dari segi jumlah yang lebih ren-
dah dalam penilaian fungsi dan pengurangan masa pengiraan yang banyak. Ia
dibuktikan di bawah andaian yang sesuai bahawa kaedah rantau kepercayaan
diubahsuai bertumpu secara sejagat.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

In these recent years, the area of optimization has received extensive attention
primarily due to the rapid growth and development progress in computer tech-
nology. Many application problems can be formulated as optimization problems
and hence optimization has been a basic tool in diverse areas no matter in ap-
plied mathematics, medicines, engineering or in economics. New optimization
algorithms and theoretical techniques have been generated aiming to deal with
choosing the best alternative to certain mathematical defined problems. In short,
optimization is the central to any problem especially those involving decision
making. The purpose of all such decision making is either to minimize cost or to
maximize profit.

1.2 Optimization Problem

Optimization problem is dealing with the methods for selecting the least value
(the minimum) or the greatest value (the maximum) of a function of any num-
ber of independent variables called the objective function. Note that any max-
imization problem can be represented equivalently in the minimization form by
multiplying a factor of -1 to the objective function. Thus, optimization can be
considered as minimization without loss of generality.

The general form of optimization problem is

min f(x)
s.t. x ∈ Ω,

(1.1)

where f(x) is an objective function, x ∈ Rn is a n-vector of independent variables
and Ω ⊂ Rn is a constraint set or feasible region.

Optimization problem can be further categorized into constrained optimization
problem and unconstrained optimization problem. Constrained optimization is
involved with minimizing an objection function with the presence of constraints
on some variables where the constraints can be equality constraints or inequality
constraints. The general constrained optimization problem can be presented as
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below:
min f(x)

s.t. ci(x) = 0, i = 1, 2, · · · , n,
dj(x) ≥ 0, j = 1, 2, · · · ,m.

(1.2)

When there is no constraint being imposed to the objective function or the con-
straint set x = Rn, then the optimization problem (1.1) is known as an uncon-
strained optimization problem:

min
x∈R

f(x). (1.3)

The problem is known as linear programming if both the objective functions and
constraint functions consist of linear functions. Otherwise, the problem is called
nonlinear programming.

The scope of this thesis is limited to nonlinear unconstrained optimization prob-
lems, in which f is assumed to be continuous and differentiable. Before we go
further, we shall state some mathematical background of unconstraind optimiza-
tion.

1.3 Basic Definitions and Theorems

In this section, we recall some essential theorems and definitions on linear algebra
and calculus which are very helpful for discussion on our main topic. Hence, this
chapter also serves as base and background for the studies of the subsequent
chapters. The proof of the theorems, properties and lemmas can be referred to
any book of numerical optimization, for example Nocedal and Wright (1999), and
Sun and Yuan (2006).

1.3.1 Function and Derivatives

This section present some background of set theory and multivariable calculus.

Definition 1.1 : A δ-neighborhood of a point x ∈ Rn is the set

Nδ(x) = {y ∈ Rn : ‖y − x‖ < δ},

where δ is some positive number.

We can also called the neighborhood as a ball with radius δ and center x.

2
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Definition 1.2 : Let D ⊂ Rn and x ∈ D. The point x is said to be
(i) an interior point of D if the set D contains some neighborhood of x. The set
of all such points of D is called the interior of D and is denoted by int(D).
(ii) a boundary point of D if every neighborhood of x contains a point in D and
a point not in D. The set of all boundary points of D is called the boundary of
D.

Definition 1.3 : A set D is said to be open if it contains a neighborhood of each
of its points which is also meant that each of its points is an interior point, or
equivalently, if D contains no boundary points.

Definition 1.4 : A set D is said to be closed if it contains its boundary.

It can be shown that a set is closed if and only if its complement is open. (see
for example Fridy (2000)).

Definition 1.5 : A set that is contained in a ball of finite radius is said to be
bounded.

Definition 1.6 : A set is compact if it is both closed and bounded.

There exists a convergent subsequence with a limit in D for every sequence {xk}
in a compact set D. Thus, compact sets are important in optimization problems.

Theorem 1.1 (Weierstrass Theorem): Let f : Ω→ R be a continuous func-
tion, where Ω ⊂ Rn is a compact set. Then, there exists a point x0 ∈ Ω such that
f(x0) ≤ f(x) for all x ∈ Ω. In other words, f achieves its minimum on Ω.

