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Chairman: Siti Hasana binti Sapar, PhD
Institute: Institute for Mathematical Research

Let f(x, y) be a polynomial of two variables in Zp[x, y] and p be a prime. Suppose
α > 1, the exponential sums of polynomial f(x, y) is defined by

S(f ; pα) =
∑

x,y mod p

e
2πif(x,y)

pα ,

where the sum is taken over a complete set of residue modulo p. In order to get
the value of S(f ; pα), the cardinality N(g, h; pα) and the p-adic sizes must be ob-
tained first. This thesis discuss the finding of p-adic sizes of common zeros of the
partial derivative polynomials fx, fy which derive from f(x, y) by using Newton
polyhedron technique. Then, the estimation of the cardinality and exponential
sums of polynomial f(x, y) will be determined by considering four different poly-
nomials, that are degree five, six, seven and eight.

The Newton polyhedron technique is a method to estimate the p-adic sizes of com-
mon zeros of partial derivative polynomials. This method is to get the Newton
polyhedron for the partial derivative polynomials. Then, the indicator diagram
for each of the partial derivative polynomials will be constructed. Each of the
intersection point in the combination of indicator diagram gives the p-adic sizes of
the common zeros associated with the considered partial derivative polynomials.
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This research found that the exponential sums for the polynomials of degree five,
six, seven and eight are

|S(f ; pα)| ≤ min{p2α, 16pα+1+44δ+8q},

|S(f ; pα)| ≤ min{p2α, 25pα+1+56δ+10q},

|S(f ; pα)| ≤ min{p2α, 36pα+1+68δ+12q}

and
|S(f ; pα)| ≤ min{p2α, 49pα+1+80δ+14q}

respectively where q = max{ε1, ε3 + 1
2ω0}.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

HASIL TAMBAH EKSPONEN BAGI SUATU POLINOMIAL
BERDARJAH TINGGI

Oleh

LOW CHEE WAI

Disember 2018

Pengerusi: Siti Hasana binti Sapar, PhD
Institut: Institut Penyelidikan Matematik

Biarkan f(x, y) suatu polinomial dua pembolehubah dalam Zp[x, y] dan p suatu
nombor perdana. Katakan α > 1, hasil tambah eksponen bagi polinomial f(x, y)
ditakrifkan sebagai

S(f ; pα) =
∑

x,y mod p

e
2πif(x,y)

pα

yang mana hasil tambah diambil dalam satu set reja lengkap modulo p. Bagi men-
dapatkan nilai S(f ; pα), kekardinalan N(g, h; pα) dan saiz p-adic mesti diperoleh
terlebih dahulu. Tesis ini akan membincangkan untuk mendapatkan saiz p-adic
bagi pensifar sepunya polinomial terbitan separa fx, fy yang diperolehi daripada
f(x, y) dengan menggunakan teknik polihedron Newton. Kemudian, pengang-
garan bagi kekardinalan dan hasil tambah eksponen bagi polinomial f(x, y) akan
ditentukan dengan mempertimbangkan empat polinomial yang berbeza, iaitu
berdarjah lima, enam, tujuh dan lapan.

Teknik polihedron Newton ialah suatu kaedah untuk menganggarkan saiz p-adic
persifar sepunya polinomial terbitan separa. Kaedah ini ialah untuk mendap-
atkan polihedron Newton bagi polinomial terbitan separa. Kemudian, gambar
rajah penunjuk bagi setiap terbitan separa polinomial akan dibina. Setiap titik
persilangan pada gabungan gambar rajah penunjuk memberi saiz p-adic persi-
far sepunya yang disekutukan dengan polinomial terbitan separa yang dipertim-
bangkan.
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Kajian ini didapati bahawa hasil tambah eksponen bagi polinomial berdarjah
lima, enam, tujuh dan lapan ialah

|S(f ; pα)| ≤ min{p2α, 16pα+1+44δ+8q},

|S(f ; pα)| ≤ min{p2α, 25pα+1+56δ+10q},

|S(f ; pα)| ≤ min{p2α, 36pα+1+68δ+12q}

dan
|S(f ; pα)| ≤ min{p2α, 49pα+1+80δ+14q}

masing-masing di mana q = max{ε1, ε3 + 1
2ω0}.
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CHAPTER 1

INTRODUCTION

1.1 Background

In this chapter, we are going to give a brief background about what is exponential
sums, cardinality and p-adic sizes. The following definition explains the exponen-
tial sums.

Definition 1.1.1 The exponential sums of a polynomial f is given by

S(A) =
∑
x

e2πif(x) (1.1)

where x runs all over integer from certain interval A and f(x) is a polynomial
taking on real values under integer x.

In number theory, estimation of exponential sums can be used in solving the War-
ing’s problems (Korobov (1992)) and communication theory (Paterson (1999)) in
cryptography.

