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True random numbers have gained wide applications in many areas like: com-
puter simulation, Monte Carlo integration, cryptography, randomized compu-
tation, radar ranging, and other areas. The generation of random numbers is
impractical in real life because of difficulty in reproduction, even under the most
legitimate requirements. Unfortunately, the output of physical random sources
cannot be reproduced, and therefore cannot be used directly for cryptographic
purposes. A deterministically generated pseudorandom (appear to be random)
numbers are therefore relied upon. Two constructions for generating pseudo-
random sequences were considered, viz: Linear feedback shift registers (LFSR)
and chaos theory (discrete chaotic maps). A class of one dimensional (1D)
chaotic maps has been considered for the generation of binary sequences. From
within the class of these 1D maps, we dwell on those that satisfies the equidis-
tributivity property (EDP) and constant summation property (CSP). Statistical
analysis shows that there exist reasonable cross(auto)correlations within the gen-
erated sequences. These correlations are catastrophic in cryptography. Despite
these short comings, the process of sequence generation using chaos theory is in-
deed rich in nonlinearity, which is a fundamental requirement for cryptography.
A newly proposed nonlinear controlled chaotic generator (NCCG) is designed
based on the combination of a chaotic map and a LFSR is presented. The gen-
erator exhibits all the good qualities of a nonlinear combiner generator which
addresses one of the major shortcoming of chaos based sequences- short period.
Due to the influence the nonlinear combiner generator may have on the gener-
ated sequences, it was tested against fast correlation attack, one of the major
attacks known to weaken nonlinear combiner based sequences. The sequence is
passed through the National Institute of Standards and Technology (NIST) test
suites, which looked for characteristics of a truly random sequence. The gener-
ated sequences were found to have passed all the prescribed tests in the suite
(exhibits behavior that is expected from a truly random sequence.), thereby,
suggesting its ability to be implemented in a cryptographic algorithm. The pro-
posed generator has been analyzed in two phases with the first phase subjected
to correlation (fast) attack and the second phase by convolutional encoder based
correlation attack. It was reported that the initial state of the LFSRs in the
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combiner generator cannot be recovered through this attacks within available
resources. Thus, we conclude that from the results of the statistical analysis,
the number of observed keystream symbols cannot be recovered. This recovery
is necessary for a successful attack, aimed at determining the initial state of
the LFSR. If one is not able to predict the sequence generated by the combiner
generator, then the clocking nature of the two chaos based binary generators
cannot be understood. Therefore the final binary sequence realized from the
generator (NCCG) will be appreciably resistant to the cryptanalytic algorithms
considered.
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Fakulti : Institut Penyelidikan Matematik

Nombor rawak sebenar telah memperolehi pelbagai aplikasi dalam banyak bidang
seperti: simulasi komputer, pengamiran Monte Carlo, kriptografi, pengiraan
rawak, radar berjulat dan lain-lain. Penjanaan nombor rawak tidak prak-
tikal dalam kehidupan sebenar kerana kesukaran dalam penghasilan semula,
walaupun di bawah keperluan yang paling sah. Malangnya, output sumber
rawak fizikal tidak dapat dihasilkan semula, dan oleh itu tidak boleh digu-
nakan secara langsung untuk tujuan kriptografi. Oleh itu, kita bergantung
kepada nombor pseudorawak yang dihasilkan secara berketentuan (yang nampak
rawak). Dua pembinaan untuk menjana jujukan pseudorawak telah dipertim-
bangkan, iaitu: daftar peralihan maklum balas linear (LFSR) dan teori keka-
cauan (peta kekacauan diskrit). Satu peta kekacauan satu dimensi (1D) telah
dipertimbangkan untuk penjanaan jujukan perduaan. Dari dalam kelas peta 1D
ini, kita melihat kepada yang memenuhi sifat pengagihan sama (EDP) dan sifat
penghasiltambahan malar (CSP). Analisis berstatistik menunjukkan terdapat
hubungan korelasi (auto) silang yang munasabah dalam jujukan yang dihasilkan.
Korelasi ini adalah berbahaya dalam kriptografi. Walaupun wujud kekuran-
gan ini, proses penjanaan jujukan menggunakan teori kekacauan memang kaya
dengan sifat tak linear, yang merupakan keperluan asas bagi kriptografi. Pen-
jana kekacauan terkawal tidak linear (NCCG) baru yang dicadangkan direka
berdasarkan gabungan peta kekacauan dan LFSR. Penjana ini mempamerkan
semua kualiti yang baik daripada penjana gabungan tak linear yang menangani
salah satu kekurangan utama jujukan berdasarkan kekacauan, iaitu kalaan yang
pendek. Disebabkan pengaruh penjana gabungan tak linear pada jujukan yang
dihasilkan, ia telah diuji terhadap serangan korelasi cepat, salah satu serangan
utama yang diketahui untuk melemahkan jujukan berdasarkan gabungan tak
linear. Jujukan seterusnya diuji melalui set ujian National Institute of Stan-
dards and Technology (NIST), dengan pencarian ciri-ciri jujukan yang benar-
benar rawak. Jujukan yang dijana dilihat telah melepasi semua ujian yang
ditetapkan dalam set tersebut (mempamerkan tingkah laku yang dijangka dari
jujukan yang benar-benar rawak), dengan itu, mengemukakan keupayaannya
untuk dilaksanakan dalam algoritma kriptografi. Penjana yang dicadangkan
telah dianalisis dalam dua fasa dengan fasa pertama tertakluk kepada serangan
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korelasi (cepat) dan fasa kedua serangan korelasi berasaskan pengekod konvo-
lusi. Adalah dilaporkan bahawa keadaan awal LFSR dalam penjana gabungan
tidak dapat diperolehi kembali melalui serangan ini dalam sumber yang tersedia.
Oleh itu, kita menyimpulkan bahawa dari hasil analisis secara teori, bilangan
simbol aliran kekunci yang diperhatikan tidak dapat dikembalikan semula. Ini
adalah yang diperlukan untuk serangan yang berjaya, bertujuan untuk menen-
tukan keadaan awal LFSR. Jika seseorang tidak dapat meramalkan jujukan
yang dijana oleh penjana gabungan, maka sifat pencatatan masa dua penjana
perduaan berasaskan kekacauan tidak dapat difahami. Oleh itu jujukan perd-
uaan yang direalisasikan dari penjana (NCCG) akan kebal terhadap algoritma
penyahsulitan yang dipertimbangkan.
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CHAPTER 1

INTRODUCTION

1.1 Dynamical Systems

A dynamical system (DS) describes the evolution of a state over time. A DS
contains the following two elements: (1) a set of possible states represented by
one or more real variables, (2) a deterministic (not random or stochastic) rule
that determines the present state from past states. The mathematical theory
of dynamical system has its roots in classical mechanics, whose development
commenced in the years XVI and XVII centuries by Galileo and Newton, re-
spectively. The publication, "Principia" in the year 1689, by Newton laid down
the mathematical principles of classical mechanics. This principles brought
about the three laws governing the motion of bodies under the presence of
external forces, describing the universal law of gravity. This inspired the work
of mathematicians like Euler, Lagrange, Hamilton and Poincare that built on
Newton’s work.

A DS describes the passage in time of all points contained in a space I. The
space I could be the space of states of some physical system. Mathematically
I might be an Euclidean space or an open subset of Euclidean space or some
other space such as a surface in Rn. Given an initial position X ∈ Rn, a
dynamical system on Rn tells us where X is located after every one unit of
time. At time zero, X is located at position X. If we measure the positions
Xt using only integer time values, we have a discrete dynamical system. Oth-
erwise time will be measured continuously with t ∈ R, defining a continuous
dynamical system.

The deterministic rule that determines the realization of successive points can
be linear or non-linear. When it is non-linear we have a non-linear dynamical
system (NDS) otherwise it is linear (LDS). The variables that describes the
state of a DS are called the state variables. The set of all possible values of the
state variables is the state space. The state space can be discrete, consisting
of isolated points, such as if the state variables could only take on integer
values. It could be continuous, consisting of a smooth set of points, such as if
the state variables could take on any real value. In the case where the state
space is continuous and finite-dimensional, it is often called the phase space,
and the number of state variables is the dimension of the dynamical system.

1.1.1 Continuous-Time Dynamical Systems

This are dynamical systems in which the states takes values from the euclidean
space Rn for n ≥ 1. The states of a continuous-time dynamical systems (CDS)

1
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are expressed as x ∈ Rn. The CDS are given by ordinary differential equations
(ODE) of the form:

ẋ = dx

dt
= f(x) (1.1)

where t stands for time, taking on real values, x(t) : R→ Rn and f : Rn → Rn
is the function that defines the ODE at time t, x = x(t). The time t is
represented by a continuum like R or R+. The equation (1.1) will have a
solution. If it exist, it will be of the form x(t) = [x1(t), x2(t), . . . , xn(t)]T
parametrized by a real variable t ∈ R valid on some given interval. The state
space is (a subset of) Rn, where the solutions live as parametrized curves, are
called trajectories. Ordinary differential equations are examples of continuous
dynamical systems (actually differentiable dynamical systems). Solving the
ODE (finding the vector of functions x(t)), means finding the rule which
stipulates any future state of a point x(0) given a starting state.

The discovery of chaos was originally made with continuous-time dynamical
systems, i.e., differential equations. An American mathematician and meteo-
rologist,Edward Lorenz is one of the founders of chaos theory. He accidentally
found chaotic behavior in the a model he developed called the Lorenz equa-
tions, with a view to study the dynamics of atmospheric convection in the
early 1960s.

The Lorenz System:
First studied by Edward Lorenz (Lorenz, 1963), these systems of ordinary
differential equations are notable for their chaotic behavior. The states: x
is proportional to the rate of convection, y to the horizontal temperature
variation, and z to the vertical temperature variation, Figure 1.1a.

ẋ = −σ(x− y)
ẏ = x(α− z)− y

ż = xy − βz
(1.2)

where (σ, α, β) = (10, 8/3, 28) are controlling parameters. This systems have
been studied immensely for various purposes (Lü and Chen, 2002; Wang et al.,
2010; Lu et al., 2002; Dar et al., 2010; Özkaynak and Özer, 2010).

Rössler System:
Rössler system was introduced by OttoRössler in the 1970s (Rössler, 1976) as
prototype equations with the minimum ingredients for continuous-time chaos.
Its a systems of ordinary differential equations in three-dimensions.