It is crucial to discuss about continuity, Lipschitz continuity and differentiability
because they contribute in obtaining minimizer of problem (1.3).

Definition 1.7 : A function f : Rn → R is said to be continuous at x̄ ∈ Rn
if, for any given ε > 0, there exists δ > 0 such that ‖x− x̄‖ < δ implies
|f(x)− f(x̄)| < ε. A function f is said to be continuous on D if it is contin-
uous at every point in an open set D ⊂ Rn.

There is another stronger form of continuity which able to guarantee the exis-
tence and uniqueness of the solution to the objective function which is Lipschitz
continuity.

3
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Definition 1.8 : A function f : Rn → R is said to be globally Lipschitz-
continuous on Rn if there exists a real number L > 0 (called the Lipschitz con-
stant), such that

‖f(y)− f(x)‖ ≤ L ‖y − x‖ , for ∀y, x ∈ Rn. (1.4)

The function f is called locally Lipschitz-continuous, if for each x ∈ Rn there
exists a real number L > 0 such that f is Lipschitz-continuous on the open ball
of center x and radius L

‖f(y)− f(x)‖ ≤ L ‖y − x‖ , for ∀y, x ∈ NL(x) ∩ Rn. (1.5)

Definition 1.9 : A continuous function f : Rn → R is said to be continuously

differentiable at x ∈ Rn if
(
∂f
∂xi

)
(x) exists and is continuous, for i = 1, · · · , n.

The gradient of f at x is defined as

Of(x) =
[ ∂f
∂x1

(x), · · · , ∂f
∂xn

(x)
]T
. (1.6)

A function f is said to be continuously differentiable on D if it is continuously
differentiable at every point of an open set D ⊂ Rn.

Definition 1.10 : A continuous function f : Rn → R is said to be twice con-

tinuously differentiable at x ∈ Rn if
(

∂2f
∂xi∂xj

)
(x) exists and is continuous, for

i, j = 1, · · · , n.

The Hessian of f at x is defined as the n× n symmetric matrix with elements

[O2f(x)]ij =
∂2f

∂xi∂xj
(x), (1.7)

for 1 ≤ i, j ≤ n. A function is said to be twice continuously differentiable on D
if it is twice continuously differentiable at every point of an open set D ⊂ Rn.
Thus, the relationships between Lipschitz continuity, continuity and differentia-
bility can be expressed in the theorems below where the proof can be found in
Sideris (2013).

Theorem 1.2 : Every locally Lipschitz-continuous function is continuous.

4
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1.3.2 Optimality Conditions for Unconstrained Optimization

Generally, there are two kinds of minimizers which are local minimizer and global
minimizer. Here we present the conditions for a point x∗ to be a minimizer.

Definition 1.11 : A point x∗ is called
(i) a local minimizer if there exists δ > 0 such that f(x∗) ≤ f(x) for all x ∈ Rn
satisfying ‖x− x∗‖ < δ.
(ii) a strict local minimizer if there exists δ > 0 such that f(x∗) < f(x) for all
x ∈ Rn with x 6= x∗ and satisfying ‖x− x∗‖ < δ.
(iii) a global minimizer if f(x∗) ≤ f(x) for all x ∈ Rn.
(iv) a strict global minimizer if f(x∗) < f(x) for all x ∈ Rn with x 6= x∗.

In practice, due to obtaining a global minimizer is a difficult task, most algo-
rithms are only capable to find a local minimizer, which is a point that achieves
the smallest value of f in its neighborhood. Thus, we usually have to be satisfied
with finding local minimizers. Taylor’s theorem is the common mathematical
tool used to study minimizers of smooth functions. Thus, here we present the
Taylor’s theorem before we discuss the necessary conditions for optimality. Its
proof is easily available in most calculus textbook.

Theorem 1.3 :(Taylor’s Theorem) Let f : Rn → R be a continuosly differ-
entiable function and p ∈ Rn. Thus we have that

f(x+ p) = f(x) + Of(x+ tp)T p, (1.8)

for some t ∈ (0, 1). Futhermore, if f is twice differentiable, we obtain

Of(x+ p) = Of(x) +

∫ 1

0
O2f(x+ tp)p dt, (1.9)

and that

f(x+ p) = f(x) + Of(x)T p+
1

2
pTO2f(x+ tp)p, (1.10)

for some t ∈ (0, 1).