Next, the following definition explains the cardinality.

Definition 1.1.2 Let N(fx, fy; pα) denotes as the cardinality of the set

V (fx, fy; pα) = {(x, y) mod pα : f(x, y) ≡ 0 mod pα}

of polynomial in Zp[x, y]. The cardinality represents the number of common solu-
tions for the following congruence equations in the complete set of residue modulo
pα

fx(x, y) ≡ 0 (mod pα)

and
fy(x, y) ≡ 0 (mod pα)

where fx and fy are the partial derivative of the polynomial f(x, y) with respect
to x and y respectively.

The p-adic size of an integer a is denoted by ordp a and it is defined by the
following definition.

1
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Definition 1.1.3 Let p be any prime number and a be any nonzero integer. Then
ordp a is defined as the highest power of p which divides a.

In other words, if a = b · pn where n is an integer and p 6 | b, then ordp a = n.
The following definitions state the p-adic integer.

Definition 1.1.4 Let x be an element in Qp where p ≥ 2 is a prime, then x
is in Zp if and only if

x = {a ∈ Qp : |a|p ≤ 1}

where |a|p = p−β and β is the p-adic sizes of a.

Definition 1.1.5 Let p ≥ 2 be a prime. For any integer n > 0, the p-adic
interger of n is a series in base p given as followed:

n = a0 + a1p+ a2p
2 + ...+ akp

k

with a0, a1, a2, ..., ak are integers such that 0 ≤ ai < p.

Example 1.1.1 Let 516 be an element of 3-adic, then 516 can be expressed as
follow:

516 = 0(3)0 + 1(3)1 + 0(3)2 + 1(3)3 + 0(3)4 + 2(3)5.

However, Zp is defined as Zp = {[0]p, [1]p, [2]p, ..., [p − 1]p}. If p = 3, then
Z3 = {[0]3, [1]3, [2]3} with

[0]3 = {x|x = 0 + 3k, k ∈ Z} = {...,−6,−3, 0, 3, 6, ...},

[1]3 = {x|x = 1 + 3k, k ∈ Z} = {...,−5,−2, 1, 4, 7, ...},

[2]3 = {x|x = 2 + 3k, k ∈ Z} = {...,−4,−1, 2, 5, 8, ...}.

Therefore, 516 ∈ Z3 since 516 = 0 + 3(172) ∈ [0]3.

Now, the extension of Zp to Qp by considering the rational numbers. An ex-

ample of elements in Qp is 1
3 = 1(3)−1 + 0(3)0 + 0(3)1 + 0(3)2 + ... with p = 3.

Ωp denotes the completion of the algebraic closure of the field of p-adic num-
bers Qp. In other words, it is the field of the complex p-adic numbers. For
instance, 19 + 83i = (1 + i)(51 + 32i) with p = 1 + i.

2
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Q̄p[x, y] is the algebraic closure of Qp. Thus, it also a field. The difference be-
tween Q̄p and Qp is that every polynomial in Q̄p can be splited completely over
Q̄p. That is, Q̄p contain all the elements that are algebraic over Qp.

1.2 Literature Review

Koblitz (1977) introduced Newton polygon method for polynomials and power
series in Ωp[x] where Ωp denotes the completion of the algebraic closure of the
field of p-adic numbers Qp. He developed some basic concepts about p-adic anal-
ysis together with the applications of it. It was then became a very interesting
topic in number theory.

Deligne (1974) discovered that for any prime p,

|S(f ; p)| ≤ (m− 1)np
n
2 (1.2)

where n > 1 denotes as the number of variables of the polynomial f and m is the
total degree of f . This makes the estimation of exponential sums become more
accurate and precise.

Loxton and Smith (1982) improved the results of Deligne. They found that the
estimation of exponential sums is given by

|SF (pα)| ≤ mnp
nα
2 (D(∇F )5, pα)

n
2 (1.3)

where p is a prime, α > 1 and dimension of the gradient of continuous function
F , D(∇F ) 6= 0. This estimation is used for m + 1 degree non-linear polynomial
f in Z[x].

Next, Mohd Atan (1985) used the Newton polyhedron method to estimate the
exponential sums associated with the polynomial f(x, y) = ax3+bx2y+cx+dy+e
in the ring of p-adic integers.

Mohd Atan (1986a) extended the idea of Newton polygon to Newton polyhe-
dron method for the polynomials with two variables. He figured out that if a
point (ξ, η) is a zero of a polynomial f in Ωp where p is a prime, then the plane
(ordp ξ, ordp η, 1) is a normal to an edge in the Newton polyhedron of a poly-
nomial f denoted by Nf that falls between the upward-pointing normals to the
faces of Nf adjacent to this edge. The same research also found that the ordp ξ
and ordp η can be estimated by using these edges and faces.

