
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 
 
 

KILLING TENSOR OF FIVE DIMENSIONAL MELVIN’S SPACETIME 
 
 
 
 
 
 
 
 
 
 
 

GANESH A/L SUBRAMANIAM 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IPM 2019 20 



© C
OPYRIG

HT U
PM

KILLING TENSOR OF FIVE DIMENSIONAL MELVIN’S SPACETIME

By

GANESH A/L SUBRAMANIAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

February 2018



© C
OPYRIG

HT U
PM

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial
use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

DEDICATIONS

To the spirits of the nature that hold everything in order.



© C
OPYRIG

HT U
PM

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

KILLING TENSOR OF FIVE DIMENSIONAL MELVIN’S SPACETIME

By

GANESH A/L SUBRAMANIAM

February 2018

Chairman: Hishamuddin Zainuddin, PhD
Faculty: Institute For Mathematical Research

In this research, (3+1)D Melvin’s spacetime was extended into (4+1)D Melvin’s
spacetime using hypersphere coordinates. Later, the method to compute Killing ten-
sor as introduced by Garfinkle for (3+1)D spacetime was studied to compute Killing
tensor in (4+1)D Melvin’s spacetime. The method introduced by Garfinkle needs
the existence of commuting Killing vectors or Killing vectors in a particular coor-
dinate direction. It is not well understood that the method introduced by Garfinkle
worked well for extended (4+1)D Melvin’s metric because the fifth component of
the metric canceled one of the commuting Killing vector in 3-dimension. Therefore,
Killing tensors are obtained using the method introduced by Garfinkle and they are
compared with the ones obtained by symmetrically multiplying the Killing vectors.
For the later case, we found Killing vectors and Killing tensors for (4+1)D Melvin’s
spacetime. At the end it is concluded that the Killing tensor found for (4+1)D con-
sist of products of some noncommuting Killing vector. Killing tensor found in this
research might be applicable in separability of Hamilton-Jacobi and Klein-Gordon
equation.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

TENSOR ”KILLING” UNTUK RUANGMASA MELVIN BERMATRA LIMA

Oleh

GANESH A/L SUBRAMANIAM

Februari 2018

Pengerusi: Hishamuddin Zainuddin, PhD
Fakulti: Institut Penyelidikan Matematik

Dalam kajian ini, ruangmasa Melvin bermatra (3+1) diubahsuai kepada matra (4+1)
dengan menggunakan koordinat-koordinat hipersfera. Selepas itu, kaedah yang
diusulkan oleh Garfinkle untuk mencari tensor Killing dalam ruangmasa bermatra
(3+1) dikaji untuk mencari tensor Killing dalam ruangmasa Melvin bermatra (4+1).
Kaedah yang diusulkan oleh Garfinkle memerlukan kewujudan vektor Killing kalis
tukar tertib. Kaedah yang diusulkan oleh Garfinkle tidak beberapa jelas bagi ruang-
masa Melvin bermatra (4+1) kerana componen metrik kelima yang kita memperke-
nalkan dalam ruangmasa Melvin bermatra (3+1) menghapuskan salah satu vektor
Killing dalam ruang Melvin bermatra tiga. Oleh sebab ini, tensor Killing dicari
mengunakan kaedah yang diusulkan oleh Garfinkle dan lepas itu dibandingkan den-
gan tensor Killing yang ditemui melalui pendaraban vektor Killing secara simetri.
Akhirnya, vektor Killing dan tensor Killing telah ditemui untuk ruangmasa Melvin
bermatra (4+1). Kesimpulanya, tensor Killing mempunyai hasil darab vector Killing
yang tidak kalis tukar tertib. Tensor Killing yang ditemui dalam kajian ini mungkin
boleh digunakan untuk menyelesaikan persamaan Hamilton-Jacobi dan persamaan
Klein-Gordon.
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CHAPTER 1

INTRODUCTION

Nowadays, higher dimensional spacetime is one of the active field of research in
theoretical physics. This higher dimensional spacetime is always related to the uni-
fication of four fundamental interactions of nature; weak and strong nuclear forces,
electromagnetism and gravity. Even though grand unified theory (GUT) has uni-
fied electromagnetism, strong and weak nuclear forces but unifying gravity (weak-
est force in short range) is difficult. Some fields like string theory, M-theory and
field theory emerge to achieve the goal of unification. Today, such a unification has
achieved through string theory and M theory but it happened only in 10, 11 and 26
dimension. Long before an attempt was taken by Kaluza to unify electromagnetism
with Einstein’s general theory of relativity but it is only achievable by extending
gravity to five-dimension. Since the cylindrical condition assumed by Kaluza is un-
natural, it leads to the consideration of fifth-dimension as length like which was
proposed by Klein in 1926. If one considers fifth-dimension as length like then extra
dimension will be compactified (Overduin and Wesson, 1998; Piercey, 2008). This
extra dimension can not be observed because it is either very small (Klein, 1926) or
our observable universe is confined. Recently, in 1999 Randall and Sundrum pro-
posed a model (Randall Sundrum model) in which extra dimensions can be larger
(Randall and Sundrum, 1999a,b; Hamed et al., 2002). Apart from all this higher
dimensional problems in fundamental physics, gravity act strange when explained
through quantum mechanics. So far we do not understand quantum nature of gravity
yet as general relativity is nonlinear and difficult to reconcile with quantum theory.
Because of this, it is difficult to conduct experiment to understand quantum nature
of gravity.