Definition 1.12 : Let f : Rn → R. A vector d ∈ Rn is known as a descent
direction for f at x if there exists δ > 0 such that

f(x+ λd) < f(x), (1.11)

for all λ ∈ (0, δ).

Theorem 1.4 : Let f : Rn → R be differentiable at x ∈ Rn. A vector d ∈ Rn is
a descent direction of f at x if

〈Of(x), d〉 < 0. (1.12)

5
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By using the Taylor’s second order expansion,

f(xk + λd) = f(xk) + λOf(xk)T d+ o(λ),

then it is clearly to see that

∃δ > 0 such that f(xk + λd) < f(xk),∀λ ∈ (0, δ)

if and only if d is a descent direction of f at xk.

Most line search algorithms demand dk to be a descent direction because this
property guarantees to lower the function f along this search direction.

Clearly, definiteness or semidefiniteness of the Hessian plays a crucial role in the
necessary and sufficient conditions in optimization. To check the positive defi-
niteness of the Hessian matrix of f at x, we have the following definition:

Definition 1.13 : Let A ∈ Rn×n be symmetric. A is said to be
(i) positive definite if vTAv > 0,∀v ∈ Rn, v 6= 0.
(ii) positive semidefinite if vTAv ≥ 0,∀v ∈ Rn.
(iii) negative definite if vTAv < 0,∀v ∈ Rn, v 6= 0.
(iv) negative semidefinite if vTAv ≤ 0,∀v ∈ Rn.
(v) indefinite if it is neither positive semidefinite nor negative semidefinite.

The following part presents the discussion about the first-order optimality con-
dition. The proofs of these results are available in most text books (for example
Nocedal and Wright (1999)). For the purpose of clarification, we duplicate some
of the proofs to this thesis.

Theorem 1.5 (First-Order Necessary Condition): If x∗ is a local mini-
mizer and f is continuously differentiable in an open neighborhood of x∗, then

Of(x∗) = 0. (1.13)

Proof:
Suppose there is a contradiction that Of(x∗) 6= 0. Taking the vector
d = −Of(x∗) yields

dTOf(x∗) = −‖Of(x∗)‖2 < 0.

Due to Of is continuous near x∗, there exists a scalar T > 0 such that

dTOf(x∗ + td) < 0,

for all t ∈ [0, T ]. For any t̄ ∈ [0, T ],

f(x∗ + t̄d) = f(x∗) + t̄dTOf(x∗ + td),

6
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can be obtained for some t ∈ [0, t̄] by Taylor’s theorem. Hence,

f(x∗ + t̄d) < f(x∗),

for all t̄ ∈ [0, T ]. This contradicts the assumption that x∗ is a local minimizer as
we have obtained a direction leading away from x∗ along which f decreases. �

Remark 1.1 : A point x∗ is called a stationary point if Of(x∗) = 0.

Thus, according to Theorem 1.5, any local minimizer must be a stationary point.
In the following, we will discuss about the second-order conditions for a local
minimum.

Theorem 1.6 (Second-Order Necessary Conditions): If x∗ is a local min-
imizer of f and O2f exists and is continuous in an open neighborhood of x∗, then
Of(x∗) = 0 and O2f(x∗) is positive semidefinite.

Proof:
We have known from Theorem 1.3 that Of(x∗) = 0, hence only thing left is to
show that O2f(x∗) is positive semidefinite. Suppose for the sake of contradiction
that O2f(x∗) is not positive semidefinite. A vector d is being picked such that
dTO2f(x∗)p < 0, and due to O2f is continuous near x∗, there exists a scalar
T > 0 such that

dTO2f(x∗ + td)d < 0,

for all t ∈ [0, T ]. Hence,

f(x∗ + t̄d) = f(x∗) + t̄dTOf(x∗) + 1
2 t̄

2dTO2f(x∗ + td)d < f(x∗).

is obtained by performing a Taylor series expansion around x∗ for all t̄ ∈ [0, T ]
and some t ∈ [0, t̄]. This again contradicts the assumption that x∗ is a local mini-
mizer as we have found a direction leading away from x∗ along which f decreases
as in Theorem 1.3. �

Next, we describe the second-order sufficient conditions on the derivatices of f at
the point z∗ that guarantee that x∗ is a local minimizer.

Theorem 1.7 :(Second-Order Sufficient Conditions) Suppose that O2f is
continuous in an open neighborhood of x∗, and that Of(x∗) = 0 and O2f(x∗) is
positive definite. Then x∗ is a strict local minimizer of f .