In the same year, Mohd Atan (1986b) studied the combination of the indicator
diagram of two polynomials and found that the p-adic sizes of both polynomials

3
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can be estimated from the intersection points of segment in the indicator dia-
gram. He constructed the following conjecture:

Conjecture 1.1.1 Let f and g be polynomials in Q̄p[x, y] and let (λ, µ) be
a point of intersection of their indicator diagrams and suppose that the edges
through (λ, µ) do not coincide. Then there are ξ and η in Q̄p[x, y] satisfying
f(ξ, η) = g(ξ, η) = 0 and ordp ξ = λ, ordp η = µ.

Mohd Atan (1988) obtained the estimation of cardinality of a polynomial by
using Newton polyhedron method. He proved that the cardinality of the polyno-
mials f(x, y) = 3ax2 + by2 + c and g(x, y) = 2bxy + d is given by

card Vi(f ; g; pα) ≤ pα+δ.

Mohd Atan (1990) continued his research on finding the exponential sums of
a polynomial. He found that the cardinality of the set of solutions to the con-
gruence equation modulo p

α
2 for positive even α can be used to estimate the

exponential sums of a polynomial.

Mohd Atan and Abdullah (1993) found the solution of polynomial

f(x, y) = ax3 + bx2y + cxy2 + dy3 + kx+my + n

in Zp[x, y] by using the Newton polyhedron method. The two polynomials that
formed on the indicator diagram are the polynomials that differentiated from
f with respect to x and y. The intersection point on the indicator diagram is(
1
2ordp(3a+ bα),∞

)
for α > 0. They found that the cardinality is given by

N(fx, fy; pα) =

{
p2α if α ≤ δ

4pα+δ if α > δ.

Mohd Atan (1995) studied the works of Deligne (1974) as well as Loxton and
Smith (1982) by considering the polynomial of the form f(x, y) = ax3 + bx2y +
cxy2 + dy3ex+my + n. He found that

|S(f ; pα)| ≤ p2(α−δ) min{p2δ, 4pδ+α}

if α is even and α = 2δ,

|S(f ; pα)| ≤ pα+
1
2 min{p2δ, 4pδ+α}

if α is odd and α = 2δ + 1.

4
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Heng and Mohd Atan (1999) investigated the cardinality of the set of solutions
for polynomial f(x, y) = ax3 + bxy2 + cx+ dy + e. The cardinality is given by

N(fx, fy; pα) =

{
p2α if α ≤ δ

2pα+δ if α > δ

where p > 3 is a prime, α > 1 and δ = min{ordp 3a, 32 ordp b}.

Sapar and Mohd Atan (2002) studied the estimation of cardinality of the set
of solutions for some polynomials. The polynomials chosen are the second and
third degree polynomials. They used the indicator diagram and Newton polyhe-
dron method in order to obtain the cardinality of the polynomials.

Sapar and Mohd Atan (2006) continued their research by considering the fol-
lowing polynomial:

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 +my5 + nx+ ty + k

with ordp b
2 > ordp ac and ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2).

They found that the p-adic sizes of common zeros of partial derivatives of the
polynomial above is given by

ordp ξ ≥
1

4
(α− δ), ordp η ≥

1

4
(α− δ).

Nevertheless, Sapar and Mohd Atan (2007) considered a sixth degree polyno-
mial f(x, y) = ax6 + bx5y + cx4y2 + dx3y3 + ex2y4 +mxy5 + ny6 + sx+ ty + k
with the condition ordp(120ck−8e2)2 > ordp 4(90dk−20em)(20cm−6de). They
used the Newton polyhedron method to estimate the p-adic sizes of common zeros
of partial derivative of the polynomial. The results found are

ordp ξ ≥
1

5
(α− δ), ordp η ≥

1

5
(α− δ).

Then, Sapar and Mohd Atan (2009) consider another polynomial of quintic form
given by

f(x, y) = ax5 + bx4y + cx3y2 + sx+ ty + k

with ordp b
2 > ordp ac and certain conditions. The results are quite similar to

the works in Sapar and Mohd Atan (2006).

Yap (2010) studied the estimation of exponential sums for a polynomial f us-
ing p-adic sizes that obtained from the indicator diagram. He found that the

5
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exponential sums is given by

|S(f ; pα)| ≤ min{p2α, 4p
3
2α+δ}

and
|S(f ; pα)| ≤ min{p2α, 4p

3
2α+δ+ε}

for some ε > 0.

One year later, Yap et al. (2011) studied the p-adic sizes of a polynomial as-
sociated with cubic form. They found that the p-adic sizes are given by

ordp(ξ − x0) ≥ 1

2
(α− δ), ordp(η − y0) ≥ 1

2
(α− δ).

