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Water quality index (WQI) is a unitless number that indicates overall water quality at a
specific time and location using several important water quality variables. In Malaysia,
general WQI which is based on water quality expert opinion has been introduced by
the Department of Environment (DOE) to describe the status of a specific location at
identified rivers. The accuracy of DOE-WQI measured by the experts is assessed using
four important phases namely variables selection, weights determination, variables
transformation and variables aggregation, i.e. WQI calculation. However, the experts
opinion approach is found to be the most subjective in nature.

On determining weights in WQI development, new statistical methodologies were
introduced in this study to enhance the current Malaysian DOE-WQI. The Langat
River in Selangor was chosen as the location is significantly altered due to several
environmental issues. In this study, several descriptive models as well as Bayesian
models have been introduced based on a data-driven approach. To enable comparison
between models, water quality variables in the Malaysian DOE-WQI calculation was
employed.

For the descriptive models, 17 Principal Component Analysis (PCA) models had been
applied to five selected monitoring stations and four PCA models were found to have
similar patterns with the existing DOE-WQI. The models are the PC Standardization,
i.e. based on Minimum-Maximum approach known as D1 and D5 as well as the Model
E1 and E2 which are based on the re-weighting of the eigenvector elements from two
different approaches. The findings also showed that using the relative importance based
on relative rank of the first PCA eigenvector elements provided an alternative way to
calculate the PCA-WQI, as described in Model E2. Similar approach was conducted
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using standard deviation of the data for all stations as described in Model E3 and each
station separately in Model E4. The results showed that the new weights based on the
relative ranks of the standard deviation for Model E3 and Model E4 had contributed
well in the new WQI calculations. Both new models are simpler, consistent, stable,
comparable and reliable.

Furthermore, new Simultaneous-WQI (S-WQI) model in Bayesian approach for each
station was introduced to improve WQI estimates. Several potential Bayesian models
were considered and the best Bayesian model was selected based on two certain criteria,
i.e. Deviance Information Criteria (DIC) values and monitoring convergence. S-WQI can
be estimated accurately using a general form of Bayesian model with further constraint in
the variance of sub-index pH, SIpH, i.e. the natural water quality characteristic for each
station. New parameters from the best Bayesian model were used to re-calculate weights
in WQI calculation. Based on the new WQI calculation using the Bayesian knowledge,
narrower ranges for each individual observation at all stations were found, indicating
better estimates of DOE-WQI. Several interesting further research were also discussed
in order to provide WQI researchers better understanding on the benefits and limitations
of the different indices.
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memenuhi keperluan untuk ijazah Doktor Falsafah

PEMODELAN STATISTIK INDEKS KUALITI AIR SUNGAI

Oleh

ZALINA BINTI MOHD ALI

Mei 2019

Pengerusi : Noor Akma bt. Ibrahim, PhD
Fakulti : Institut Penyelidikan Matematik

Indeks Kualiti Air (IKA) merupakan satu angka tanpa unit yang menentukan kualiti air
secara keseluruhan pada masa dan tempat tertentu menggunakan beberapa pemboleh
ubah penting kualiti air. Di Malaysia, IKA umum yang berdasarkan kepada pandangan
pakar kualiti air diperkenalkan oleh Jabatan Alam Sekitar (JAS) untuk menerangkan
status bagi lokasi tertentu di sungai-sungai yang telah dikenal pasti. Ketepatan IKA-JAS
yang diukur daripada pakar dinilai menggunakan empat fasa utama iaitu pemilihan
pemboleh ubah, penentuan pemberat, penjelmaan pemboleh ubah dan pengagregatan
pemboleh ubah. Walau bagaimanapun, pendekatan pandangan pakar telah didapati
sebagai subjektif secara semulajadi.

Dengan memberi tumpuan ke atas penentuan pemberat-pemberat dalam pembangunan
IKA, kaedah-kaedah statistik baru diperkenalkan dalam kajian ini untuk meningkatkan
penggunaan IKA-JAS Malaysia sedia ada. Tumpuan diberikan ke atas Sungai Langat
di Selangor kerana lokasi ini mengalami perubahan yang ketara disebabkan oleh
pelbagai isu persekitaran. Dalam kajian ini, model deskriptif dan model Bayesian baru
diperkenalkan berdasarkan kepada pendekatan berpandukan-data. Untuk membolehkan
perbandingan di antara model dilakukan, pemboleh ubah kualiti air dalam pengiraan
IKA-JAS telah digunakan.

