

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF HIGH CARBON DIOXIDE CONCENTRATION ON STORED-PRODUCT INSECTS, AFLATOXIN PRODUCTION AND STORAGE QUALITY CHANGES IN COCOA BEANS

TEGUH WAHYUDI

FSMB 2003 3

EFFECTS OF HIGH CARBON DIOXIDE CONCENTRATION ON STORED-PRODUCT INSECTS, AFLATOXIN PRODUCTION AND STORAGE QUALITY CHANGES IN COCOA BEANS

By

TEGUH WAHYUDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

April 2003

Dedicated to my beloved wife Jully Adriretnani son Abesadi Wahyuaji daughter Amrita Sulihkanti Nareswari Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

EFFECTS OF HIGH CARBON DIOXIDE CONCENTRATION ON STORED-PRODUCT INSECTS, AFLATOXIN PRODUCTION AND STORAGE QUALITY CHANGES IN COCOA BEANS

By

TEGUH WAHYUDI

April 2003

Chairman : Professor Jinap Selamat, Ph.D.

Faculty : Food Science and Biotechnology

The potency of CO_2 gas as an alternative fumigant in controlling stored-product insects, its inhibitory characteristics on the growth of molds and mycotoxins production and quality changes of the treated cocoa beans have been evaluated in four consecutive research experiments. These experiments were focused on the use of high CO_2 concentration during fumigation and followed by prolonged storage practices in laboratory hermetic room, under plastic enclosures or high-pressure chamber. As comparison, treatments using methyl bromide, phosphine and normal air atmosphere were also carried out.

Carbon dioxide concentration of 40, 60 and 80% were effective in controlling *Ephestia cautella* and *Araecerus fasciculatus* during 1 to 3 months of exposure, whereas the test insects in the control showed 20-27 survivors for *E. cautella* and 20

survivors for *A. fasciculatus* from the initial number of 30 and 20 insects, respectively. This study also found no significant effect of high CO_2 concentration treatments on cocoa beans quality during the exposure time.

The growth of *A. flavus* and aflatoxins production (except for aflatoxin B_2) was significantly inhibited in the presence of high concentration of CO_2 atmosphere during 1-month storage. Free fatty acids production in the treated cocoa beans was not inhibited by the treatments.

Methyl bromide concentration of 15 g/t or 0.66 g/t of phosphine were required to control *E. cautella, A. fasciculatus* and *Tribolium castaneum*. Levels of methyl bromide residues increased from 0.27 ppm to 1.27, 1.49 and 3.10 ppm with an increase in concentration of methyl bromide from 3 g/t to 5, 10 and 15 g/t, respectively. Phosphine residues increased from 0.07 ppm to 0.12, 0.11, 0.14 and 0.15 ppm with an increase in concentration of phosphine from 0.33 g/t to 0.66, 1, 2 and 3 g/t respectively. Methyl bromide fumigation resulted in methylation of proteins as indicated by the formation of 7-methylguanine in treated cocoa beans.

Complete elimination of *E. cautella* was achieved by using CO_2 under high-pressure at 4 bar within 4 hours of exposure. A longer exposure time of 6 hours was needed to control *A. fasciculatus* and *T. castaneum* at the same pressure. Complete elimination was also achieved at 7 bar within 4 hours of exposure or at 10 bar within 2 hours of exposure for controlling *A. fasciculatus* and *T. castaneum*. In the control treatments using normal air at 10 bar within 4 hours of exposure, the percent RIE (reduction in emergence) for *E. cautella* was only 3.33% whereas no mortality were found for *T. castaneum* and *A. fasciculatus*. Carbon dioxide under high-pressure treatments exhibited low possibility to effect the quality of the treated cocoa beans.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi syarat keperluan untuk Ijazah Doktor Falsafah

KESAN DARIPADA KEPEKATAN KARBON DIOKSIDA YANG TINGGI TERHADAP SERANGGA GUDANG, PENGHASILAN AFLATOKSIN DAN PERUBAHAN KUALITI BIJI KOKO