ẋ = −(y + z)
ẏ = x+ ay

ż = bx+ z(x+ z)
(1.3)

where a and b are parameters. The system of equations (1.3) is less in con-
tinuous chaos for at least three reasons: Its phase space has the minimal

2
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(a) Lorenz System (b) Rössler System

Figure 1.1: Attractors of Continuous Systems

dimension three, existence of a linear term in the system thereby reducing its
nonlinearity, and it generates a chaotic attractor with a single lobe, in contrast
to the Lorenz attractor which has two lobes as can be seen in Figure 1.1b. The
following references can be consulted among many others for detailed study
(Chen and Yu, 1999; Ahmed et al., 2006; Sudheer and Sabir, 2011; Cafagna
and Grassi, 2012). Because of the difficulties associated with the analytical
study of continuous differential systems, a large amount of work has been
devoted to dynamical systems whose state is known only at a discrete set of
times.

1.1.2 Discrete-Time Dynamical Systems

Discrete-time dynamical systems (DDS), also called a map, are dynamical
systems who’s space I, is typically a compact continuum and the time is in Z
or N, taking on integer values. DDS are described by a difference equation of
the form:

xn+1 = f(xn) (1.4)

The function f describes the evolution of the state xn at time instant n ∈
{0,N} and is termed a mapping or simply a map. The sequence {xn} obtained
by iterating equation (1.4) from an initial state x0 is called the orbit of x0,
with n ∈ N or n ∈ Z, depending on whether or not f is invertible.

Its only natural to restrict our study to discrete-time dynamical systems shar-
ing some key properties with differential systems. It is often easy to ex-
tract discrete-time dynamical systems from a continuous-time system using
the technique of Poincare sections. The initial conditions continuously deter-
mine the solution of a system of ODEs, so that continuous maps are singled
out naturally. Invertibility is also a crucial property. Given an initial con-
dition, the state of an ODE system can in principle be determined at any
time in the future but also in the past; thus, we must be able to go backward
in time. Maps satisfying these two requirements are called homeomorphisms
(continuous maps with a continuous inverse). When this homeomorphisms are

3
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differentiable along with their inverses, they define a class of maps called dif-
feomorphisms. A discrete time chaotic system is an iterated mapping, whose
iteration number n ∈ Z is an integer. If we define the metric space (phase
space) as I, then we have the following definition.

Definition 1.1 (Chen and Yu (1999)) If for any x ∈ I = [a, b] and f :
I → I, n = 0, 1, . . . the following holds: (a). f0 = x, (b). f1 = f(x), (c).
fn = f ◦ f ◦ f ◦ · · · ◦ f(x) (n composition of f). The pair (I, f) defines the
mapping that determines the state of the dynamics at discrete time intervals
n.

From the above definition we have, fn(fm(x)) = fn+m(x).

Definition 1.2 : The sequence {fn(x)}∞n=0 is called the orbit or trajectory
for the point x under the map f , defined to be

O(x0) = O−(x0) ∪ O+(x0) = {xn : n ∈ Z} (1.5)

where O−(x0) = {x0, x−1, x−2, . . . } is called the backward trajectory and
O+(x0) = {x0, x1, x2, . . . } is the forward orbit.

Maps are examples of discrete dynamical systems. Some examples of discrete
dynamical systems include discretized ODEs and difference equations, time-t
maps, and fractal constructions like Julia sets and the associated Mandelbrot
arising from maps of the complex plane to itself. The number of distinct states
defines the dimension of the map. Due to the deterministic and discrete nature
of maps, their trajectories are always periodic or eventually periodic, with
however long periods for a suitable choice of a controlling parameter. Discrete
maps could be one dimensional as is the case of logistic, tent, Bernoulli, maps.
Two dimensional like Henon, Baker and Ikeda maps etc. The following are
some illustrations of discrete dynamical systems (maps):

• One dimension (Logistic map)
The Logistic map is mathematically defined by:

xn+1 = f(xn) = λxn(1− xn) (1.6)

where λ ∈ [0, 4] is the controlling parameter, and x ∈ [0, 1].

• One Dimensional (Tent Map)
The tent map is defined by:

xn+1 = f(xn) =
{
xn
p if 0 ≤ xn ≤ p

1−xn
1−p if p < xn ≤ 1

(1.7)

where f : I → I, and I = [0, 1] and p ∈ [0, 1].
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(a) Logistic Attractor (b) Logistic Bifurcation

(c) Amplitude fluctuations (d) Autocorrelation

Figure 1.2: Attractor and Bifurcation diagrams of Logistic map.

• One Dimensional (Chebyshev Map) The Chebyshev map is defined
by:

f(xn+1) = cos(k cos−1(xn)) (1.8)

where x ∈ [−1, 1] and k = 1, 2, . . . . It can also be presented in polyno-
mial form of degree p,

Tp+1(x) = 2xTp(x)− Tp−1(x) (1.9)

where x ∈ I = [−1, 1], p = 1, 2, . . . and T0 = 1, T1 = x. The map has
been used in many chaos based cryptographic proposals, (Kocarev and
Tasev, 2003; Huang, 2012).

• One Dimensional (Bernoulli (2-adic) Map) The one-dimensional
Bernoulli map is defined by:

xn+1 = fb(xn) = 2x(mod 1) =
{

2xn if 0 ≤ xn ≤ 0.5
2xn − 1 if 0.5 < xn ≤ 1

(1.10)

where fb : I → I, and I = [0, 1]. The stretching factor 2 in the equation
(1.10) implies that the map has a global Lyapunov exponent of log2.
The Bernoulli map is exact, which implies that it is both mixing and
ergodic (to be discussed in the coming sections) (Driebe, 2013).

• Two dimension (Henon Map)
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(a) Tent Attractor (b) Tent Bifurcation

(c) Amplitude fluctuations (d) Autocorrelation

Figure 1.3: Attractor and Bifurcation diagrams of Tent map.

The Henon map is a widely used discrete time dynamical system which
exhibits chaotic nature. It is found to be chaotic with values of the
controlling parameters set at: a = 1.4 and b = 0.3. The map was
first introduced by Michael Henon as shown in equation (1.11), (Hénon,
1976).

xn+1 = a− x2
n + byn

yn+1 = xn
(1.11)

where a and b are controlling parameters. The mapping, equation (1.11),
appears to have the same basic properties as the Lorenz (Hénon, 1976).
The application of the two dimensional Henon map has gain its place
in area of chaos based cryptography. In ciphers (Erdmann and Mur-
phy, 1992; Li et al., 2001b; Khan et al., 2015), pseudorandom sequence
generation (Zheng et al., 2008; Sun and Liu, 2009) image encryption
(Soleymani et al., 2014; Belkhouche et al., 2004).

• Two dimensional (Ikeda Map)
The Ikeda map: It was initially designed as a model for the movement
of light around across a nonlinear optical resonator (Ikeda, 1979). It
has been characterized with a bistable behavior; which makes it a good
candidate for use in optical devices to obtain variable length pulses,
infinite pulse trains, logical gate arrays and many more (Aboites et al.,
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(a) Amplitude fluctuations (b) Attractor

(c) Bifurcation (d) Autocorrelation

Figure 1.4: Attractor and Bifurcation diagrams of the Bernoulli Map

2016). The simplified model is given by the equation (1.12):

xn+1 = 1 + α(xncostn − ynsintn)
yn+1 = α(xnsintn + yncostn)

(1.12)

where tn = 0.4 − 6
1+x2

n+y2
n

and α is a controlling parameter for which
the map is chaotic for all α ≥ 0.6. It has been used quite reasonably in
a number of cryptographic applications (Jia, 2010; Cao, 2013; Kaur and
Sharma, 2013; Candido et al., 2015).

Many other two dimensional (2D) maps like the Baker map, Kaplan-yorke
map etc can be found in the literature.

The chaotic property known to dynamical systems is its important feature.
This feature is what makes such systems appealing for cryptography. Upon
satisfying the following conditions, a systems is said to be chaotic:

• Exponential sensitivity to initial conditions by the system trajectories.

• In a given interval of frequencies, the system has continuous spectral
concentration .
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(a) Henon Attractor (b) Ikeda Attractor

(c) Henon Bifurcation (d) Ikeda Bifurcation

Figure 1.5: Phase and Bifurcation diagrams of 2D maps.

• Information about the initial value of the system is lost exponentially.

However meeting this conditions is rather hard, thus a metric that is usually
used as a measure of chaos is a value called the Lyapunov exponent.

1.2 Chaotic Dynamical System

The apparent random behavior exhibited by a deterministic system under
deterministic conditions is referred to as Chaos. As the study of chaos gets
in-depth, one soon realizes chaos cannot be defined with a single precise def-
inition. However, for a chaotic phenomena, there must be transitivity and
sensitive dependence to initial conditions.

Given a map f : I → I, if for any open sets U, V ∈ I there exist a k > 0 such
that fk(U) ∩ V 6= ∅, it is said to be transitive. Transitivity means that given
a point in some arbitrary small neighborhood of the attractor, it will on the
course of its journey, visit all other regions of the attractor under the action
of the map f .
The map f is said to exhibits sensitive dependence on initial conditions if
there exists an t > 0 such that for any x ∈ I and any neighborhood B of x
there exists a y ∈ B and n ∈ N such that |fn(x)−fn(y)| > ε (Devaney, 2008).
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There are two kinds of definition of chaos: Topological and Measure theoretical
definitions. In the topological sense of the definition of chaos, we have the
following attributed to Robert Devaney:

Definition 1.3 [Devaney, 2008]: Let I be a metric space. A map f : I → I
is said to be chaotic if:
1. f is transitive: for all non-empty subsets V,U ∈ I there exist a k such that
fk(V ) ∩ U 6= ∅.
2. The set of periodic point of f are dense in I.
3. f has sensitive dependence to initial conditions.

Unpredictability in dynamical systems is ensured by Sensitivity to initial con-
ditions, whereas indecomposability is reflected in its topological transitivity,
meaning, there does not exist a partition of the domain of the map describing
the system such that the map is surjective on the disjoint sets in the partition
(Driebe, 2013). The Devaney’s definition of chaos is the widely known and
accepted definition. However, a measure theoretic approach to the definition
has also been given by Li & Yorke (Li and Yorke, 1975).

Definition 1.4 [Li and Yorke, 1975]: A map f : I → I on a compact metric
space (I, d) is called chaotic in the sense of Li and Yorke – if there exists an
uncountable subset S (called a scrambled set ) of I with the following proper-
ties:
1. limn→∞ sup d(fn(x), fn(y)) > 0 for all x, y ∈ S, x 6= y,
2. limn→∞ inf d(fn(x), fn(y)) = 0 for all x, y ∈ S, x 6= y,
3. limn→∞ sup d(fn(x), fn(p)) > 0 for all x ∈ S, p ∈ I, p-periodic.

Devaney chaos and Li York chaos are interrelated via topological entropy. De-
vaney chaos implies positive topological entropy and the converse is not true.
Positive topological entropy implies Li Yorke chaos and here too the converse
does not hold. According to the law of transitivity in analysis Deveney chaos
implies Li Yorke chaos. On the interval map Deveney chaos is the strongest
whereas Li Yorke’s chaos is the weakest.