Bagi model-model deskriptif, 17 model Analisis Komponen Utama (AKU) digunakan
terhadap lima stesen pemantauan terpilih dan didapati, empat model AKU tersebut
mempunyai bentuk yang sama seperti IKA-JAS sedia ada. Model-model tersebut ialah
Pempiawaian KU, i.e. berdasarkan Pendekatan Minimum-Maksimum dikenali sebagai
D1 dan D5 serta Model E1 dan Model E2 yang berdasarkan kepada pengubahsuaian
semula pemberat bagi eigen vektor daripada dua pendekatan yang berbeza. Hasil
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penemuan turut menunjukkan potensi penggunaan kepentingan relatif berdasarkan
kepada pangkat relatif bagi eigen vektor pertama AKU sebagai salah satu cara alternatif
dalam pengiraan IKA-AKU seperti yang diterangkan oleh Model E2. Pendekatan yang
sama turut dilakukan menggunakan sisihan piawai data bagi semua stesen seperti yang
diterangkan dalam Model E3 dan setiap stesen berasingan dalam Model E4. Keputusan
menunjukkan pemberat baru yang berdasarkan kepada pangkat relatif sisihan piawai
bagi Model E3 dan E4 memberi sumbangan yang baik dalam pengiraan IKA baru.
Kedua-dua model tersebut adalah ringkas, konsisten, stabil, boleh dibandingkan dan
dipercayai.

Seterusnya, model IKA-Serentak (IKA-S) baru dalam pendekatan Bayesian bagi setiap
stesen diperkenalkan untuk menambah baik anggaran-anggaran IKA. Beberapa model
Bayesian yang berpotensi telah dipertimbangkan dan model Bayesian terbaik telah dip-
ilih berdasarkan dua kriteria tertentu iaitu nilai-nilai Kriteria Informasi Devians (KID)
dan penumpuan pemantauan. IKA-S boleh dianggarkan dengan baik menggunakan
model Bayesian umum dengan lanjutan kekangan dalam varians SIpH iaitu kriteria kual-
iti air secara semulajadi bagi setiap stesen. Berdasarkan kepada pengiraan IKA baru
menggunakan pengetahuan Bayesian, julat yang kecil didapati bagi setiap cerapan in-
dividu pada semua stesen yang menunjukkan anggaran yang lebih baik bagi IKA-JAS.
Beberapa penyelidikan berterusan yang menarik turut dibincangkan untuk mendapatkan
kefahaman yang lebih baik dalam kalangan penyelidik-penyelidik IKA terhadap kelebi-
han dan kekurangan bagi setiap indeks yang digunakan.
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CHAPTER 1

INTRODUCTION

This chapter provides the background for this thesis. It introduces the particular statistical
methods for water quality index development that will be discussed later in the thesis.
It also provides an outline of the research aims and objectives as well as the focus of
subsequent chapters.

1.1 Statistical Methods and River Water Quality Index

Studies of river water quality often involve investigation on water quality variables
such as water quality sub-indices and water quality index (WQI). These variables vary
with respect to different time and locations due to natural and environmental factors.
The WQI is useful in providing an overall measure of river water quality that can help
regulatory bodies determine the status of the water. Various techniques for the develop-
ment of river WQI have been introduced and gained great interest among researchers in
various parts of the world especially if the particular WQI needs to be developed at the
same location. However, the use of different techniques for WQI development may lead
to different values and interpretations. This scenario has improved research interest in
WQI study and the beneficial results are expected to enhance the importance of water
quality (Abbasi and Abbasi 2012).

In this study, river WQI is chosen since the river forms a large majority of water surface
studies (Alves et al., 2014), has the most concern of the communities involved (Kotti
et al., 2005) as well as being the most common practice used by the Department of
Environment (DOE) to determine the quality of water in many countries as mentioned
in Brown et al. (1970), Cude (2001), Lohani and Mustapha (1982a), CCME (2001) and
Thi Minh Hanh et al. (2010). The best known river WQI is the National Sanitation
Foundation (NSF)-WQI which was based on the expert opinion approach (Brown et al.,
1970). This approach has been employed in many countries in the world including
Malaysia (DOE, 1997). In the NSF-WQI development, different weights were rated by
various panels of experts for the same water quality variables. However, according to
Harkins (1974), this approach was found to be subjective in nature and had destroyed
the objectivity and comparability of the index developed.