By

TEGUH WAHYUDI

April 2003

Pengerusi : Profesor Jinap Selamat, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Kemampuan gas karbon dioksida sebagai suatu pengasap alternatif dalam pengawalan serangga gudang, sifat-sifat penghalangannya pada pertumbuhan fungi dan penghasilan mikotoksin, dan perubahan kualiti biji koko yang dirawat telah dinilai dalam empat eksperimen yang berturutan. Eksperimen-eksperimen tersebut difokuskan pada penggunaan kepekatan karbon dioksida tinggi semasa pengasapan dan praktik penyimpanan yang berikutannya, dalam ruangan hermetik, sungkup plastik dan ruangan tekanan tinggi. Sebagai perbandingan, rawatan menggunakan metil bromida, phosphine, dan udara biasa juga dilaksanakan.

Rawatan menggunakan kepekatan karbon dioksida 40, 60 dan 80% berjaya mencapai kadar kematian sempurna (tiada yang kekal) untuk *Ephestia cautella* dan *Araecerus fasciculatus* pada 1-3 bulan masa pendedahan, sedangkan serangga uji pada kawalan menunjukkan 20-27 ekor serangga *E. cautella* dan 20 ekor serangga *A. fasciculatus* yang kekal hidup. Kajian ini juga menemui bahawa rawatan kepekatan karbon

dioksida yang tinggi tidak memberi kesan yang nyata pada kualiti biji koko ketika masa pendedahan.

Pertumbuhan dari *A. flavus* dan penghasilan aflatoksin (kecuali aflatoksin B₂) dihalang secara nyata dalam atmosfera kepekatan karbon dioksida yang tinggi selama 1 bulan masa penyimpanan. Peenghasilan asid lemak bebas di dalam biji koko yang dirawat tidak dihalang dalam atmosfera tersebut.

Pengasapan menggunakan metil bromida dengan dosej 15 g/tan atau phosphine dengan dosej 0.66 g/tan berjaya mencapai kadar kematian sempurna (100% reduction in emergence) pada pengawalan *E. cautella, A. fasciculatus* dan *Tribolium castaneum*. Saki-baki metil bromida meningkat dari 0.27 ppm ke 1.27, 1.49 dan 3.10 ppm dengan kenaikan dosej metil bromida dari 3 g/tan ke 5, 10, dan 15 g/tan. Sakibaki phosphine meningkat dari 0.07 ppm ke 0.12, 0.11, 0.14, dan 0.15 ppm dengan kenaikan dosej phosphine dari 0.33 g/tan ke 0.66, 1, 2, dan 3 g/tan. Pengasapan menggunakan metil bromida menyebabkan metilasi protein biji koko seperti ditunjukkan oleh pembentukan 7-methylguanine di dalam biji koko yang dirawat.

Pengawalan sempurna untuk *E. cautella* dicapai dalam rawatan menggunakan gas karbon dioksida tekanan tinggi iaitu 4 bar dalam 4 jam masa pendedahan. Masa pendedahan 6 jam diperlukan untuk pengawalan *A. fasciculatus* dan *T. castaneum* pada tekanan yang sama. Pengawalan sempurna juga dicapai pada tekanan 7 bar dalam 4 jam masa pendedahan atau tekanan 10 bar dalam 2 jam masa pendedahan untuk mengawal *T. castaneum* dan *A. fasciculatus*. Perawatan kawalan menggunakan udara biasa pada tekanan 10 bar dalam 4 jam masa pendedahan 10 bar dalam 4 jam masa pendedahan kadar

kematian hanya 3.33% RIE (reduction in emergence) untuk *E. cautella*, sedangkan tiada kematian didapati pada *T. castaneum* dan *A. fasciculatus*. Rawatan gas karbon dioksida pada tekanan tinggi mempertunjukkan kemungkinan yang rendah dalam mempengaruhi kualiti biji koko yang dirawat.