Having established the existence of chaos, the measure of the degree of chaos
of a given map is important as determining its existence. Quantitative study
of chaos is motivated by the following: The need for some quantitative test
that can distinguish chaotic behaviour from noisy behaviour (due to random
external influences). Secondly, the need for some quantitative measure of the
degree of chaos which demonstrates how chaotic behaviour changes with the
system parameter(s) (ElShaarawy and Gomaa, 2014).
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1.2.1 Quantification of Chaos

Systems when Chaotic are said to be unpredictable, but the question is to
what extend? how do we know the degree of chaoticity of a system? How
can we say that one system is more chaotic than another? Simulations and
visualizations of chaotic attractors showed that they come in many shapes and
forms and have distinct properties, such as being fractals and having sensitive
dependence on initial conditions. Notable among various tools used to dis-
tinguish between chaotic and non-chaotic evolution, is the largest Lyapunov
exponent. It is probably the most commonly used. However, the largest
Lyapunov exponent will not work alone, because in many cases largest Lya-
punov exponent is positive for unstable systems too. Combined analysis of
bifurcation diagram and largest Lyapunov exponent gives clear picture about
chaos analysis. From bifurcation diagrams, we can see if Lyapunov exponent
is positive, during which we say the oscillations are chaotic otherwise not.
Remember this can be one way valid in one situation. There can be other
approaches valid in other scenarios. Among other measures we have correla-
tion dimension, Dense Filled phase space and Poincare Section. Attractors
do not include other attractors within them, that is they have to be minimal
set. Given an attractor with a positive Lyapunov exponent, then it is said to
be a chaotic attractor. For cryptographic purposes, dynamical system used in
cryptographic algorithm design, are expected to be ergodic and mixing.

• Ergodicity: Ergodicity is related to concept of folding and mixing. With
an ergodic system, almost every trajectory will densely cover the phase space
of the system. There are many different formal definitions of ergodicity, we
should however note that all the definitions are completely equivalent. The
idea of ergodicity arises if we have only one sample function of a stochastic
process, instead of the entire ensemble.

Definition 1.5 The system (I, f) is ergodic when for any invariant set f(I) =
I the measure µ(I) = 0, 1, for I ∈ I.

The implication of this definition is that, the trajectory starting from any point
is never bounded in some subset of the space, thus therefore for analysis, the
whole space will have to be considered.
Ergodicity refers to that property of a system to the same behavior when
averaged over time or space (Alligood et al., 2008). Time average are taken
generally over one experiment, while space averages are determined over many
experiments at a given parameter value and different initial conditions. For a
continuous system F (x), its average over time is given by:

F (x) = lim
N→∞

1
N

∫ N

0
F (x(t))dt. (1.13)

A weighted invariant probability density function will be required when defin-
ing space average. This invariant density function is calculated by the use of
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an invariant measure. The probability density function, ρ(x), maps the phase
space of the dynamical system into intervals and determines the probability of
an interval containing the variable x. Given a sub-interval ∆I and a measure
µ, the probability of a variable x contained in ∆I, µ(∆I) is given by:

µ(∆I) =
∫

∆I
ρ(x)dx =

∫
∆I

dµ(x) (1.14)

If the measure is known, it is possible to find the average of a function F(x)
giving the following equation of the dynamics averaged over the space of the
function

F (x) = lim
N→∞

∫ N

0
F (x)ρ(x)dx =

∫ N

0
F (x)dµ(x). (1.15)

A system that equates the equations (1.13) and (1.15):

F (x) = lim
N→∞

1
N

∫ N

0
F (x(t))dt =

∫ N

0
F (x)dµ(x) (1.16)

is said to be ergodic. Therefore, taking the average of infinite time along an
orbit is equal to using the measure of averaging the points in an orbit.
It is the property of ergodicity which ensures that each interval of the chaotic
attractor in a chaotic system will be visited continuously as the number of
iterations of an initial condition approaches infinity. In a chaos-based cryp-
tosystem, realizing this property will differ based on the architecture of the
cryptosystem.

Definition 1.6 : Given the mapping F : I → I, any invariant set A of the
mapping F, and a measure µ, then F is ergodic with respect to the measure µ
if µ(A) = 0 or 1. In other words: Given the measurable subsets A,B ⊂ I the
system (f, I, µ) is ergodic if the following holds:

lim
n→∞

1
n

n−1∑
j=0

µ
(
f−j(A) ∩B

)
= µ(A)µ(B). (1.17)

A single sample function will often provide little information about the statis-
tics of the process. However, if time averages equal ensemble averages, (ergodic
process), one sample function is enough to derive all statistical information re-
quired, such that the sample function represents the entire process. We should
note that process must necessarily be stationary for this to occur. Thus er-
godicity implies stationarity. There are levels of ergodicity, just as there are
levels (degrees) of stationarity. We present two levels of ergodicity; ergodicity
in the mean and ergodicity in correlation
Ergodicity in the mean: A process is ergodic in the mean if

x̄t = lim
t→∞

1
T

∫ T

0
xtdt = 〈xt〉 (1.18)
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Therefore, ergodicity of the mean implies stationarity of the mean, however,
the converse is not true.
Ergodicity in the autocorrelation: A process is ergodic in the autocorrelation
if

Cx(f) = x̄txt+τ = lim
t→∞

1
T

∫ T

0
xtxt+τdt = 〈xtxt+τ 〉 (1.19)

In cryptographic point of view, this phenomena makes the use of chaotic sys-
tems/maps for cryptographic applications possible.

• Mixing: Given any arbitrary initial point, its ability to reach any subset
of the phase space I is guaranteed by the mixing property, with probability
proportional to the size of that subset in the state space.

Definition 1.7 The system (I, f) has the mixing property if f : I → I is
the measure preserving mapping, and for each pair of sets A,B ∈ I ⊂ I with
nonzero measure µ the following is satisfied:

lim
n→∞

µ(A ∩ fn(B)) = µ(A)µ(B). (1.20)

A map is called mixing if any smooth initial probability density ρ(x) converges
to the invariant measure µ(x) after a good number of successive iterations.
Mixing, which is a stronger requirement that ergodicity is not easy to prove for
a given map. Let φ1(x) and φ2(x) be two integrable functions, the generalized
correlation function for the map f is given by

C(`, φ1, φ2) = lim
J→∞

1
J

J−1∑
j=0

(φ1(xj+`)φ2(xj)− 〈φ1〉〈φ2〉) (1.21)

where

〈φi〉 = lim
J→∞

1
J

J−1∑
j=0

φi(xj), i ∈ {1, 2} ∀ i. (1.22)

If for any of the functions φ1 and φ2,

lim
`→∞

C(`, φ1, φ2) = 0 (1.23)

the map is said to be mixing.

• Lyapunov Exponent: Sensitivity of the dynamical behavior of a system
when its initial state is perturbed by a small amount is an important feature
of chaos, It measures the degree of chaos. Nearby points in the phase space
separate fast (say exponentially with time), over most of the phase space, then
the system can reasonably be described as being dynamically unstable. The
Lyapunov Exponent (LE) λ is a value determined from the following: Given
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the map:
xn+1 = f(xn) (1.24)

Let (x1
0, x

2
0) be a pair of initial points in the phase space I ⊂ R such that

x1
n = fn(x1

0), and x2
n = fn(x2

0). (1.25)

If these points separate exponentially with increasing n,

|x1
n − x2

n| = |x2
0 − x1

0| ∗ eλn, where (λ > 0).

For a large n, (1/n)ln|x2
0 − x1

0| → λ. If we allow the limit δ0 = |x2
0 − x1

0| → 0,
then:

λ = lim
n→∞

1
n

lim
δ0→0

ln
∣∣∣∣x1
n − x2

n

x2
0 − x1

0

∣∣∣∣
= lim

n→∞
1
n

lim
δ0→0

ln
∣∣∣∣fn(x1

0)− fn(x2
0)

x1
0 − x2

0

∣∣∣∣ (1.26)

= lim
n→∞

1
n

ln
∣∣∣∣df(x1

0)
dx

∣∣∣∣
from

dfm(x0)
dx

=
n−1∏
i=0

df(xi)
dxi

,

we have for a particular trajectory τ :

λτ = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣∣df(xi)
dxi

∣∣∣∣
the Lyapunov exponent for the trajectory τ . For a spectrum of initial condi-
tions asymptotically attracted to the same ergodic subset of the phase space,
then their Lyapunov exponents will all be the same, thus we have:

λ = lim
n→∞

1
n

n−1∑
i=0

ln
∣∣∣∣df(xi)
dxi

∣∣∣∣ . (1.27)

• Correlation Dimension: The complexity of chaotic signals can be de-
scribed by a parameterD2 known as “correlation dimension. (Michalak, 2014).
It has been a powerful indicator for the description of the fractal structure of
invariant sets in dynamical systems, in addition to instruments like the Lya-
punov exponents and the entropy. Reliable estimates of D2 can be obtained
with relatively short time series as reported by Theiler et. all (Theiler, 1987).
This puts D2 ahead of Lyapunov exponents and entropy due to their chal-
lenging nature of computations. Let us denote x1, x2, x3, . . . , xn the set of
n-dimensional real valued data points lying on a chosen chaotic attractor.
Following the algorithm, we define the correlation sum C(r) as (Grassberger
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and Procaccia, 2004):

C(r) = 2
n(n− 1)

n∑
i=1

n∑
j=i+1

Θ(r − ||xi − xj ||) (1.28)

where || · || computes the Euclidean distance, n is the number of the data
points, Θ(·) is called the Heaviside function such that Θ(x) = 1 for x > 0
and 0 otherwise. The equation (1.28) computes number of pairs of given data
points whose distance is less than some given radius r > 0, normalized by the
total number of pairs. Correlation dimension D2 is therefore defined by:

D2 = lim
r→∞

lim
n→∞

∂ln(C(r))
∂ln(r) (1.29)

More details on correlation dimension can be found in (Theiler, 1987; Grass-
berger and Procaccia, 2004; Ding et al., 1993).

1.2.2 The Chaotic Maps

Chaotic maps are discrete time dynamical systems that are generally defined
with recurrence relations as shown below:

xn+1 = f(xn), (1.30)

where x ∈ I ⊂ Rn, and f : I → I is an n-dimensional difference function,
with n as the number of distinct states which defines the dimension of the
map. As discussed in previous sections, these maps could be of one dimension
(1D), two dimension (2D) or even three dimensions(3D). While continuous
time flows can only be chaotic at dimension three, discrete maps are chaotic
at dimension one. One will be able to produce a very complex behavior with
a one dimensional map.