Proof:
Since the Hessian is continuous and positive definite at x∗, a radius r > 0 is
chosen so that O2f(x) remains positive definite for all x in the open ball D =
{z| ‖z − x∗‖ < r}. Taking any nonzero d with ‖d‖ < r, x∗ + d ∈ D will be
obtained and so
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f(x∗ + d) = f(x∗) + dTOf(x∗) + 1
2d
TO2f(z)d = f(x∗) + 1

2d
TO2f(z)d,

where z = x∗ + td for some t ∈ (0, 1). Since z ∈ D, we have dTO2f(z)d > 0, and
therefore

f(x∗ + d) > f(x∗),

which shows the result. �

1.3.3 Convexity

The concept of convexity plays an essential role in the study of optimization.
Many practicals problems possess this property, which generally makes them eas-
ier to be solved in both theory and practise. The term “convex” is applicable to
both sets and functions. In this subsection, we present the elementary concepts
of convex sets and convex functions.

Definition 1.14 : Let the set S ∈ Rn. If, for any x1, x2 ∈ S, we have

αx1 + (1− α)x2 ∈ S, (1.14)

for all α ∈ [0, 1], then S is said to be a convex set.

This above definition indicates that the straight line segment connecting any two
points in S lies entirely inside S. In other words, it also states that S is path-
connected which is two arbitrary points in S can be joined by a continous path.

Definition 1.15 : Suppose that S ⊂ Rn is a nonempty convex set and let f :
S ⊂ Rn → R. Then f is said to be convex on S if we have

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), (1.15)

for any x1, x2 ∈ S and all α ∈ [0, 1].

We say that f is strictly convex if the above inequality in (1.15) is strict whenever
x1 6= x2 and α is in the open interval (0,1). A function f is said to be uniformly
(or strongly) convex on S if there is a constant c > 0 such that for any x1, x2 ∈ S,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)− 1

2
cα(1− α)‖x1 − x2‖2. (1.16)

A function f is called a concave (strictly concave, uniformly concave) function if
−f is a convex (strictly convex, uniformly convex) function on S.

8
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The following necessary and sufficient conditions for a differential convex function
is established if a convex function is differentiable.

Theorem 1.8 : Suppose that S ⊂ Rn is a nonempty open convex set and let
f : S ⊂ Rn → R be a differentiable function. Then
(a) f is convex if and only if

f(y) ≥ f(x) + Of(x)T (y − x), ∀x, y ∈ S. (1.17)

(b) f is strictly convex on S if and only if

f(y) > f(x) + Of(x)T (y − x),∀x, y ∈ S, y 6= x. (1.18)

(c) f is uniformly convex on S if and only if

f(y) ≥ f(x) + Of(x)T (y − x) +
1

2
c ‖y − x‖2 ,∀x, y ∈ S, (1.19)

where c > 0 is a constant.

Proof:
Necessity: Suppose that f is a convex function, then

f(αy + (1− α)x) ≤ αf(y) + (1− α)f(x),

is valid for all α ∈ (0, 1). Therefore,

f(x+α(y−x))−f(x)
α ≤ f(y)− f(x).

By setting α→ 0 gives us

Of(x)T (y − x) ≤ f(y)− f(x).

Sufficiency: Assume that (1.17) holds. By choosing any x1, x2 ∈ S and set
x = αx1 + (1− α)x2 where α ∈ (0, 1), the following inequities can be obtained:

f(x1) ≥ f(x) + Of(x)T (x1 − x),
f(x2) ≥ f(x) + Of(x)T (x2 − x).

Hence,

αf(x1) + (1− α)f(x2) ≥ f(x) + Of(x)T (αx1 + (1− α)x2 − x),
= f(αx1 + (1− α)x2),

which indicates that f is a convex function.

The other two cases (b) and (c) can be proved in similar approach. The only

extra step to obtain (1.19) is to apply (1.17) to the function f − 1
2c ‖·‖

2. �

9
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Next, the second order characteristic of a twice continuously differentiable convex
function will be considered.

Theorem 1.9 : Let S ⊂ Rn be a nonempty open convex set and suppose f : S ⊂
Rn → R be a twice continuously differentiable function. Then
(a) f is convex if and only if its Hessian matrix is positive semidefinite at each
point in S.
(b) f is strictly convex on S if its Hessian matrix is positive definite at each point
in S.
(c) f is uniformly convex on S if and only if its Hessian matrix is uniformly
positive definite at each point in S.