To further investigate quantum aspects of gravity, it is customary to consider grav-
itational objects or fields in curved spacetime. Since black hole is an astronomical
object formed under strong gravity, quantum feature may appear important such as
Hawking radiation (Hawking, 1975a,b). Other possible avenue of investigation is
inclusion of electromagnetic sources in combination with gravity. The field equa-
tions in such situations are called Einstein-Maxwell equations. Melvin’s (magnetic)
spacetime (Melvin, 1964) or sometimes called magnetic universe is one of the inter-
esting spacetime which is the cylindrically symmetric solution of Einstein-Maxwell
vacuum spacetime. Magnetic fields are found in all galaxies, galaxy clusters and
also present in smooth low density intergalactic medium. Furthermore, it is expected
that primordial magnetic field is generated in the early universe (Naoz and Narayan,
2013). Furthemore, motion of particles are studied broadly in fourth and higher
dimensional spacetime such as Kerr spacetime, Kerr-Newman spacetime, Euclidean
Taub-NUT spacetime, Taub-NUT spacetime, Kerr-NUT-Ads spacetime, static spher-
ically symmetric spacetime, stationary axisymmetric vacuum (SAV) spacetime and

1
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pp wave spacetime.

Killing vector field are said to be infinitesimal generator of isometry in a spacetime
(Bianchi, 2001). For a n-dimensional maximally symmetric spacetime, there are
n(n+ 1)/2 Killing vector fields in the spacetime. Killing vector fields are used to
study symmetries of a spacetime. Studying about symmetries of a spacetime is im-
portant to solve Einstein field equation (EFE). Since Killing vector field have struc-
tures of Lie algebra, spacetime can also be studied algebraically. Killing tensors
(sometimes together with Killing-Yano tensors) as a generalization of Killing vector
fields is often called hidden symmetries. Killing tensors provide conserved quanti-
ties of geodesic motion for a particular spacetime or mechanical system (Sommers,
1973). Existence of Killing tensor enable one to solve equation of motion for a par-
ticular spacetime, a notable example is the Kerr spacetime which admits rank two
Killing tensor (Carter, 1968; Walker and Penrose, 1970). Even though separation of
variable in Hamilton-Jacobi equation and Klein-Gordon equation is possible due to
the existence of Killing tensors, for this research we did not go into that direction of
study. In this thesis, we will study Killing tensors for Melvin’s magnetic universe in
five dimensional spacetime.

1.1 Problem Statement

It is not easy to find Killing tensors and Killing vectors in a particular spacetime.
For example for a four dimensional spacetime, one need to solve ten Killing equa-
tion with sixty four Christoffel symbols. One have to compute more Killing equa-
tions and Christoffel symbols for five and other higher dimensions. One can not
skip this calculations to compute Killing vectors and after computing Killing vectors
one can use Killing vectors to find Killing tensors. A method has been introduce by
(Garfinkle and Glass, 2010) in which one can find Killing tensors without computing
Christoffel symbols. The method they introduce need the existence of commuting
Killing vectors and the Killing vectors should be hypersurface orthogonal. Our in-
terest lie on computing Killing tensors for five dimensional Melvin’s spacetime. The
fifth component of the metric that we introduced canceled the commuting Killing
vector in the other direction.

Recently in (Lim, 2015), motion of charged particle around magnetized or electri-
fied black hole was studied without dealing with Killing tensors. Apart from motion
of particles in spacetime, in (Paliathanasis, 2016) they use Killing tensor of minisu-
perspace to specify functional form of f(R) in f(R)-gravity of Friedmann-Lemaitre-
Robertson-Walker spacetime. Furthermore, Killing tensors of minisuperspace are
studied in generalized Brans-Dicke cosmology to determine the unspecified poten-
tial of scalar tensor gravity theory (Papagiannopoulos et al., 2017). Since Killing

2
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tensors are not much used to study in the Magnetic universe or Melvin spacetime,
we are interested to initiate such a study of Killing tensors in Magnetic or Melvin
universe.

1.2 Objectives

1. Construct Killing tensors for Melvin Universe from lower dimensions up to
five dimensions using the method introduced by Garfinkle.

2. Compute Killing vectors for five dimensional Melvin’s spacetime.

3. Construct Killing tensor for five dimensional Melvin’s spacetime by symmet-
rically multiplying Killing vectors found in step two and add five dimensional
Melvin’s metric into the Killing tensor.

4. Finally, compare the Killing tensor found by symmetrically multiplying the
Killing vector and the one obtained by using the method introduced by Garfin-
kle.

1.3 Organization of present work

This thesis contains five chapters. Chapter 1 introduces our work, problems in the
field and our objective of studies. In Chapter 2, we review relevant topic in our
studies and in Chapter 3, we discuss about the mathematics needed to understand the
thesis. Chapter 4 contains results and discussion while in chapter 5 we conclude our
findings and suggest some future work.

3
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