The choice of 1D maps is based on the fact that their dynamics are compar-
atively well understood, for example, their probability density functions can
be derived mathematically, they are widely used for the design of chaos based
Cryptosystems (Phatak and Rao, 1995; Shujun et al., 2001; Addabbo et al.,
2004, 2005). Hence, one-dimensional chaotic maps are herein focused upon.
These maps are required to meet some conditions before they are considered
good candidates for cryptography:
1. The map xn+1 = f(xn) is a surjective map defined on an interval I = [a, b],
2. xn+1 = f(xn) is ergodic on I with a unique invariant density function ρ(x),
3. ρ(x) is even-symmetrical to x = (a+b)

2 ,
4. xn for n→∞ is dense in I.

There are other kinds of 1D maps which do not have periodic windows (except
the Logistic map) and consequently they do not produce periodic signals once
in the chaotic region. These 1D chaotic maps are known as piecewise linear
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maps. Examples of these maps are Bernoulli and Tent maps.
A map f : I → I is called a piecewise monotonic map if it satisfies the following
properties:
1. The interval I can be partitioned into a = d0 < d1 < d2 < · · · < dNf = b

such that for each i = 1, 2, . . . , Nf , (Nf ≥ 2), fi (the restriction of f to the
interval [di−1, di), 1 ≤ i ≤ Nf ) is a C2 function.
2. fi is onto, (f([di−1, di)) = [a, b])
3. f has a unique absolutely continuous invariant (ACI) measure denoted by
ρ∗(x)dx (Condition under which f satisfies the ACI appears in (Boyarsky and
Scarowsky, 1979)). A class of these maps satisfies the property:

|g′i(x)|ρ∗(x) = 1
Nf

ρ∗(x), i = 1, 2, . . . , Nf (1.31)

where gi(x) = f−1
i (x), ρ∗(x)dx the ACI measure. Maps that are found to

satisfy equation (1.31), referred to as an (EDP) includes the following: the
logistic map, the tent map, R-adic map, the Chebyshev map of degree k,
where Nf = 2, 2, R, k, respectively. These 1D maps are commonly used for
the design of chaos based cryptosystems (Wah, 2007). In this thesis we will
be considering only maps called piecewise monotonic maps, the class of 1D
maps that satisfies what is called the equidistributivity property (EDP).

1.2.3 Equidistributivity Property (EDP) of 1D Chaotic
Maps

Given a piecewise-monotone onto map f(x), it is said to satisfy the the equidis-
tributivity property (EDP) if equation (1.31) holds. If we let the interval I
be partitioned into I0 and I1 such that I = I0 ∪ I1 and I0 ∩ I1 = ∅. Thus
therefore as contained in (Kohda, 2004), the binary sequence generated by a
threshold function Θt(x) defined on the sub-intervals I0 and I1 generates a
sequence of i.i.d binary random variables.
If for a class of maps that satisfy the EDP and an L1, say, H, the following
holds true:

〈H〉 = 1
Nf

Nf∑
i=1

H(gi(x)) (1.32)

Then H is said to satisfy the constant summation property (CSP).

Definition 1.8 The Frobenius-Perron operator (FPO) Lf acting on the func-
tion of bounded variation H(x) ∈ L∞ for f(x) is defined as

L(H(x)) = d

dx

∫
f−1([a,x])

H(z)dz =
Nf∑
i=1
|g′i(x)|H(gi(x)) (1.33)

where gi(x) = f−1
i (x) is the i-th pre-image of x.
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(Lasota and Mackey, 2013) reports that Lf is the evolution operator of the
probability density function under the map f(·). Since the notion of the map
f on which the evolution operator is well understood, we will henceforth write
Lf as L. We should note that the ACI measure satisfies the FP equation:
Lρ∗ = ρ∗.

A sufficient condition has been introduced by (Kohda and Tsuneda, 1997) on
the generation of i.i.d. sequences. If the binary functions Bi where (B1 is as
in equation (3.3) and B2 as in equation (3.4)) satisfy:

L{Bi(x)ρ∗(x)} = 〈Bi〉ρ∗(x), x ∈ I (1.34)

Then the sequence {Bi(xn)}n≥0 is an i.i.d. sequence. (Kohda and Tsuneda,
1997) equally points out that if the map f(x) and its measure are (even)
symmetrical, f(x) satisfies (EDP) and the functions Bi satisfies the symmetry
property:

Bi(a+ b− x) = 1−Bi(x), x ∈ I = [a, b] (1.35)

then the equation (1.34) holds true implying that {Bi(xn)}n≥0 is i.i.d. We
will be concerned with maps that satisfies what is refereed to as the symmetric
properties of invariant measure: ρ∗(a + b − x) = ρ∗(x) for all x ∈ I. With
such maps, 〈Bi〉 = 1

2 . These sequences will be generated from amongst the
class of maps satisfying the EDP property. In any case, there has to be an
established relationship between these maps such that the choice the map
will be invariant. Thus the sequences generated will be of same statistical
qualities. Such maps are said to be topologically conjugate.

1.2.4 Topological Conjugacy between 1D Chaotic Maps

We will here put forward justification of the equivalence of any two given maps
within the class considered (piecewise monotonic maps), using topological
conjugacy.

Definition 1.9 Two maps (Topological spaces) fx : I → I and gk : J → J
where x ∈ I = [0, 1] and k ∈ J = [0, 2n − 1], are said to be topologically con-
jugates if there exist a continuous and invertible map with continuous inverse
h, such that: h : I → J , y = h(x), and
f(x) = h ◦ g ◦ h−1(x), g(y) = h−1 ◦ f ◦ h(y).

Let h : I → J be a conjugacy that satisfies: h◦f = g ◦h or h(f(x)) = g(h(y)).
If we consider the orbit of (x0) under f : {x0, x1 = f(x0), x2 = f2(x0), . . . }.
We can find (x0) under h such that h(x0) = y0 and define its orbit under g
as:{y0, y1 = f(y0), y2 = f2(y0), . . . }. These two orbits are therefore equivalent
under h, that is yi = h(xi) for all i ≥ 0.
This conjugacy can be extended to the iterate fn and gn of the two maps with
fn ◦h(y) = h ◦ gn(y) such that fn(x) = h ◦ g ◦h−1(x), gn(y) = h−1 ◦ f ◦h(y).
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If f is n-circle periodic (fn(x) = x) so is g (gn(y) = y), since it can be verified
that: h(fn(x0)) = gn(h(x0))

gn(h(x0) = gn−1(g(h(x0))) = gn−1(h(f(x0))
= gn−2(g(h(f(x0)))) = gn−2(h(f2(x0))
...
= gn−m(h(f(x0))
...
= h(fn(x0))

(1.36)

Reversing from J and g to I and f follows the same procedure utilizing h−1.
If h is onto, then h is a factor map, and hence there is a topological semi-
conjugacy from f to g. If h is one-to-one, then h is an embedding. If h is an
onto embedding, then it is a topological conjugacy.

If f and g are topologically conjugate via a homeomorphism h as given above,
then fn and gn are also topologically conjugates via h. The implication of this
statement is that the equilibria of the conjugate maps, ordered on the line, can
be put into one-to-one correspondence and have the same sink, source or semi-
stability. This one-to-one correspondence enables us to derive the trajectory
of one map from the other provided they are topologically conjugate.

We will wish to achieve in systems of lowest dimension, the most important
aspect of chaos: "chaotic behavior". Thus, we would like to reduce as much
as possible the dimension of state space. However, this conflicts with the
requirement of invertibility. On the one hand, it can be shown that maps based
on a one dimensional homeomorphism can only display stationary or periodic
regimes, and hence cannot be chaotic. However, since invertibility is not a
dire requirement, it can be traded off, thereby introducing singularities. One-
dimensional (1D) chaotic systems are easily found. It is, in fact, no coincidence
that chaotic behavior appears in its simplest form in a non-invertible system.
As emphasized in the book by (Gilmore and Lefranc, 2012), singularities and
non-invertibility are intimately linked to the mixing processes (stretching and
folding) associated with chaos.

1.3 Cryptography

Cryptography is the process of converting ordinary plain text (message, infor-
mation) into unintelligible text and vice-versa. It is a method of storing and
transmitting data in a particular form so that only those for whom it is in-
tended can read and process. Cryptography not only protects data from theft
or alteration, but can also be used for user identification and authentication.
Traditionally, cryptography was effectively synonymous with encryption and
decryption, but of recent, cryptography is mainly based on mathematical the-
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Table 1.1: Comparison between Chaos and Cryptography

Chaos Cryptography Description

Ergodicity Confusion The output has the same
distribution for any input

Sensitivity to initial
condition/parameter

Diffusion with small
changes in plaintext/secret
key

Small deviation in the in-
put causes large change in
the output

Topological Mixing Diffusion with small
changes in one plain block
of the whole
Diffusion with small
changes in one plain block
of the whole plaintext

Small deviation in the lo-
cal area causes a large
change in the whole space.

Deterministic Dynamics Deterministic pseudoran-
domness

A deterministic process
can cause random-like
(pseudorandom) be-
haviour

Structure Complexity Algorithmic (Attack)
Complexity

A simple process has a
very high complexity

ory and computer science practice applied in many applications. These appli-
cations includes banking transactions cards, computer passwords, e-commerce
transactions etc.

Cryptography was initially developed for the purpose of protecting security of
all secret information relating to military and government organizations. It
has developed to be an indispensable tool used in protecting information in
modern digital society. Cryptology, which is the combination of cryptogra-
phy and cryptanalysis (the science of analyzing and breaking cryptographic
codes), is the science that aims to provide information security in the digital
world. Confidentiality, authentication and data integrity during communi-
cation services such as email, banking or online shopping are derived from
Cryptographic techniques. Confidentiality is keeping the information secret
from unauthorized access while authenticity ensures that data have not been
modified by an unauthorized user (data integrity), and also verifies who the
author of the data is (data origin authentication).
Cryptography is the study and design of algorithms and protocols with a view
to achieve information security whereas Cryptanalysis is the study of mathe-
matical techniques that attempt to break cryptographic primitives. Crypto-
graphic algorithms are usually split into two families, symmetric algorithms,
asymmetric algorithms and hash functions.

Symmetric algorithms (secret key algorithms) require that the same secret
key is shared by the communicating parties (eg, RC4, RC6, Blowfish etc).
Both the sender and receiver share a single key. The sender uses this key to
encrypt plaintext and send the cipher text to the receiver. On the other side
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the receiver applies the same key to decrypt the message and recover the plain
text, Figure 1.6a.

In asymmetric key algorithms (public key algorithms), the public key is made
public, and the corresponding private key is kept secret by a single entity.
In Public-Key Cryptography (eg. Diffie-Hellman, RSA, Elliptic Curve), two
related keys (public and private key) are used. Public key may be freely
distributed, while its paired private key, remains a secret. The public key is
used for encryption and the private key for decryption, Figure 1.6b.

