
 
 

 
ELECTROCHEMICAL ANALYSIS OF CARBON NANOTUBES/TITANIUM 

DIOXIDE COMPOSITE MODIFIED GLASSY CARBON ELECTRODE 
 

 
 
 
 
 
 
 
 
 

GANCHIMEG PERENLEI 
 
 
 
 
 
 
 
 
 
 
 
 

FS 2010 40 



ELECTROCHEMICAL ANALYSIS OF CARBON NANOTUBES/TIT ANIUM
DIOXIDE COMPOSITE MODIFIED GLASSY CARBON ELECTRODE

By

GANCHIMEG PERENLEI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in
Fulfilment of the Requirements for the Degree of Master of Science

OCTOBER 2010

© C
OPYRIG

HT U
PM
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By

GANCHIMEG PERENLEI

October 2010
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Faculty: Science

The new chemically modified electrode based on carbon nanotubes/titanium dioxide

(CNT/Ti02) composite modified glassy carbon electrode (GCE) was fabricated by two

different (i) mechanical attachment and (ii) solvent casting methods. The

CNT/Ti02/GCE composite has been characterized using voltammetric techniques of

linear sweep voltammetry, cyclic voltammetry, chronoamperometry and

chronocoulometry in this work. The surface morphology of the CNT/Ti02 composite

film was studied by scanning electron microscopy and the percentage of the elements in

components was examined by energy dispersive X-ray.
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The CNT/Ti02/CGE was applied in the electrochemical determination of 0.5 mM

ascorbic acid in 0.1 M NaCI (pH 6.2), 0.1 mM potassium ferricyanidc in 0.1 M

Na2HP04 (pH 8.5) and 0.2 mM paracetamol in 0.1 M PBS (pH 7.0). The current

enhancements of 5.0 folds for the oxidation of ascorbic acid, 3.0-3.1 folds for the redox

of potassium ferricyanide and 8.5-11.0 folds for the redox of paracetamol were obtained

using the CNT/Ti02/GCE when compared with unmodified GCE. The responses of

each analyte at various electrodes are in the order:

CNT/Ti02/GCE > CNT/GCE > GCE > Ti02/GCE

Under the optimized parameters, the linear calibration graph showed correlation

coefficient of 0.997 for the oxidation of 0.05-2 mM ascorbic acid, 0.999 for the redox of

0.01-0.2 mM potassium ferricyanide and the concentration isotherm of paracetamol in

the range of 0.0 I - 2 mM, with linearity of up to 1.2 mM. From this calibration plot,

high sensitivity response of 45 JlA/mM with detection limit of 7.8 JlM (100 mVIs scan

rate) for the oxidation of ascorbic acid; 68.9-77.6 JlA/mM with 1.1 ~tM (5 mVis) for the

redox of potassium ferricyanide; and 89.94-111.3 JlA/mM with 3.9 uM (5 mV/s) for the

redox of paracetamol at the CNT/Ti02/GCE were obtained. Effect of scan rate of

ascorbic acid was studied in the ranges of 10-300 mVis, and linear relation was

observed up to 70 mVis. Based on the log plot of oxidation current vs. scan rate, an

experimental slope of 0.45 was obtained, which is very close to the theoretical value of

0.5, indicating that the current is under diffusion controlled. Based on redox currents of

potassium ferricyanide vs. potential plot, the zero-current potentials were obtained at

Ega=209 mV and Egc= 189 mV in the scan rates ranges of 10-600 mVIs. Diffusion
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coefficient was calculated as 1.52x 10.5 cm2/s from the chronocoulometry study and an

activation energy obtained was 6 kl/mol in the presence of potassium ferricyanide in

aqueous media at the composite electrode. The redox peak currents of paracetamol were

significantly dependent on dosages of CNT to Ti02 in the composite at GCE. The

recovery experiment of paracetamol in commercially available samples was carried out

and the recovery rates of 95±2% and 96±2% were found using the CNT/Ti02/GCE.