This estimation is valid for the neighbourhood of (x0, y0) of common zeros (ξ, η)
of the partial derivative polynomials associated with cubic form

f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex+my + n

in Zp[x, y] and (x0, y0) in Ω2
p.

Sapar et al. (2013) studied the p-adic sizes of a polynomial with degree nine
in the form of f(x, y) = ax9 + bx8y+ cx7y2 + sx+ ty+ k. They found that there
exist (ξ, η) in such a way that fx(ξ, η) = 0 and fy(ξ, η) = 0 by using the Newton
polyhedron method. The results are

ordp(ξ) ≥
1

8
(α− δ)

and

ordp(η) ≥ 1

8
(α− δ)

or in an exceptional case

ordp(η) ≥ 1

2
(α− δ − ε)

for certain ε > 0.

Aminudin et al. (2014) considered a polynomial of degree eight. In this research,
they found that the results are not unique due to they considered all the possible
cases that happened during their researh. The polynomial that they chosen is

f(x, y) = ax8 + bx7y + cx6y2 + sx+ ty + k.

6
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Zulkapli et al. (2015) investigated the p-adic sizes of factorials. The results ob-
tained are in explicit forms and the method of obtaining them offers an alternative
way in finding ordp n!. Other than that, they found the p-adic sizes of nCr where

n = pα and r = pθ for α > θ > 0.

Lasaraiya et al. (2016a) investigated the cardiality of twelfth degree polynimial
in the form f(x, y) = ax12+ bx11y+cx10y2+sx+ ty+k. The result is as follows:

N(fx, fy; pα) =

{
p2α if α ≤ δ

121p2(11δ+
3
2ε0+9ε1+11q) if α > δ

where p > 11 is a prime, α > 1, ε0, ε1, q ≥ 0 and δ = max{ordp a, ordp b, ordp c}.

Last but not least, Lasaraiya et al. (2016b) studied the cardinality of the poly-
nomial of degree eleven in the form f(x, y) = ax11 + bx10y+ cx9y2 + sx+ ty+ k.
They found out that the cardinality is given by

N(fx, fy; pα) =

{
p2α if α ≤ δ

100p2(9δ+
3
2ε0+8ε1+10q) if α > δ

where p > 11 is a prime, α > 1, ε0, ε1, q ≥ 0 and δ = max{ordp a, ordp b, ordp c}.

1.3 Problem Statement

For the past 40 years, many researchers that we mentioned in previous section
(1.2 Literature Review) involved in finding the p-adic sizes, cardinality and ex-
ponential sums for different polynomials. Since every different polynomials give
different p-adic sizes, the cardinality and the exponential sums are also different.
Thus, researchers are thinking of finding the p-adic sizes in more general so that
we can obtain the exponential sums more precise and systematic. In such a way,
we are going to investigate the exponential sums of polynomial with dominant
terms for degree of n. So we started by considering the polynomials of degree
five, six, seven and eight.

1.4 Research Objectives

The objectives of this research are as follow:

• To estimate the p-adic sizes of common zeros associated with the polyno-
mials of degree five, six, seven and eight.

• To determine the estimation of the cardinality of the sets of solutions to
congruence equations of these polynomials.

• To determine the estimation of the exponential sums of the polynomials
under consideration.
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1.5 Research Methodology

We used the Newton polyhedron method to find the estimation of p-adic sizes
of the fifth, sixth, seventh and eighth degree polynomials respectively. Then,
the combination of the indicator diagram associated with the partial derivative
polynomials is constructed and analyzed. Finally, we find the cardinality and the
exponential sums of the polynomials after we get the results of p-adic sizes of
every polynomial that we considered.

1.6 Organization of Thesis

This thesis covers six chapters as follows:

Chapter 1 provides a brief introduction of this research. The previous researches
done by other researchers of the related topic as it gone throught. This chapter
also includes the problem statement, objectives and methodology of this research.

Chapter 2 explains the method that we are going to use for this research. In this
chapter, we explain more detail about the Newton polyhedron method as well as
the indicator diagram. We provide one polynomial as an example throught out
this chapter to help readers understand how the method being used.

Chapter 3 is the main part of our research. We are going to obtain the estimation
of the p-adic sizes of the fifth, sixth, seventh adn eighth degree polynomials that
we considered. The results of the estimation will be different due to different
conditions.

Chapter 4 and chapter 5 are going to present the estimation of the cardinal-
ity and the exponential sums of the polynomials that we considered respectively.
In the finding of exponential sums, we will consider two cases which are when α
is even and when α is odd.

In the last chapter which is Chapter 6, we provide a summary of what we have
done and the results of the research. Also, some future works and recommenda-
tion will be discussed in the last part of this chapter.
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