(a) Asymmetric (b) Symmetric

Figure 1.6: Kinds of cryptographic Algorithm

Cryptography is today referred to the science and art of transforming infor-
mation into an unintelligible manner such that an unauthorized person will
not make any sense out of it. Such transformation makes the message im-
mune and secure against attacks. As against the traditional understanding of
cryptography as just been the idea of encryption and decryption, today it in-
volves three distinct mechanisms viz: symmetric key encryption, asymmetric
key encryption and hashing.
In the traditional context of cryptography, a message M is encrypted by a
sender A, using an encryption key Ek to produce a ciphertext C. This cipher-
text C is then transmitted through an insecure channel to the recipient B. B
then uses a decryption key Dk to recover back the original message sent. If a
symmetric cryptographic algorithm is deployed, ke = kd an example of such
is the stream ciphers, whereas for asymmetric algorithms, ke 6= kd with the
public key cryptosystem RSA as an example. Encrypting the message M to
generate the ciphertext C and decrypt C to get back M :

C = Ek(M), and M = Dk(C), (1.37)

1.3.1 Conventional Cryptography

Cryptography, is the art and science that encompasses the principles and
methods of transforming an intelligible message (plaintext - M) into an unin-
telligible one (ciphertext - C) through a process called encryption (enciphering
- E). The ciphertext (C) is then re-transformed back to the original message
(M) through another process called decryption (deciphering - D). The algo-
rithm that is responsible for both enciphering/deciphering is called a cipher.
Figure (1.7) depicts an encryption and decryption scheme in which a sender
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A send encrypts a message using a key and sends the ciphertext to receiver
B. B then decrypts using the key to recover back the original message sent
by A. It shows a generalized description of a cryptosystem (Stinson, 2005).

Figure 1.7: Encryption and Decryption

Figure 1.8: A generalized Model of a Cryptosystem

A Cryptosystem is a combination of cryptographic algorithms (symmetric,
asymmetric, hashing). It is a protocol for communicating with both confiden-
tiality and authenticity. To achieve confidentiality, chose/generate a random
symmetric key, Encrypt your message with that key and then encrypt the key
using the recipient’s public key. The recipient can then decrypt first the sym-
metric key, and then the message. Only they will be able to do so, provided
that their private key is kept secret.
To achieve authenticity, compute a digest of your message using a crypto-
graphically secure hash function. Encrypt this digest using your private key
to produce the signature. When the recipient receives the message, they will
be able to compute the digest themselves, and then decrypt your signature
with your public key. If the answers are the same, then they have confidence
that the message came from you and was not altered, provided that you’ve
kept your private key secret. The four principles of cryptography are:

• Confidentiality: This refers to a set of rules that limits access or adds
restriction on certain information.

• Data Integrity: It takes care of the consistency and accuracy of data
during its entire life-cycle.
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• Authentication: This confirms the truth of an attribute of a datum that
is claimed to be true, sent by some entity.

• Non-Repudiation: This ensures the inability of an author of a statement
resp. a piece of information to deny it.

1.3.2 Kinds of Ciphers

A cipher simply put, is a set of steps (an algorithm) for performing both
an encryption, and the corresponding decryption. All ciphers involve either
transposition or substitution, or a combination of the two operations. If the
elements of the plaintext (e.g., a letter, word, or string of symbols) are rear-
ranged without any change in the identity of the elements, such a cipher is
called a transposition cipher. In substitution ciphers, elements are replaced
by other objects or groups of objects without distorting their sequence. Ci-
pher devices or machines have commonly been used to encipher and decipher
messages.
The first cipher device appears to have been employed by the ancient Greeks
around 400 bc for secret communications between military commanders. This
device, called the "scytale", consisted of a tapered baton around which was
spirally wrapped a piece of parchment inscribed with the message. When
unwrapped the parchment bore an incomprehensible set of letters, but when
wrapped around another baton of identical proportions, the original text reap-
peared. Other examples of ancient ciphers includes: The Caesar Cipher and
the V igenère Cipher.

Figure 1.9: Electronic Codebook (ECB) Mode

Figure 1.10: Cipher Block Chaining (CBC) Mode

• Block Ciphers:
Block ciphers encrypt blocks of fixed sizes through some simple operations and
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Figure 1.12: Output Feedback (OFB) Mode

some kind of feedback mechanisms. Some applications need to parallelized en-
cryption or decryption, while others need to be able to pre-process as much
as possible.
The error propagation phenomenon implies that errors in the encrypted text
produce errors in the decrypted plaintext. So, it is important that the de-
crypting process be able to recover from bit errors in the ciphertext. The most
popular block ciphers includes among others the DES, 3DES, AES, Blowfish,
twofish etc.
The modes of operation of block ciphers are configuration methods that allow
those ciphers to work with large data streams, without the risk of compromis-
ing the provided security. These configurations called the block cipher modes
of operations, includes: Electronic Code Book (ECB), Cipher Block Chaining
(CBC), Cipher Feedback (CFB) and Output Feedback (OFB). These modes
of operations are illustrated in Figs. 1.9 through 1.12.

• Stream Ciphers:
A stream cipher is an encryption algorithm that encrypts one bit or byte of
plaintext at a time. It uses an infinite stream of pseudorandom bits as the
key. For a stream cipher implementation to remain secure, its pseudorandom
generator should be unpredictable and the key should never be reused. Stream
ciphers are designed to approximate an idealized cipher, known as the One-
Time Pad. RC4, which stands for Rivest Cipher 4, is the most widely used
of all stream ciphers, particularly in software. It’s also known as ARCFOUR
or ARC4. RC4 has been used in various protocols like WEP and WPA (both
security protocols for wireless networks) as well as in TLS. Unfortunately,
recent studies have revealed vulnerabilities in RC4, prompting Mozilla and

22



© C
OPYRIG

HT U
PM

Microsoft to recommend that it be disabled where possible.

1.4 Chaos Based Cryptography

Chaos has created itself a niche in cryptography. It has emerged as a poten-
tial solution to many problems due to the following fundamentals of chaotic
systems: (a) determinism; and (b) sensitive dependence on initial conditions.
Since 1990s, many researchers have noticed that there exists an interesting
relationship between chaos and cryptography: many properties of chaotic sys-
tems have their corresponding counterparts in traditional cryptosystems, as
shown in table 1.2. Chaos provides greater diversity in terms of availability
of functions. However, there are still some major theoretical/computational
problems with this approach, which includes the following:

1. We require a structurally stable cryptosystem, i.e. a system that has
(almost) the same cycle length and Lyapunov exponent for all initial
conditions. Most of the known pseudo-chaotic systems do not possess
this property and there is no rigorous analytical method, as yet, for
assessing this property.

2. There is still no theoretically plausible method for evaluating a chaotic
system in terms of the necessary/sufficient conditions and properties
that will absolutely guarantee the unpredictability of the system to ac-
ceptable cryptographic standards.

3. Deterministic chaotic algorithm have relatively low cycle lengths. Chaos
based algorithms currently rely on the use of floating point arithmetic
and require high precision FP arithmetic to generate reasonably large cy-
cles Designing algorithms that output bit streams directly would there-
fore be a significant advantage.

4. There is currently no counterpart of a trapdoor transformation, as yet,
known in chaos theory. Thus asymmetric chaos-based cryptographic
protocols are not yet in sight.

In all literature on chaotic Cryptosystems, two categories were considered:
1. Synchronization Based Cryptosystems (Continuous): This was first de-
veloped by L.M. Pecora and T.L Carroll (Pecora and Carroll, 1990). This
category can either be implemented on a digital or analog devices. This are
based on synchronizing two or more continuous systems.
2. Non-Synchronization Based Cryptosystems (Digital): These cryptosystems
includes Baptista cryptosystem (Baptista, 1998) and the Alvarez cryptosys-
tem (Alvarez et al., 1999b). These are chaos bases systems that are based
on digital chaos. They are realized in a finite environment. A digital chaos
based cryptosystem can be implemented either by a stream cipher or a block
cipher. This thesis focuses on the generation of pseudorandom sequences with
a view to be implemented as running keys in stream ciphers. Chaotic systems
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are used in digital chaotic ciphers to generate pseudorandom key-stream to
be used as keys during encryption and decryption.

Chaos is exhibited in a portion of deterministic nonlinear systems. For a con-
tinuous system it is required that the system be of dimension three and above,
while for discrete systems a one dimensional system could exhibit chaotic phe-
nomena. There is a set of properties that summarize the characteristics ob-
served in chaotic systems. These are considered the mathematical criteria
that define chaos. The most relevant are the main characteristics of a chaotic
system which relates directly to what makes a cryptographic system good or
secure (confusion and diffusion).

Table 1.2: Similarities between Chaos and Cryptography

Chaos Based Cryptosystem Traditional Cryptosystem
Floating point arithmetic Integer arithmetic
Slow computation Fast computation
Based on any nonlinear function Usually based on the mod function
Does not necessitate prime numbers Usually based on prime numbers
Low cycle length High cycle length
Statistical bias No statistical bias
Data superfluous Data companionable
Chaos Theory Cryptography
Chaos based system Pseudo-chaos based system
Indiscriminate transformation Indiscriminate transformation
Infinite number of stages Finite number of stages
Infinite number of repetitions Finite number of repetitions
Initial stage Plain text Final stage Cipher text
Initial state and/or parameters Keys
sensitive dependence Confusion

1.4.1 Limitations of Chaos Based Cryptography

For many publications on chaos-based cryptosystems, only basic concepts are
described whereas detailed implementation issues are neglected. However,
generally speaking, implementation details are very important for cryptana-
lysts to evaluate the security of a cryptosystem. Also, the encryption speed
and the implementation cost depend on such details. Therefore, the lack of
implementation details generally makes it difficult to estimate the reliability
and significance of the proposed cryptosystem through security analysis and
performance evaluation. Thus, digital chaotic ciphers proposed in the liter-
ature had been confronted with a lot of security issues, with most of them
not been able to pass security tests. To design a digital chaotic cipher that
can be deemed to be a good one, a number of issues will have to be carefully
considered. The following are the issues among others:
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• Quantization:
Quantization is a process to convert a number into its representational value
within a finite set of permissible values. Due to finiteness of the permissible
set, quantization errors occurs in most implementations. These errors have
been on study since the seminal work of Shannon and other researchers. A
comprehensive study about quantization can be found in the work of M. R.
Gray and D.L. Neuhoff (Gray and Neuhoff, 1998). The effect of quantization
on chaos dynamics have been carried out. Earlier assumptions have it that
chaotic systems are implemented with infinite precision. A great impact on the
characteristics of a chaotic system when quantization process is undergone has
been detected. For piecewise linear maps, cycle length, non-ideal distribution
and correlation functions, have been reported by Li et al. (Li et al., 2001b).
In finite machines, numbers are represented in binary form. Let ε be the
distance between two neighboring points in the set of representable within a
particular precision. Due to the binary representation, ε is always a power
of 2. The index could either be positive, negative or zero depending on the
finite arithmetic considered. When the phase space is subjected to integer
discretization ε = 2n where n ≥ 0 is fixed for the throughout the space.
When the reals in the space are discretized with a fixed point representation,
ε = 2−n where n > 0 is fixed for the whole space. ε = 2n(x) for a floating
point discretization of the reals in the phase space where n(x) > 0 depends
on the precision of x̃, the discretized version of x.