The results revealed that the electrochemical ability of CNT is improved when

combined with Ti02 nanoparticles as a composite. The use of the CNTITi02/GCE IS

highly sensitive, selective and stable in electrochemical measurement.
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ANALISIS ELEKTROKIMIA KOMPOSIT KARBON KACA TERUBAHSUAI
KARBON NANOTIUB/TITANIUM DIOKSIDA

Oleh

GANCHIMEG PERENLEI

Oktober 2010

Pcngerusi Profesor Madya Tan Wee Tee, PhD

Fakulti Sains

Electrod kimia terubahsuai berdasarkan nanotube karbon/titanium dioksida (CNTITi02)

komposit elektrod karbon yang diubahsuai kaca (GCE) telah dibuat dgn 2 kaedah

berbeza (i) lekatan mekanikal (ii) kaedah tuangan pelarut. Komposit CNTITi02/GCE

telah dianalisis menggunakan teknik voltametri dari linear sweep voltametri kadar

linear, voltarnetri siklik, chronoamperometri dan chronocoulometri. Morfologi

permukaan filem komposit CNTITi02 dianalisa dengan imbasan mikroskop elektron

dan peratusan elemen dalam komponen dianalisa oleh tenaga sinar-X dispersif.

CNTITi02/GCE digunakan dalam penentuan elektrokimia 0.5 mM asid askorbik dalam

0.1 M NaCI (pH 6.2), 0.1 mM kalium ferricyanide dalam 0.1 M Na2HP04 (pH 8.5) dan

parasetamol 0.2 mM dalam 0.1 M PBS (PH 7.0). Pertambahan arus sebanyak 5.0 kali
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ganda untuk pengoksidaan asid askorbik, 3.0-3.1 kali ganda untuk redoks kalium

ferrisianida dan 8.5-11.0 kali ganda untuk redoks parasetamol diperolehi dengan

menggunakan CNT/Ti02/GCE apabila dibandingkan dengan GCE tanpa ubah suai.

Respon anal it masing-masing pada pelbagai elektrod adalah dalam urutan:

CNT/Ti02/GCE > CNT/GCE > GCE > Ti02/GCE

Berdasarkan parameter yang dioptimumkan, graf kalibrasi linear menunjukkan pekali

korelasi 0.997 untuk pengoksidaan 0.05-2 mM asid askorbik, 0.999 untuk redoks 0.01-

0.2 mM kalium ferrisianida dan isoterm konsentrasi parasetamol dalam julat 0.01 - 2

mM, dengan julat linear hingga 1.2 mM. Dari plot kalibrasi, sensitiviti response adala

tinggi sebanyak 45 IlA/mM dengan limit pengesanan 7.8 IlM (100 mV/s kador imbasan)

untuk pengoksidaan asid askorbik; 68.9-77.6 IlA/mM dengan 1.1 IlM (5 mV/s) untuk

redoks kalium ferrisianida; dan 89.94-111.3 IlA/mM dengan 3.9 IlM (5 mV/s) untuk

redoks parasetamol di CNT/Ti02/GCE diperolehi. Pengaruh kadar imbasan asid

askorbik dipelajari dalam julat 10-300 mVis, dan hubungan linear diperolehi sehingga

70 m'V/s. Berdasarkan plot log arus pengoksidaan vs. kadar imbasan, kecerunan

eksperimen 0.45 diperolehi, yang menghampin nilai teori iaitu 0.5, menunjukkan

bahawa arus' ini di bawah difusi terwakal. Berdasarkan arus redoks plot kalium

ferrisianida melawan potensi, arus potensi sifar diperoleh pada E$a=209 mV dan

E$c= 189 mV dengan kadar imbasan 10-600 mVIs. Pekali difusi dikira sebagai 1.52x 10-5

crri2/s daripada kajian chronocoulometri dan tenaga pengaktifan yang diperolehi adalah

6 kJ/mol dengan kehadiran kalium ferrisianida dalam media akues pada electrod

komposit. Arus puncak redoks parasetamol secara signifikannya bergantung pad a dos
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CNT pada Ti02 dalam komposit pada CGE. ~ajian_ aplikasi untuk parasctamol dalam

sampel yang tcrsedia secara kornersil dilakukan dan tahap pemulihan dari 95±2% dan

96±2% dijumpai menggunakan CNT/Ti02/GCE tersebut. Keputusan kajian

menunjukkan bahawa kemampuan elektrokimia CNT dipertingkatkan bila digabungkan

dengan nanopartikel Ti02 sebagai komposit. CNT/Ti02/GCE ini sangat sensitif, selektif

dan stabil dalam pengukuran e1ectrokimia.
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1.2 Nanostructured Material Modified Electrode

In recent years, the attention has been focused on growth of modi tied electrodes

based on various nanostructurcd materials such as nanotubcs, nanofibers, nanowires,

nanoballs and nanoparticlcs. Nanostructurcd material modi tied electrodes can offer

great benefits in clectroanalytical research and application because of their great

advantages of high effective surface area, mass transportation, catalysis and control

over microenvironment (Katz ct al., 20(4).