To reduce the subjectivity, application of statistical methods for determining WQI has
been increasing, as described by many researchers, since the water quality variables that
are important can vary with respect to time and locations. Hence, statistical methods
in the development of WQI is important to provide tools for better estimation of water
quality. The statistical methods also allow calculation, alteration and understanding of
the river water quality. Although many works have been done in WQI are able to explain
the quality of water and status of the river, there are still many room for improvement
on WQI development particularly with regards to the weights associated with the im-
portant variable on water quality. In normal practice, the different weights rated for the
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same water quality variables are subjective in nature and may extinguish the objectivity
and comparability of the WQI developed. A possible solution to the subjective weights
derived in the development of WQI lies in formulating and implementing accurate vari-
able weights in river WQI models. However, no detailed study has been found among
the plethora literature to determine the stability, comparability, accuracy, reliability, and
flexibility of the river WQI comprehensively. To achieve this, detailed analyses should be
done in the index comparison as suggested by Lumb et al. (2011a). Hence, performance
of various statistical models of river WQI are essential to provide better explanation in
the estimation and prediction of WQI. This comprehensive model comparison need ef-
ficient data-driven approach with appropriate statistical methods. All the consideration
stated provide the basis and aim of this thesis.

1.2 Motivation of the Study

In WQI development, weights determination for the selected water quality variables were
assigned with regards to the differences in variable importance (Dunnette, 1979). Some
of the variables would be of greater importance than others (Abbasi and Abbasi, 2012).
According to Sutadian et al. (2016), the weights of water quality variables can be as-
signed with equal weights or unequal weights. However, establishing the variables’
weights is still a matter of judgment, therefore it is subjective in nature (Abbasi and
Abbasi, 2012). In Brown et al. (1970), the importance of water quality variables were
assigned using a value of 1 (most important) to 5 (less important). The weights obtained
for the respective water quality variable in Brown et al. (1970) were summed up to the
final WQI as shown in Equation 1.1.

WQI =
p

∑
i=1

wiYi (1.1)

where WQI is the water quality index, wi is the weight or the relative importance of the
ith water quality variable, the ∑

p
i=1 wi = 1, p is the number of water quality variables

and Yi refers to the respective sub-indices of water quality variables, i.e. the quality of
the ith water quality variables, a number between 0 and 100.

In previous WQI development based on statistical methods, the most commonly used is
principal component analysis (PCA) as supported in Whittaker et al. (2012). The relative
weights from the PCA are determined by the elements of eigenvector (Chow-Fraser,
2006) or the normalized of the elements of the eigenvector (Coletti et al., 2010). Several
PCA models have been introduced in the literature to calculate the WQI using the first
principal component (Coletti et al., 2010) and weighted average of principal component
(Chow-Fraser, 2006). However, the use of PCA in the WQI development was limited
to the water quality assessment (Lohani and Todino, 1984) and classification (Thi
Minh Hanh et al., 2010) at particular stations and rivers. The PCA models of river
WQI also provides several way of interpretations based on the WQI values obtained at
different stations and rivers. For instance, the PCA used in Lohani and Mustapha (1982a)
represent good river water quality for the smallest index values but in Chow-Fraser
(2006), the largest index values represents good river water quality. Different index
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values obtained are caused by the various transformation method of raw water quality
data in the PCA models that were considered in river WQI determination. Hence, it is
important to explore on the behavior of different PCA models in influencing the WQI
values and this may assist the better decision making in river WQI determination (Alves
et al., 2014). Despite the difficulties of various PCA model to determine accurate results
for river WQI, data-driven methods in PCA models of river WQI are still well-received
among researchers due to the ability to simultaneously analyze the water quality data
(Wu and Kuo, 2012).

Based on PCA models, large amount of datasets are needed to allow variables or weights
determination in WQI development. However, the requirement of sufficient data will not
be a problem if simple statistical model such as relative ranking model is considered. The
relative ranking model is capable of handling small dataset and determining the relative
weights for selected variables without difficulty. Hence, the use of relative weights based
on selected statistics derived from the relative ranking model as proposed in this study
can provide an alternative to the WQI estimation and prediction. On the other hand,
knowledge-based methods such as Bayesian modeling is also considerably important
(Goethals, 2005) especially when missing values in dataset is needed in the development
of WQI (Goethals and Niels, 2010). The use of Bayesian approaches give benefit and
strong evidence of better parameter estimations especially if over-parameterized models
are assumed. Benefits of using Bayesian model and uncertainty estimation have been
discussed by Reichert and Omlin (1997). Therefore, the new relative weights proposed
in the Bayesian model-based approach in this study could give better information on the
uncertainty of the WQI estimates. In addition, a good WQI estimate could be determined
based on statistical model comparison of stability, comparability, accuracy, reliability
and flexibility. Hence, the construction of various WQI models using statistical methods
in this study is as crucial as discussing WQI model fitting.