Assuming that n-bit representation is adopted that is x̃ = 0.b1b2 . . . bn, and
according to different approximation functions, two of which are considered
here (rounding and truncation) discretized form of the considered maps can
be expressed as follows:

Logistic Map:

xi+1 = λ

(
x̃i

2n − 1

)(
1− x̃i

2n − 1

)
x̃i+1 = Q

(
(2n − 1)xi+1

) (1.38)

Skew-Tent Map:

x̃i+1 =


Q

(
x̃i
α̃

)
, if 0 ≤ x̃i

2n−1 ≤ α̃

Q

(
2n−x̃i−1

1−α̃

)
, otherwise

(1.39)

where α̃ = k
2n−1 and k ∈ {1, 2, . . . , 2n − 2}.
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Chebyshev Map:

xi+1 = cos

(
4cos−1

(
2x̃i + 1
2n − 1

))
x̃i+1 = Q

(
(2n − 1)xi+1 − 1

2

) (1.40)

Sawtooth Map:

xi+1 = a

(
x̃i
2nm

)
mod1

x̃i+1 = Q((2n)xi+1)
(1.41)

where a > 0. For all maps above, g(·) is an approximation function.
This concludes that quantization will have an adverse effect on the chaotic
dynamics, where short periodic cycles and fixed point problem are observed.
This effect will also greatly affect the performance of a random number gen-
erator based on the maps considered.
Extensive simulation has been conducted on the quantized version of these
maps in our paper (Said et al., 2017), it can be concluded that short cy-
cle length problem exists in most of the chaotic maps, such as logistic map,
Chebyshev map, skewed tent map and sawtooth map. The obtained cycle
length of discretized Chebyshev map or logistic map is much less than 2n for
almost all the cases. A relatively better result is observed for skewed tent map
and sawtooth map, while the cycle length is higher than 2n for some cases.
For skewed tent map, the cycle length may even close to the maximum pos-
sible cycle length 2n. Another problem after quantization is the existence of
fixed-points. By estimating the accumulated percentage of the initial values
that map to a fixed point, it is noticed that the discretized Chebyshev map
and logistic map are poor performers. A large percentage value will eventu-
ally fall to a fixed point, and there exists an obvious increasing trend for both
cases. For discretized skewed tent map using ceiling and flooring function,
or the discretized sawtooth map with particular value of a, the accumulated
percentage remains as a constant in a low level.

• Encryption Speed:
While the chaotic systems are running in finite precision, the floating-point
or fixed-point arithmetic must be utilized. The floating-point arithmetic has
been reported to be much slower than the fixed-point arithmetic. During real-
time encryption, speed is a desired requirement. Some digital chaotic ciphers
work so slowly that they are infeasible for real-time encryption (Baptista,
1998; Kotulski et al., 1999; Li et al., 2001b). The choice of finite arithmetic
must be made, from either floating-point or fixed-point arithmetic. Since
the floating-point arithmetic is much slower than the fixed-point (Li et al.,
2001b), we will advice the use of fixed-point arithmetic. The piecewise linear
chaotic maps are have considerable speed during implementation, as only one
division and several additions are needed in an iteration. The use of multiple
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chaotic iterations to generate one ciphertext has been found to lower the
encryption speed (Li et al., 2001b). Throughout this thesis the used of fixed
point arithmetic is assumed unless otherwise stated.

• Practical Security:
The claim of security of chaos based cryptosystems cannot be substantiated
due to lack of a clearly defined procedure. The deterministic nature of discrete
chaos, has made it possible to be put under some level of control. With this
control, some information about the chaotic systems can be derived from their
orbits. Such information can be catastrophic as it can be used to lessen the
complexity of determining the key when such a system is used for its (key)
generation. A number of authors of digital chaotic ciphers claimed them to
be secure, but many are actually not, because of the deterministic nature of
chaotic systems, there are some tools used in chaos theory to discern chaos.
An adversary is likely to find some information about the chaotic systems from
their orbits, which he might use to lessen the complexity of finding the secure
key. For almost all digital chaotic ciphers the ciphertext directly depends on
the chaotic orbit of a single chaotic system (Alvarez et al., 2000; Tao et al.,
1998; Hong and Xieting, 1997; Zhou et al., 1997), so the extraction of such
information may be possible. The cryptanalysis of a chaotic cryptosystem
whose keystream depends on multiple chaotic orbits is more difficult since the
output is determined by many different mixed chaotic orbits.

1.4.2 Finite Implementation of Chaotic Maps

Any designed cryptosystem can either be implemented in a software or a hard-
ware, during which the cost of implementation is observed. Due to the high
cost of floating-point arithmetic, the fixed point is preferred. Another desired
requirement is the extensible security with considerably more cost and com-
plexity. In fact, problems of realization are the crucial factors influencing the
use of a cipher in many final applications, since there are so many kinds of
ciphers that can provide enough security. Hardware and software realization
at low cost is a very important requirement for a good digital cipher. Thus,
the fixed-point arithmetic is better choice than floating-point which is more
expensive to implement. Extensible security with considerably more cost and
complexity is another desired requirement. In fact, problems of realization are
the crucial factors influencing the use of a cipher in many final applications,
since there are so many kinds of ciphers that can provide enough security. Al-
though many of the problems have not been resolved in most digital chaotic
ciphers, we still believe that chaotic and conventional cryptology will benefit
each other from the mutual relationship/similarities existing between them.
Within the last decade, sequences derived from chaotic phenomena are be-
ing considered for use in secure communication, spread spectrum systems and
cryptography. Chaotic sequences are generated from nonlinear dynamic sys-
tems. These are unpredictable, deterministic systems, often described by the
system of parametrized differential equations (continuous time, eg. Lorentz
system, Chua’s oscillator, etc) or difference equations (discrete time eg Logis-
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tic, tent, Bernoulli etc). Their essential feature is that they exhibit noisy-like
behavior because of its strong sensitivity to initial conditions.
These are sequences generated iteratively from maps of the form xk+1 = f(xk)
where k = 0, 1, 2, . . . with x0 being the initial state. The function f is mostly
nonlinear, thus, a chaotic map can be regarded as a first order non-linear,
time discrete, dynamical equation used iteratively to generate chaotic sequence
(x0, x1, x2, . . . ).
Determinism, nonlinearity, aperiodicity, non-converging and boundedness are
properties characterized with chaos (Alligood et al., 2008), the main of which
is sensitivity to initial conditions. Amplitude of iterates are generally bounded
within the intervals [0, 1], [−1, 1] or [−0.5, 0.5]. One of the many qualities that
made chaotic sequences appealing for cryptography is its very low cross cor-
relation properties. Due to sensitive dependence on initial conditions, with
small perturbation of an initial condition, the two chaotic sequences separate
rapidly from each other after a short time period and are highly uncorrelated.
Therefore, by using different initial values, it is possible to produce a large
number of chaotic sequences which are pairwise highly uncorrelated.

1.5 Binary Sequences

With the advent of secure communication, the spread spectrum (SS) sequences
were used by the military for secret communications. Spread spectrum is a
means of transmission in which the signal takes in excess of the minimum
bandwidth necessary to send the information. The band-spread is accom-
plished by means of a code sequence which is independent of the data and
a synchronized reception with the code sequence at the receiver is used for
de-spreading and subsequent data recovery. SS based communication sys-
tems are characterized with low probability of interception (LPI), immunity
against jamming and separation of multi-path signals. Direct sequence spread
spectrum (DSSS), in which the information signal is first modulated and then
spread in bandwidth prior to transmission over the channel, is the most widely
used technique of the SS. The sequences used for spreading is a noise like wide
band sequence having good autocorrelation property. The periodic autocorre-
lation function is nearly two valued with peaks at zero shift and zero elsewhere.

Ideally, one would prefer a random binary sequence as the spreading sequence.
However, practical synchronization requirements in the receiver, necessitates
one to use Pseudorandom binary sequences. Such sequences (inherently pe-
riodic) that have been widely accepted for cryptographic usage includes: m-
sequences, Gold codes, Kasami sequences, Quaternary sequences, Walsh func-
tions etc.
One of the most commonly used sequences in spread spectrum (SS) commu-
nication is what is referred to an m-sequence (Golomb et al., 1967) generated
using a linear feedback shift register (LFSR). Other sequences in use include
the Gold and Kasami sequences, these sequences are mostly used with Di-
rect Sequence Code Division Multiple Access (DS-CDMA). Gold sequences
are generated by bit-by-bit modulo-2 addition of the two maximum length
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sequences generated by using two distinct LFSR of same number of stages.
A procedure similar to that used for generating Gold sequences can generate
Kasami sequences.
The cross correlation of the spreading sequences are expected to be bounded,
which can be measured using either the Welch bound (Welch, 1974) and/or
the Sidelnikov bound (Sidelnikov, 1971). These two bounds were found to be
satisfied by the Siddiqi-Udaya sequences (Tang et al., 2007).

The quality of a binary communication system depends on the ability of the
receiver to detect the correct binary string sent. If a message is sent with a
considerably long sequence, the average number of detected binary bits in error
at the receiver end is called the bit error rate (BER). BER is an important tool
in binary communication systems. In a DS-CDMA system the average BER
performance depends on the bit energy, white noise power spectral density
(PSD), number of simultaneous users and the normalized mean square value
of cross correlation of the spreading sequences assigned to the users.

The linear complexity of SS sequences is another important parameter that
needs to be determined. Linear complexity (LC) of a periodic sequence is the
length of the shortest linear feedback shift register that can be used to generate
the sequence (Massey J.L. 1969). Spreading sequences having larger linear
complexity are considered to be good. The necessary security to the CDMA
systems can be achieved by having sequences with large linear complexity,
which will require a cryptanalyst to have knowledge of a large segment of the
code sequence in order to be able to recover the complete code sequence.

Random number generation is one of the important technologies for several en-
gineering applications such as Monte Carlo simulations, cryptosystems, spread
spectrum CDMA communications. One of methods to generate aperiodic se-
quences is to use chaos which is defined as random phenomena generated
by simple deterministic systems. There have been many research works on
random number generation based on chaos (Bernstein and Lieberman, 1990;
Kohda and Tsuneda, 1997; Argyris et al., 2010; Barakat et al., 2013; Cicek
et al., 2014).