Increasing the clcctroactive surface area can be achieved by the attachment of

nanostructures materials onto electrode surface. The large effective surface area may

also cause there to be a larger number of active sites and often a higher signal to

noise ratio (Welch and Compton, 2(06). This increased clcctroactivc surface area

allows lower detection limit and higher sensitivity to analytcs. The main challenge

in achieving a high surface area electrode is the control over the size and distribution

of the structures produced on the electrode. Thus enhanced mass transport of

nanostructured electrodes, due to dominance of radial di ffusion, decreased charging

currents and deleterious effects of solution resistance. They may be defined as

electrodes with a critical dimension in the nanometer range (l nm -100 nm), where

by critical dimension is meant that dimension which controls the electrochemical

response (Arrigan, 2004). Conversely, the catalytic properties of some nanoparticles

can cause a decrease in the over potential needed for a reaction to become

kinetically viable, producing voltammetry which appears more reversible.
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1.3 Carbon Nanotubcs

CNT are long cylindrical structure of 3-coordinated carbon, slightly pyramidalizcd

by curvature from the pure sp2 hybridization of graphcnc, toward the diamond-like

Sp3 (Fischer, 20(6). CNT present a seamless structure with hexagonal "hclicity' of

the carbon honeycomb lattices (Lambin ct al., 20(2), being several nanometers in

diameter and many microns in length (Ajayan, 19(9). CNT are closed structures that

present two well defined regions with clearly different properties, the tube and the

cap, which is hcmi-fullcrcncs-like molecule with topological defects that in this case

are mainly pentagons (Rivas ct al., 2(07).

There are two basic types of CNT, namely single-walled carbon nanotubcs

(SWCNT) and multi-walled carbon nanotubcs (MWCNT) as shown in Figure 1.1.

SWCNT consist of a single graphite sheet rolled scamlcssly defining a cylinder of 1_

2 nm diameter. The minimum diameter of stable free standing SWCNT is limited by

curvature-induced strain to 0.4 nm. Meanwhile, MWCNT can be visualized as

concentric and closed graphite tubules with multiple layers of graphite sheets that

define a hole of2 - 25 nm separated by a distance 01'0.34 nm (Fischer, 200().

(a) Single-walled CNT (b) Multi-walled CNT

Figure 1.1. Scheme of single-walled (a) and multi-walled (b) carbon nanotubes
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1.4 Titanium Dioxide

Titanium (iv) dioxide or titania, is well known as a white pigment, is the naturally

occurring oxide of titanium with a chemical formula of Ti02. Titania has a number

of crystalline forms such as rutile, anatase and brookite. Those all crystalline

structures contain six-coordinate titanium and shown in Figure 1.2 .

• Ti

o

Figure 1.2. Ti02 crystal structures: tetragonal (a), tetragonal (h) and

orthorhombic (c)

Both anatase and brookite can be converted to rutile upon heating. The structure of

anatase can be regarded to be built from octahedral connecting by vertices. In rutile,

the edges an; connected where as in brookite, both vertices and edges arc connected.

Anatase forms arc shown to be more stable, photochemistry, active, and sensitive for

catalyzed photodcgradation. Meanwhile, rutile forms exhibit photochemical nature

and relatively inactive. Brookite has less commercial importance.
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1.5 Ascorbic Acid

Lvascorbic acid or L-3-kctothrcohexuronic acid lactone, well known as vitamin C is

usually prepared by synthesis from glucose, or extracted from plant sources like rose

hips, blackcurrants or citrus fruits. It is used lor the prevention and treatment of

cold, fever, mental illness, infertility, the healing of wounds, elasticity of the skin,

aids the absorption of iron and improves resistance to infection. Chemical formula

of ascorbic acid is C(,IlxO() and molecular structure is shown in Figure 1.3.