1.3 Research Aims and Objectives

The current variable weights practices in most of the countries are based on the expert
opinion approach. Hence, the particular focus of this study is to develop these variable
weights in enhancing the current expert opinion of WQI. The overall aim of this
research is to propose statistical methodology in weights determination for river WQI
development. A range of statistical models are considered and compared with the current
WQI used by Department of Environment (DOE).

In order to address the aim of the thesis, the following objectives are established:

1. To develop WQI overall-station models based on PCA and to compare with the
DOE-WQI.

2. To develop WQI overall-station and within each station models based on relative
ranking weights and to compare with the DOE-WQI.

3. To construct and compare several Bayesian WQI within-station models.
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4. To develop a within-station WQI based on the best Bayesian model and to compare
with the DOE-WQI.

1.4 Study Method

The main focus in this study is to determine new weights of available water quality vari-
ables defined by the experts using the appropriate statistical methods. The new variable
weights are based on descriptive and Bayesian model-based approaches . These weights
are then used to develop the new WQI calculation which were compared with the exist-
ing DOE-WQI. The model selected describes the weights of water quality variables best.
With respect to the four objectives stated in Section 1.3, this study is carried out in four
phases. The phases are:

1. Examination of the internal structure of water quality data for across sampling sites
in order to determine weights using PCA. The weights were used to calculate the
PCA scores. In addition, several models based on PCA scores in this descriptive
model-based approach were considered.

2. Next, new weights based on relative importance of their respective weight ranks
which were obtained from the eigenvector elements in PCA approach were intro-
duced for the first time in this study. Then, the weight ranks in PCA approach
were simplified by using relative ranks for a selected descriptive statistic, i.e. stan-
dard deviation of the water quality data. The ranks of the standard deviation were
used to recalculate new weights. Based on the new weights, new WQI model was
computed for overall-station and within each station WQI using Equation 1.1.

3. The models performance were also discussed based on the models that preserve
the same temporal with the DOE-WQI. The best model was selected based on
stability, comparability, accuracy, reliability and flexibility.

4. Based on the reliability results obtained in Step 3, this study continued to identify
several models that fit water quality data within-station under construction of sev-
eral Bayesian models. Three basic Bayesian models were considered i.e. general
Simultaneous-WQI (S-WQI) model without lag, distributed-lag model in S-WQI
for each water quality variable and distributed-lag model for S-WQI. Each model
was tested in different situations, i.e. S-WQI model with station specific variance,
S-WQI model with common variance over time and S-WQI model with further
constraint. The most appropriate Bayesian model was selected based on Bayesian
diagnostic checking and sensitivity analysis.

5. Coefficient values of the best Bayesian model in Step 4 were used to determine
new relative weights of water quality variables. Based on the relative weights, new
WQI values were determined using Equation 1.1. The index values were compared
with the DOE-WQI for their comparability, reliability and flexibility. The results
obtained from the Bayesian model provided an alternative for river WQI estimation
especially on the intervals of confidence from the Bayesian perspective.
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1.5 Scope of the Study

A case study was presented in this study to focus and emphasize weights determination
from statistical models. The weights were determined by statistical descriptive model-
based approach and Bayesian model-based approach. In the descriptive model, several
PCA and new relative ranking weights models were introduced. Furthermore, several
Bayesian models were proposed for the first time in this study and the best model was
used to determine weights that may define the importance of water quality variables
within-station. The development and application of the statistical models were illustrated
from several sampling sites that have been identified. Six water quality variables consid-
ered in the DOE-WQI determination : Dissolved Oxygen (DO), Biochemical Oxygen
Demand (BOD), Suspended Solids (SS), Chemical Oxygen Demand (COD), Ammonia-
cal Nitrogen (AN) and potential of Hydrogen (pH) were selected to enable comparison.
The statistical methods introduced in this study involved water quality data from Lan-
gat River, Selangor since the report by Juahir et al. (2011), Lim et al. (2013a) and Lim
et al. (2013b) showed that the Langat river water quality has dynamically changed due
to land use transfer to be overload and other environmental exchanges. However, only
water quality data from 1995-2009 in the Langat River were considered. The limitations
of data selection were based on the availability of water quality data in the Langat River
with the permission from Malaysian DOE. Although this may appear to limit a full dis-
cussion of the results, the use of proposed statistical methodology in this study may be
applicable for other sampling sites and rivers. Since data-driven based approach was ap-
plied, modification in the statistical models for other sampling sites and rivers are slightly
required depending on how the statistical models are able to validate the data.