Cryptography requires the use of Random binary bits in a wide variety of
situations. The inability to control the physical process that generates True
Random Numbers (TRN) limits its use as a source of random bits to be
used in cryptographic applications. Alternatively, a Pseudorandom Number
Generator (PRNG) can be used in place of a TRNG. PRNG takes a small
bit length seed (random) as input and produces a very large binary sequence
which appears to be random. The concept of PRNG motivates the design of
stream ciphers. From the word ‘pseudo’, pseudorandom numbers are actually
not random, but assumes the properties of random numbers. PRNGs are
algorithms that use mathematical formula to produce sequence of numbers
that appear random.
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PRNGs are efficient, in the sense that they are fast in production and deter-
ministic. Efficiency is a required characteristic if your application needs large
numbers, and determinism is handy if you need to replay the same sequence
of numbers again at a later stage as is obtained in cryptography. PRNGs are
typically periodic, which means that the sequence will eventually repeat itself
due to finite precision. While periodicity is hardly ever a desirable charac-
teristic, modern PRNGs have a period that is so long that it can be ignored
for most practical purposes. This long periods are sufficient for the minimum
length required by the cryptosystem.

1.5.1 Pseudorandom Number Generators

The difficulties of obtaining uniform random sequences from TRNG has made
many researchers focused on the development of PRNGs. This becomes more
appealing especially after the launch of digital computers. Due to their (pseu-
dorandom numbers) portability and reproducible (lacking in TRNs), a wide
range of applications have been explored. Simply put, a pseudorandom num-
ber generator is a finite state machine whose output sequences are indistin-
guishable from those of a truly random number generator by any polynomial-
time test algorithm.

These are Sequences, which are generated by deterministic algorithms so as
to simulate truly random sequences. A pseudorandom sequence in the unit
interval [0, 1] is called a sequence of pseudorandom numbers (PRNs). In par-
ticular, for a prime p, the elements {0, 1, 2, . . . , p − 1} of the finite field Fp
generates the sequence. We present here some few examples of PRNGs:

• Linear congruential generators:
The linear congruential generator (LCG) is defined by the relation:

f(X) = aX + c mod m (1.42)

where a and c are constants and X ∈ {0, 1, 2, . . .m − 1} The quality of this
generator depends on the choice of the constants a and c, thus they should
be chosen carefully. Due to the strong correlation between Xn and Xn+1, the
LCG has poor quality and hence not a good generator.

• Multiple-recursive generators:
This generator is simply defined by:

Xn = (a1Xn−1 + a2Xn−2 + · · ·+ kXn−k)mod m (1.43)

with its state space as {0, 1, 2, . . . ,m− 1}k. At the time instant t, the state of
the generator is xt, xt−1, . . . , xt−k+1. The maximum period of mk − 1 could
be realized with a suitable choice of ai and m.

• Blum Blum Shub (BBS) Generator:
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Named after its inventors, Lenore Blum, Manuel Blum and Michael Shub, the
BBS generator is give by:

Xj = Xj−1mod N (1.44)

where the seed is X0 = X2mod N and N = Q1Q2 is the product of two large
primes such that Qi ≡ 3mod 4 and S is a random number such that gcd(S,N)
=1 (Blum et al., 1983).

• Combining generators:
This entails a combination of a number of random number generators. For a
given combination of n generators we will have

X
(1)
i = a1X

(1)
i−1 mod m1

X
(2)
i = a2X

(2)
i−1 mod m2

...

X
(n)
i = anX

(n)
i−1 mod m1

(1.45)

with its corresponding state space given by {0, 1, 2, . . . ,m1−1}×{0, 1, 2, . . . ,m2−
1} × · · · × {0, 1, 2, . . . ,mn − 1}. An example is the Wichman-Hill generator
which combines three linear congruential generators. These generators have
been in the forefront in the generation of pseudorandom binary sequences used
in classical cryptography.

1.5.2 Chaotic Binary Sequences

These are sequences generated from chaotic maps. They come from the tra-
jectories of the map discretized in the field required. Since we are interested
in generating binary sequences, the discretization will be within the field
F2. With cryptographic applications, generating pseudorandom sequences
through linear methods (like the LFSR and the LGC) are highly not recom-
mended. This is due to the fact that there exist efficient algorithms that
predicts such sequences due to there short cycles. This is a very serious weak-
ness in the realm of cryptography. According to Kwok et. al. (Kwok and
Tang, 2007), linear methods generate numbers lying on regular lattices, where
turples of generated sequences form vectors that belongs to a lattice structure.
Thus therefore, linear recurrences are not suitable for qualitative sequences for
cryptographic applications (Menezes et al., 1996). Thus the need for generat-
ing sequences using nonlinear based algorithms is required. Chaotic systems,
due to their non-linearities, can be used in defining nonlinear generators with
both efficient implementation and good statistical properties.

A chaotic random bit generator (CRBG) carries some features of true and
pseudo RBGs since chaotic systems yield aperiodic signals, but produced from
deterministic systems. Thus, the chaotic systems can be a good source for ran-
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dom bit generators and related applications of both cryptography and simula-
tion. A wide range of discrete time and continuous time chaotic systems may
be used as random number sources. As a measure of the randomness, the pos-
itive Lyapunov exponents of the chaotic systems determine the entropy of the
signals. However, the positive Lyapunov exponent does not provide any infor-
mation about unbiased or uncorrelated features of random numbers. Hence,
for extracting unbiased and uncorrelated random bits from chaotic sources, a
post-processing is needed.

A random bit generator (RBG) often consists of three stages as demonstrated
in Figure 1.13. The first and main stage is the random number (binary) source.
This stage generates then stream of random numbers. The second stage is that
which post-processes the generated random numbers. The binary generator
and post-processor stages also have important roles for extracting statistically
independent and efficient random bits. The random number sources can be
random (true) or pseudorandom sources depending on the application. The
true random number sources are hardware-based, non-deterministic, aperiodic
and taking considerably long time to produce numbers. The pseudorandom
numbers are software based, deterministic, periodic, efficient and suitable for
specifically simulation modeling and cryptography.
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Figure 1.13: Steps for Random bit generation

1.5.3 LFSR Sequences

Linear Feedback Shift Registers (LFSRs) were introduced into stream cipher
application as early as the year 1950. These linear recurring registers are
easy to implement by hardware and fast to process, LFSRs were often rec-
ommended to be the pseudorandom sequences generators. The use of LFSRs
in stream ciphers has given cryptographers and mathematicians the oppor-
tunity to use rigorous mathematical theory to analyze their security. Due to
their generation by linear devices, their linear complexity is a vital concept
to determine the security levels of stream ciphers on which they are used.
Complexity measurements such as higher-order complexity, 2-adic complexity
measures and complexity measures based on pattern counting are used. An-
other important measure of complexity, the linear complexity profile is also a
good tool to measure the randomness of generated sequences. The areas of
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synchronization, masking, scrambling of codes, white noise, and signal sets in
CDMA communications, has been largely dependent on the use of Feedback
Shift Register (FSR) sequences. FSR sequences have equally gained promi-
nence in main stream cryptographic applications, areas like stream cipher key
stream generation, random number generation.
Let Bn = {0, 1}n be an n-dimensional vector space given by:

Bn = {(s0, s1, s2, . . . , sn−1)|si ∈ {0, 1}}. (1.46)

The function f , called the feedback function, is defined by the mapping
f : Bn → {0, 1} such that:
f(s0, s1, s2, . . . , sn−1) =

∑n−1
i=0 aisi and sn+k = f(sk, sk+1, sk+2, . . . , sk+n−1),

k = 1, 2, . . . . The initial state is (s0, s1, s2, . . . , sn−1) and (a1, a2, a3, . . . , a`)
are coefficients in the feedback function f . The word linear is derived from
nature of the function f , of being linear. When f is a nonlinear function, then
we have a Nonlinear Feedback Shift Register (NLFSR).

Definition 1.10 A binary LFSR is an electronic device with N memory el-
ements (stages), cyclic shifting and linear feedback. Binary sequences drawn
from the alphabet {0, 1} are shifted through the shift register after each time
interval, the register shifts all its contents to the right. The particular 1’s and
0’s occupying the shift register stages after a time instant are called states.

A linear feedback shift register of length `, with coefficients a1, a2, a3, . . . , a` ∈
F2, with initial state s0, s1, s2, . . . , s`−1 ∈ F`2 whose state update function f
is given by:

(s0, s1, s2, . . . , sk−1)⇒
(
s0, s1, s2, . . . , s`−1,

∑̀
i=0

ais`−i

)
(1.47)

The output sequence a = s0, s1, s3, . . . , of an LFSR of length ` satisfies a
linearly recurrence relation for all (n ≥ `). The shift register is controlled by
an external clock, at a given time unit t, each digit is shifted one stage to the
right. The content of the rightmost stage st is output. The new content of
the leftmost stage is the feedback bit st+` as illustrated in Figure 1.14.

Figure 1.14: Linear feedback shift register of length `.

The output sequence of an LFSR is uniquely determined by its feedback co-
efficients and its initial state. The feedback coefficients a1, a2, . . . , a` of an
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LFSR of length ` are usually represented by the LFSR feedback polynomial
(or connection polynomial) defined by

F (X) = 1−
∑̀
i=1

aiX
i (1.48)

or in terms of its characteristic polynomial:

F ∗(X) = X`F (1/X) = X` −
∑̀
i=1

aiX
`−i. (1.49)

A maximum-length LFSRs is one whose output sequences have maximum
period of length 2` − 1. It cycles through 2` − 1 different states excluding the
zero state.

sn = a1sn−1 + a2sn−2 + a3sn−3 + · · ·+ a`sn−` (1.50)

where the ais are called the coefficients of the recurrence relation. Equation
(1.50) can be expressed in polynomial form as:

a(x) = −1 +
∑̀
i=1

aix
i ∈ F2[x] (1.51)

with ai ∈ F2, equation (1.51) is called the feedback polynomial. It is inverse
to the characteristic polynomial of the above linear recurrence relation.

1.5.4 Algebraic Description of LFSR Sequences

We especially want to find a closed formula for an LFSR sequence. One way to
achieve this is to study the companion matrix of the LFSR sequence. With an
apriori knowledge that convolutional codes (in coding theory) will be used, we
here present an alternative definition of the LFSR sequence called the linear
matrix method. Given the sequence sn = a1sn−1 + a2sn−2 + . . . a`sn−`, it
can be represented in the following matrix form:

sn
sn−1
...

sn−`+1

 =


a1 . . . a`−1 a`
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0



sn−1
sn−2
...

sn−`
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which is expressed in the equation (1.53) by the use of its corresponding
companion matrix:

(sn, sn−1, . . . , sn−`+1) = [sn−1, sn−2, . . . , sn−`]


a1 1 . . . 0
...

...
. . .