HO
HO o

HO OH

Figure 1.3. Molecular structure of ascorbic acid

Ascorbic acid is water soluble organic acid, that means human body does not store it

automatically. Therefore, the supply must be taken daily either from food containing

high vitamin C or supplements. There arc many available sources in nature, from

various kinds of food stuffs, which arc rich in natural ascorbic acid, mostly rich in

fresh fruits and leafy vegetables such as guava, papaya, cabbage and spinach (Goh et

al., 2008). Small amount can be also found from animal sources such as meat fish, ,

eggs and poultry. Among the all vitamins, ascorbic acid is the least stable vitamin,

like easily oxidized in air and can be easily destroyed by heat and storage.
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1.6 Paracetamol

Paracctamol (acetaminophen, -l-ucctarnidophcnol. N-acetyl-p-aminophenol) is an

antipyretic and analgesic drug, which was firstly introduced in medicine by Von

Moring in 1893. It is commonly used to relieve pains such as aches, headaches,

menstrual cramps and fever. Paracctamol is also used in combination with narcotic

analgesics, which increases its efficacy and reduces the risk of narcotics abuse. It is

sold under various brand names like Tylenol, Panadol and Aspirin-Free Anacin,

usually formulated in tablets, containing 500 mg paracctarnol per tablet. Molecular

structure of par aceta mol is similar to aspirin as shown in Figure IA.

H
N

Figure 1.4. Molecular structure of paracctamol

Paracctamol is considered sate for human use when the recommended dose is not

exceeded. But because of its wide availability, purposeful or accidental overdose is

quite common. It is also used in suicide attempts, and in this respect it is potentially

more dangerous than other over-the-counter drugs such as aspirin. This is because

overdoses of paracetamol may cause nausea, vomiting, sweating, and exhaustion.

Very large overdose can cause liver failure and death. Taken long-term, in proper

therapeutic doses, the liver and also other organs can be harmed.

6
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1.7 Fundamental of VoItammetric Techniques

Voltarnmetry is the branch of electrochemistry, which is one of the main analytical

techniques. All areas of voltammctry (theory, methodology, and instrumentation)

have been significantly advanced since when it developed fi·OI11the discovery of

polarography. Generally, voltarnmctry is based on the measure of the faradaic

current passing through the electrolyte solution containing electro-active compounds

while the time-dependent potential is applied to an electrode in electrochemical cell.

A plot of current as a function of applied potential is called a voltammogram

(Christian, 1994), which provides quantitative and qualitative information about the

species involved in the reaction.

Solid phase voltammctry (SPY) or voltammetry of microparticles technique is used

for solid state samples mechanically transfer onto the surface of the bare electrode

and then forcing redox reaction to proceed. This method is designed to directly

perform electrochemical studies of solid phases, such as metals and alloys, sparingly

soluble complexes, organic compounds (Scholz and Lange, 1992). The simplicity

and usefulness of the abrasion technique in SPY have been described (Scholz and

Lange, 1992). Its usefulness includes the qualitative and quantitative identification

of the constitucnts of alloys, minerals, pigments, corrosion processes and non-

conducting organic and inorganic compounds. This technique is especially useful for

the voltamrnctric studies of compounds that are insoluble.
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1.7.1 Linear Sweep Voltarnmctry

Linear sweep voltammctry is the simplest voltummctric technique, which USl:S

waveform. The CUITl:nt response is measured when the potential is applied to the

working electrode as a function oftime as shown in Figure 1.5.

The slope of this ramp has units of volts per unit time, and is generally called the

scan rate of the experiment. With a linear potential ramp, the faradaic current is

found to increase at higher scan rates. This is due to the increased flux of

elcctroactivc material to the electrode at the higher scan rates. The value of H1/2 can

he used to identify unknown species, and the height of the limiting current can he

used to determine concentration.

0.2 I e -tl.1
Ep u.z

Voltagt>:

Figure 1.5. Linear sweep voltarnmctry
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1.7.2 Cyclic Voltarnmcu-y

Cyclic voltammctry is widely used voltarnrnctric technique, which is based on a

linear potential waveform; the potential is changed as a linear function of time. It is

uscfl for rapidly providing considerable information on the thermodynamics of

redox processes, the kinetics of heterogeneous electron-transfer reactions, and on

coupled chemical reactions or adsorption processes (Wang, 20(0). The electrode

potential is scanned linearly with a triangle wave form as shown in Figure I.().