1.6 Contribution of the Study

There are several contributions to the existing body of knowledge on WQI in this study.
The contributions include development of new descriptive and Bayesian model-based ap-
proaches to represent values of selected water quality variables weights accurately. Both
approaches are also applicable to identify weights within each sampling sites which are
rarely considered by previous researchers. In addition, novelty of validations in PCA
models allows the assumption that the test data shares distribution from the training data
with the same mean, µ and covariance matrix, Σ. New PCA models which produce a
temporal pattern which is close to DOE-WQI is also the main contribution to the litera-
ture of statistical methods in WQI development. Furthermore, several criteria introduced
in model comparison will also give benefits in determining the best model of river WQI.
Also, the Bayesian model-based approach gives additional information on the probability
and uncertainty for random quantities of WQI within each sampling site. Besides, similar
water quality variables in DOE-WQI have been maintained in statistical models of WQI
to enable comparisons between the expert opinion and statistical method approaches.
The results obtained from both approaches allow comparison to be made about the water
quality variable that give more weights in WQI determination.
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1.7 Outline of Thesis

In this thesis, several statistical models have been introduced to gain better knowledge
in water quality variable weights determination and WQI estimation. The more accu-
rate the WQI estimation is the better it indicates the quality of water (Lumb et al., 2011a).

Discussion in Chapter 2 starts with reviewing statistical models of river WQI. Apart from
that, several potential statistical methods to the proposed for new weights determination
and WQI estimation will be discussed in this chapter. The current state of index estima-
tion in other areas using various statistical methods will be explained further. Moreover,
an overview of the economic index, i.e. Stock-Watson (S-W) coincident index will
also be provided and the suitability of using this method will be discussed. Likewise,
suitability of the economic index from Bayesian perspective in WQI estimation will be
explained.

Then, preliminary analysis of water quality data will be presented in Chapter 3.
Malaysian DOE-WQI calculation and the interpretation of the WQI values will also
be provided. Details of sampling sites that have been chosen as a case studies are also
discussed. Water quality data analysis including summary of distribution measures,
normality test and status of river water quality will be further discussed in this chapter.

Next, several WQI models will be introduced and new weights of water quality variables
based on PCA will be developed in Chapter 4. The assumption of multivariate normality
in PCA is relaxed due to descriptive approach applied in the WQI development. After
the identification and estimation stages in PCA-WQI development, the next step in the
validation stage is implemented. New weights calculation based on ranks of the first
PCA eigenvector elements and standard deviation are introduced. Several comparative
performance of WQI model will also be discussed. Specific statistical analyses and
computation using Statistical Analysis Software (SAS) 9.4 will also be carried out.

Then, several potential Bayesian models based on the coincident index approach which
was modified from the S-W coincident index will be presented in Chapter 5. The
proposed models mentioned earlier are developed under the Bayesian environment
due to the ability of the Bayesian approach in incorporating with non-normality data
distribution (Brooks et al., 2004), small time series data sets (van de Schoot and Depaoli,
2014), irregular observations (He, 2003) and unbalanced data (Hensman et al., 2013).
The potential of new Simultaneous-WQI (S-WQI) model is investigated and the best
model that may well describe the water quality data at the selected stations is chosen.
The Bayesian models using available software, i.e. Just Another Gibbs Sampler (JAGS)
is implemented.

The new Bayesian-WQI for each selected sampling site will be further calculated in
Chapter 6 using modification of variables weights obtained from the best model in
Chapter 5. New weights based on relative importance ranks of the coefficient parameters
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in the selected Bayesian model will be used in this chapter. The same process as
discussed in Chapter 4 will be repeated with novelty in validation stages. Then, the WQI
credible interval will be illustrated to provide better information on the WQI estimation.
All computations in this chapter are performed using SAS 9.4.

Finally in Chapter 7, the results of this thesis are summarized and the contributions made
to the area of WQI development are highlighted. Several potential areas that would
be very useful for future work including new water quality variables to be included,
new promising sub-indices data-based to re-calculate new WQI, a potential of nonlinear
relationship in Bayesian S-WQI model as well as the use of Bayesian S-WQI model
in sufficient regular time series of new experimental data are suggested. A validation
of WQI using new experimental data collected at the same selected sampling sites in
Langat River are also recommended for future work. The flow of the tesis from Chapter
1 to Chapter 7 is shown in Figure 1.1.
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Figure 1.1: Study Flow of the Thesis
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