...
an−1 0 . . . 1
an 0 . . . 0

 (1.53)

and thus iteration is performed by:
sn−1
sn−2
...

sn−`

 =


a1 . . . a`−1 a`
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0


n−` 

s`−1
s`−2
...
s0



with (s`−1, s`−2, . . . , s0) as the initial state of the LFSR.

1.5.5 LFSR Sequences as Cyclic Linear Codes

The LFSR defines a linear mapping from its initial state (s0, s1, . . . , sn1) to
its output sequence (si)i∈N. For fixed N we may interpret the mapping C :
(s0, s1, . . . , sn1) 7→ (s0, s1, . . . , sn1) as a linear code of length N and dimension
n. A parity check matrix of the code is:

H =


c0 . . . cn−1 -1 0 . . . 0
0 c0 . . . cn−1 -1 0 . . . 0
...

. . . . . .
...

...
0 . . . 0 c0 . . . cn−1 -1


If we consider the full period of the LFSR, then the resulting linear code is
cyclic. The code C also has a unique systematic generator matrix:

G =

 1 0 cn,0 . . . cN−1,0
. . .

...
...

0 1 cn,n−1 . . . cN−1,n−1


We have (s0, s1, . . . , sN1) = (s0, s1, . . . , sn1)G, i.e.

sk =
n−1∑
i=0

ck,isi (1.56)

We will use the linear representation in equation (1.56) of the element sk in
terms of the initial state in an attack to be discussed later.
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The maximum length sequences, mostly referred to as m-sequences are gen-
erated and characterized by a generator polynomial whose Properties can be
derived using algebraic coding theory. They are the most popular spreading
sequences realized, in the most simplest way, with LFSRs.

Does the LFSR sequence, as an encryption method, meet the four security
objectives (Secrecy, integrity, non-repudiation and authentication)? The an-
swer is no. With the secrecy objective: One cannot rely on LSFR sequences
for secrecy because the minimal connection polynomial (which is the key nec-
essary to generate the LFSR sequence used as the stream cipher) of the se-
quence is easily determined using the Berlekamp-Massey Algorithm. LFSR
sequences on its own, provides very little integrity. If combined with some
error-correcting codes however, one can realize a limited amount of integrity.
Likewise, on its own, a LFSR sequence provides very little in terms of non-
repudiation. When two separate LFSRs are considered between two parties
and the credentials exchanged, authentication can be achieved.
Thus therefore, the use of binary sequences generated by LFSRs cannot be
used for cryptographic purposes because three of the for security objectives of
cryptography cannot be achieved.

1.6 Problem Statement

Random number generators, RNGs, are a fundamental tool in the areas of
stochastic simulation and cryptography. In cryptography, these generators
are employed to produce secret keys, encrypt messages or to mask the con-
tent of certain protocols and recently, in the area of internet gambling. As
important as implementation of cryptographic protocols and algorithms is,
a fundamental part of the entire process is the key generation. The second
Kerckhoff’s Principle states that the security of a cryptosystem shall not be
based on secrecy of the algorithm but solely on the secret keys.

The output of any encryption/decryption algorithm, requires the use of a
pseudorandom number generator (PRNG) to generate the keys. These PRNGs
are designed such that secret state compromise does not occur due to poor
design, error in implementation or choice of low quality seed. There are many
standards that describe requirements, which should be fulfilled by PRNGs.
Researchers are therefore faced with the challenge of generating sequences
that meets the requirements of cryptography. Thus, generating sequences
that meets these standards has remained a problem to be solved.

1.7 Research Questions

Has the existing methods of using linear functions/systems yielded the gen-
eration of sequences that meets the requirements of the cryptographic world?
One of the most widely used methods of generating sequences has been the
LFSR. This approach, despite its ease of implementation, has been criticized
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because of linearity in the generation process. Most if not all sequences gen-
erated by LFSRs has been compromised by the ability of the recovery of the
initial state of the LFSR using the Berlekamp Massey algorithm. Although
LFSR sequences have many desirable properties, using the LFSR output se-
quence directly as keystream is not advisable due to the linearity of LFSR se-
quences. To make use of the desirable properties of the LFSR in a keystream
generator for a stream cipher, it is necessary to introduce nonlinearity. To
what extend will chaotic dynamics be used in improving the limitations of the
linear-based generation procedures, which includes all methods (algorithms)
based on LFSRs. Will the combination of chaos theory and linear functions
produce a sequence that will meet the requirements of cryptography in terms
of security?

1.8 Aims and Objectives

The main objective of this thesis is to determine the possibility of the use of one
dimensional chaotic maps in the generation of pseudorandom binary sequences
with a view to be implemented in cryptographic applications. Most binary
sequences used as keys in cryptographic applications are generated by systems
whose operations are linear. Since nonlinear sequences are considered more
secure than linear sequences, non-linearity can be introduced in the generation
of these sequences through either the update function(s), output function(s)
or the combination of both. To achieve this, the thesis is partitioned into the
following objectives:

• To determine the best binary generation function from the trajectories
of the chosen one dimensional chaotic maps implemented in this thesis.
It has been established already in the literature that one dimensional
chaotic maps with equidistributivity property can be used to generate
binary sequences with good statistical properties.

• To investigate the best possible algebraic presentation of the maps. We
have shown that different representation of the same maps can generate
different trajectories with the same initial conditions and computation
precision. The determination of the minimum precision for a sequence
that will satisfy the required statistical qualities and the distribution of
bit patterns in the generated sequence.

• Best possible processing function to remove bias was to be determined.
The usual linear post/pre-processing functions had been reported to
have deficiencies, thus a nonlinear combiner generator will be designed
to eliminate any bias that might have been embedded in the sequence
generation process.

• To determine the statistics of the processed sequence, and the presence
of state convergence in the sequence generated. This convergence may
be exploited in a key-recovery-attack.
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The use of pseudorandom sequences in the field of cryptography cannot be
over emphasized. The proposals to generate these pseudorandom sequences
has been presented in the literature, most of which are found to be far from the
desired randomness required. This research aims to determine the quality of
binary sequences generated from one dimensional chaotic maps for the purpose
of cryptographic applications.

1.9 Scope of study

The use of chaotic systems in the generation of binary sequences has been
a subject of research for some time now. These generation could either be
based on continuous or discrete domain. In the continuous domain, a chaotic
system of at-least three dimension is required to achieve chaos. With dis-
crete maps, one dimensional maps achieve chaos with limited implementation
complexity as against higher dimensions. The study is limited to the pseudo-
random sequence generation from a class of one dimensional chaotic maps with
equidistributivity and constant summation properties. These maps are used
to generate binary sequences whose statistical properties were determined.
The defects associated with chaos based binary sequences were improved to
meet serious cryptographic applications by processing using nonlinear com-
biner generator. These generator serves as a processing mechanism to im-
prove the statistical requirements of the directly derived chaos based binary
sequences. The non-linearity of the sequences resulting from the combiner
generator is injected into the chaos based sequences thereby enhancing its
qualities. The research is limited to harnessing the good qualities of LFSRs
and chaos theory (in form of 1D chaotic maps with equidistributivity and con-
stant summation property) towards generating a sequence that meets statisti-
cal requirements of cryptography. One dimensional maps generates identically
distributed binary sequences and they have been used as deterministic gener-
ators of unpredictable sequences. If chaos can be realized with 1D maps which
has very little complexity of implementation, one needs not engage higher di-
mensional maps whose complexity of implementation is much higher. All the
considered 1D maps have a well defined probability distribution functions.

1.10 Significance of Study

The security paradigm in modern cryptology has been shifted from ciphers
to keys (Kerckhoffs’s principle), since many ciphers are broken as a result of
progressive developments in computer science. In modern cryptology, secrecy
is based on keys which are basically random numbers. A cryptosystem is only
as secure as its RNG generating the keys. A failure in the pseudorandom
sequence generation mechanism can surely be catastrophic to the entire cryp-
tosystem, exposing the overall cryptosystem to cryptanalysis.
The generation of pseudorandom numbers in cryptography is near to the most
important aspect of the science of cryptology. The use of such numbers in the
generation of keys used in encryption and decryption has remained vital. By
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the Kirchhoff’s principle, the security of any cryptosystem is expected to de-
pend only on the keys while all components of the system are expected to be
public. The quality of these sequences depends on their statistical properties,
which largely depends on the generation mechanism. Determining these sta-
tistical properties, and fulfilling the minimum requirement for cryptographic
application has always been a subject for continuous research.

1.11 Organization of the Thesis

Chapter one gives the basic introduction to the idea of dynamical systems,
chaos and cryptography. Dynamical systems, both continuous and discrete
were introduced with more emphasis on the discrete aspect since its the
bedrock of this research. The class of 1D maps with equidistributivity prop-
erty were introduced. A number of 1D chaotic maps has been considered,
their precision arithmetic and quantization were elucidated. The notion of
binary sequences was discussed with consideration on chaos based and LFSR
based sequences.

Chapter two is a literature review of the related works undertaken in the area
of interest to this research. The review was presented along the headings
of the main topics of the thesis: Pseudorandom Number Generation, Chaos
Based Pseudorandom Sequences, Processing Chaos Based Sequences.

Chapter three is concerned with the aspect of discrete dynamics of chaotic
maps, resulting in the extraction of binary sequence from the trajectory of
the maps. The realization of these trajectories with respect to finite precision
arithmetics is discussed. Numerical computation of the trajectories of such
maps based on fixed and floating point arithmetic are discussed. Various
algebraic representation of Logistic map as an example of the kinds of maps
considered is presented. The statistical qualities of sequences generated from
these different kinds of representations were determined. The methods of
generating chaos based pseudorandom bits is discussed. The statistics of each
of the methods has been considered with a view to identify the best approach
to be adopted during sequence generation. The extracted bits were subjected
to post-processing techniques and their correlation analysis discussed.

Chapter four dwells of finding a way of realizing chaos based pseudorandom
bits with the required statistical properties that will be suitable for crypto-
graphic application. A pseudorandom generator is proposed, this generator
uses a nonlinear combiner generator as part of the generation mechanism.
This nonlinear combiner has been discussed, giving details of characteristics
and cryptographic properties of the considered Boolean functions. The non-
linear combiner serves a clocking device that determines the iterations in the
chaos based binary generation phase. It injects some required properties in
the generation of chaos based binary sequences, which is long period and re-
duced correlation between successive bits in the sequence. These results in a
sequence with good statistical properties.
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Chapter five is on the analysis of the proposed generator in chapter four. The
nonlinear combiner part of the generator is analyzed with correlation (fast)
attack and correlation attack using convolutional codes, in order to determine
the strength of the clocking sequence. The clocking sequence defines the order
of combination of the chaotic trajectory of the two maps used in generating
the chaos based sequences.

Finally chapter six is the summary of the main findings of the research and
conclusions drawn regarding the significance of the reported results. Recom-
mendations for further research has been suggested.
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