(+ ve) High

r
'";:;3
.,0

Initial,.......
w

tim 0...
0

P-1

1
(- vo) Low

Figure 1.6. Triangular potential waveform for cyclic voltammetry

The important parameters of cyclic voltammogram are the peak currents and peak

potentials of the anodic and cathodic peaks, respectively. If the heterogeneous

electron transfer is rapid compared to the mass transfer, diffusion or migration nux

of the reactants and products of the electrode reaction, the redox reaction is said to

he electrochemically reversible (Girault, 2004)_ The peak current, in terms of the

analytc concentration, for a reversible redox reaction at 25"C is given by Randles-

Sevcik equation:
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[ 1.1]

In this equation, n is the number of electron transferred per molecule (cquiv/molc),

v is the scan rate (Vis), 11 is the electrode surface area (cm '), J) is the analytcs

diffusion coefficient (cm2/s) and C is the analytcs concentration (mole/ern:').

Therefore, for a reversible reaction, the peak current is directly proportional to the

concentration, and the square root of the scan rate. Meanwhile, the peak separation

for a reversible redox reaction is given by:

,1/' /' u 2.·.)O.·~1)'1' / nIlLJ:p = :pa - :pc = ) \ [ 1.2]

Thus, ;\.Ep for a reversible redox reaction at 25()C should be 0.0592/n V. For

irreversible or quasi-reversible redox reaction, L1Hp should be greater than

0.0592/nV (Eklund ct al., I99(). The peak separation is useful in determining the

number of electrons transferred, and as a criterion fix Ncrnstian behavior (Wang,

20(0). The formal reduction potential for a reversible redox couple is easily

determined as the average of the two peak potentials as shown in Equation 1.3.

Formal reduction potentials measured using cyclic voltammctry is usually accurate

to within 50 mV of the true value.

[ 1.3]

In addition, in a reversible redox couple: Ipallpc=I for all scan rates. But, in the

irreversible reaction, the potential peaks arc reduced in size and widely separated.

The extent of irreversibility increases with rises in sweep rate. The behaviors of

irreversible process are caused by slow electron transfer kinetics and the chemical

reaction of oxidation (Ox) and reduction (Red). For the quasi-reversible redox

system, the current is controlled by both the charge transfer and mass transport.
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1.7.3 Chronoamperometry

Chronoampcromctry (CA) is a technique where the current is measured as a function

of time under potcntiostatic control. In CA, the excitation signal is a square-wave

signal. The potential is stepped from an initial potential value at which there is no

electrolysis to a final potential value (Figures 1.7) at which a diffusion-controlled

oxidation or reduction occurs. The potential can be stepped back to initial potential

after pulse width time and this technique is known as double-potential step CA.

E HighE
Trrne

wVlE
Time

Figure 1.7. Potential waveform for chronoamperometry

In conjunction with Faraday's Law, the charge, Q, passed across the interface is

Quiet
Time

related to the amount of material that has been converted, and the currcntis related to

Hi,;hE

the instantaneous rate at which the conversion occurs. The current decays smoothly

Inih;lE 1-__ '"

as the electrolysis proceeds to deplete the solution ncar the electrode of electroactive

Low E

species. Since electron transfer occurs in a faradaic electrode process, the current is

the faradaic current. The current response decays as a function of time for a planar

electrode is expressed by the Cottrell equation (Brett & Oliveira-Brett, 1<)<)3):

I I
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if (t) = nFI1C(D Int)11'L l1.4 J

Where, if is the Faradaic current (J\), n is the number of electrons transfer per

molecule (Equiv/molc), F is the Faraday's constant (96500 C/Equiv), 11 is the

electrode area (cm '), C is the analytc's concentration (rnolc/cm '), D is the analytc's

diffusion coefficient (cm2/s) and t is the time (s).

CA can be applied to determine diffusion coefficient, electrode area and electron

stoichiometry and the study of mechanism of electrode process. These parameters

were determined from the gradient of i versus t-1/'L graph. CA is also used to

determine the effective electrochemical area of an electrode, when D and n are

known. Once the electrode area is known, the electrode can be used to measure the

value for diffusion coefficient (Brett & Oliveira-Brott, 1(93).