Proof:
Only the prooving for the first case is shown as the other two cases are analogous.
Sufficiency: Let the Hessian matrix O2f(x) be positive semidefinite at each point
x ∈ S and take x, x̄ ∈ S. Then

f(x) = f(x̄) + Of(x̄)T (x− x̄) + 1
2(x− x̄)TO2f(x̂)(x− x̄),

where x̂ = x̄+θ(x− x̄), θ ∈ (0, 1) by using the Mean-value Theorem. Noting that
x̂ ∈ S, it follows from the assumption that

f(x) ≥ f(x̄) + Of(x̄)T (x− x̄).

Therefore, Theorem 1.8 implies that f is a convex function.

Necessity: Suppose that f is a convex function and let x̄ ∈ S. It is necessary to
show that dTO2f(x̄)d ≥ 0,∀d ∈ Rn. Since S is open, then there exists δ > 0
such that when |λ| < δ, x̄+ λd ∈ S. By Theorem 1.8,

f(x̄+ λd) ≥ f(x̄) + Of(x̄)T d. (1.20)

Since f is also twice differentiable at x̄, then

f(x̄+ λd) = f(x̄) + λOf(x̄)T d+
λ2

2
dTO2f(x̄)d+ o(‖λd‖2). (1.21)

Substituting (1.21) into (1.20) will give us

1
2λ

2dTO2f(x̄)d+ o(‖λd‖2) ≥ 0.

Dividing by λ2 and letting λ→ 0, it follows that

dTO2f(x̄)d ≥ 0.

�

10



© C
OPYRIG

HT U
PM

1.4 Objectives

For solving unconstrained optimization problems, iterative algorithms play an
important role. In an iterative algorithm, an initial point x0 must be given in
order to get a new iterate point in the following form

xk+1 = xk + sk. (1.22)

On the other hand, a dynamical system is a concept in mathematics that describe
time-based systems with particular properties. Consider the system

ẋ = f(x(t), t), (1.23)

where f : Rn → Rn and x(0) = x0 is given. This system can be discretized to

x(k + 1) = x(k) + αf(x(k), k), (1.24)

where α > 0 is the step length. Clearly we can see that there are some correla-
tionship between these optimization and discretization of dynamical system.

Gradient flow system is a classical issue in dynamical systems. The idea behind
this method of gradient arose in the study of variational partial differential equa-
tions. By starting with a given initial point x0 ∈ R, a minimizer of f , denoted
by x∗ is to be obtained by following a curve defined by the ordinary differential
equation

ẋ(t) = −Of(x(t)),
x(0) = x0,

(1.25)

where Of is the gradient of f .

One of the advantages of the gradient method is no modification is required to be
applied to nonlinear problems. Since the scope of this thesis is limited to solving
nonlinear unconstrained optimization problems, hence it is very logical to think
of using the gradient flow system for nonlinear unconstrained optimization.

The main objective of this thesis is to investigate the possible use of control the-
ory, particularly theory on gradient flow system to derive some numerical methods
for optimization.

The specific objectives are:
1. To derive some quasi-Newton-type methods using gradient flow system.
2. To establish the convergence properties of the proposed methods.
3. To develop optimization algorithm based on the modified methods and to
perform numerical experiments for showing the efficiency of the methods.

11
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1.5 An Overview of the Thesis

In this thesis, we are mainly concerned with solving the nonlinear unconstrained
optimization problems. Firstly, a brief introduction about optimization problems
and its related mathematical background is presented in this Chapter 1.

In the next chapter, we will discuss on line search methods especially the quasi-
Newton methods as this thesis is mainly about modifications on quasi-Newton
type methods. This chapter also reviews some literature on topics such as line
search methods, quasi-Newton methods and trust region methods.

In the following four chapters, we will present our modified methods and establish
their global convergence properties under some suitable conditions. In precise,
Chapter 3 is mainly about implemendation of modified quasi-Newton-type meth-
ods on line search methods whereas Chapter 5 is concerned with implemendation
of modified quasi-Newton-type methods on trust region methods. All the algo-
rithms and numerical results are included in this two chapters. We presented the
global convergence properties of modified quasi-Newton-type methods in Chapter
4 and Chapter 6 respectively.

Finally , Chapter 7 consists of a summary of the achivements of the previous chap-
ter as the conclusion of this thesis. Possible future works will also be considered
in this chapter.

12
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