1.7.4 Chronocoulomctry

Chronocoulometry (CC) is frequently used one of the classical voltammctric

techniques; hence, the charge is monitored as a function of time. Figures 1.8 shows

the chronocoulogram. In CC, the electrode is being applied a linear potential ramp

or potential step at an initial potential, where no current flows to a final potential,

where the reaction of interest docs occur. This results in a passage of charge across

the electrode interface. General process of CC is similar to CA, but the difference is

the measurement of charge instead of current directly as in CA.

12
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Figure 1.8. Chronocoulogram (charge-time) response for"double potential step
chronocoulometry

The expression for the forward chronocoulornctric response of di fTusing components

is simply the Cottrell equation integrated with respect to time as shown below:

[ 1.5]

Where, Qd is the diffusing charge (C), n is the number of electrons per molecule

(Equiv/mole), F is the Faraday's constant (96500 C/Equiv), 11 is the electrode area

(ern"), C is the concentration of clectroactivc species (mole/em"), D is the diffusion

coefficient of clcctroactivc species (cmvs), t is the time (s).

One of the applications of CC is its ability to detect species absorbed onto the

surface of the working electrode. Such species are electrolyzed very rapidly once the

potential is stepped. In a simplified mathematical treatment, three sinks of charges

are considered separately as additive function. The three charges are charge from the

diffusing species due to the charging of working electrode, capacitive charge of the

13
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electrode double layer, and adsoptivc charge due to electrolysis of the adsorbed

species. Among the three components, only Qu is time independent. The total

forward chronocoulomctric response can thus he described by:

[ I.e)]

[ I.7J

Where, Qtotul is the total charge and r is the surface excess of reactant (molc/cm}.

According to the equation above, the plot of Q versus t I/L. should be linear and the

linearization of the chronocoulomctric response by CC is illustrated in Figure 1.14.

This plot is often referred as Anson plot. The slope of this line is 2nFIlJ)I/L.Crr-I/L.rr

and the intercept is QUI + nF1l1' (Wang, 2(00). It is useful to step the potential back

to the initial potential, and then record the charge due to the reaction of the species

produced on the forward step. The expression of the reverse step is shown in

Equation IX

Where, Qr is equal to Qmux - Qt, 0 is equal to (T1/L.1 t - TI/L. tl/L.), T means the

forward step width and t is the total integration time.

The capacitive charge is eliminated to yield nFIl(f;, - r~) when the intercept of the

forward step subtracts the intercept of the reverse step. If only one species adsorbs,

this then gives that species' surface excess directly.

14
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I.S Problem Statement

In recent years, clcctroanalysts arc focused on development of new chemically

modi lied electrodes, because currently available working electrodes such as glassy

carbon, gold and platinum arc lack of sensitivity and selectivity (Gooding, 20(5).

The new electrode should be able to possess following advantages: highly sensitive,

good detection limit, stability, selectivity, reproducibility, low cost and simplicity.

Recent published works used GCE modified with a thin layer or film of CNT (Dai,

20(6). Typically using CNT modified GCEs for clectroanalysis the claimed benefits

include good detection limits, increased sensitivity, resistance to surface fouling and

decreased overpotcntials (Wang, 1995).

Combining the unique properties of CNT, such as high specific surface area, subtle

electronic properties and strong adsorptive ability, with nanostructurcd Ti02 as a

composite material is expected to enhance the clcctrocatalytic activity of CNT/GCE.

To date, there arc no published reports on the usage of CNT/Ti02 nanoparticlc

composite modified GCE. Therefore the main objectives of the present study were

to develop new chemically modified electrode based on the CNT/Ti02IGCE. The

outcomes of this research will have substantial contribution to the field of

electrochemical and nanosciences.

15
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1.9 Objectives

ThL: objectives of this study arc:

I. To fabricate a chemically modi tied electrode hascd on the CNTlTi02/GCE

composite using solution evaporation and mechanical attachment methods.

II. To characterize the composite electrode using scanning electron microscopy,

energy dispersive X-ray, and voltammctric techniques of cyclic

voltammctry, linear sweep voltammctry, chronoampcromctry and

chronocoulomctry.

Ill. To compare the electrode responses of the CNTlTi02/GCE composite with

that CNT/GCE; Ti02/GCE and unmodified (;CE in order to determine some

biological and chemical analytcs.

IV. To determine the optimum physical and chemical conditions under which

maximum current enhancement can be obtained for the electrochemical

response of above analytcs.
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