ACKNOWLEDGEMENTS

The author wishes to express his indebtedness and gratitude to his supervisors Prof. Dr. Jinap Selamat, Dr. Zaiton Hasan, and Assoc. Prof. Dr. Russly Abd. Rahman for their continued encouragement and support, suggestions, and advices from the beginning to the completion of his doctoral study in Universiti Putra Malaysia (UPM). A special tribute goes to Assoc. Prof. Dr. Azizah Osman and Prof. Dr. Athapol Noomhorm for their thoughtful comments and review on the author's thesis.

Sincere appreciation is expressed to Government of Indonesia and Director of Indonesian Coffee and Cocoa Research Institute (ICCRI) for the financial and other support, to many other acquaintances especially colleagues in Cocoa Laboratory of Faculty of Food Science and Biotechnology and ICCRI for their helpfulness during research work in Malaysia and Indonesia.

Special thanks and appreciations are also due to his wife Jully, his son Abe, and his daughter Amrita for their invaluable, nay indispensable support, love and encouragement.

TABLE OF CONTENTS

	Page
DEDICATION	2
ABSTRACT	3
ABSTRAK	6
ACKNOWLEDGEMENTS	9
APPROVAL SHEETS	10
DECLARATION FORM	12
TABLE OF CONTENTS	13
LIST OF TABLES	16
LIST OF FIGURES	21
LIST OF ABBREVIATIONS	23

CHAPTER

Ι	GENERAL INTRODUCTION	24
II	LITERATURE REVIEW	28
	Current Storage Practices	28
	Current Fumigation Practices	29
	Issues Relating to the Fumigation	37
	Controlled Atmosphere Storage (CA-storage)	45
	Technical Aspects in The Application	
	of CA-storage	45
	Advantages and Limitation of CA-storage	48
	Effect of CA-storage on Insect and Mold	50
	Stored-product Insect Response	50
	Stored-product Mold Response	52
	Aflatoxin Production in CA-storage	54
	Quality Aspects of Stored Products on CA-storage	55
	Cocoa Bean Quality	55
	Effect of CA-storage on Quality	58
III	GENERAL MATERIALS AND METHODS	60
	Materials	60
	Cocoa Bean	60
	Carbon Dioxide Gas	61
	Methyl Bromide and Phosphine Gas	61
	Plastic Sheet	61
	Methods	63
	Experimental Design	63
	Determination of Percent Reduction in Emergence	63
	Fungal Analysis	65
	Determination of Aflatoxin	66
	Determination of Methyl Bromide Residue	68
	Determination of Phosphine Residue	69
	Methylation of DNA of Cacao Analysis	71
	Determination of pH Value and Titratable Acidity	72
	Determination of Non-volatile Acids	72

	Determination of Reducing Sugars Determination of Free Fatty Acids Determination of Free Amino Acids Determination of Pyrazine Content Determination of Flavor Score Statistical Analysis	74 75 76 76 77 78
IV	EFFECT OF HIGH CARBON DIOXIDE CONCENTRATION ON THE GROWTH OF STORED-PRODUCT INSECTS AND QUALITY DETERIORATION OF COCOA BEANS Introduction Materials and Methods Assessment of the Infesting Storage Insects Mortality of the Infesting Insects in High CO ₂ Concentration Quality Analysis Results and Discussion Main Insect Pests Insect Mortality in High CO ₂ Concentration Quality Evaluation	79 79 80 80 81 82 83 83 83 85 90
V	EFFECT OF HIGH CO ₂ CONCENTRATION ON THE GROWTH OF ASPERGILLUS FLAVUS, AFLATOXINS PRODUCTION AND COCOA BUTTER DETERIORATION DURING COCOA BEANS STORAGE Introduction Materials and Methods Experimental Design Fungal Inoculate Preparation Inoculation Fungal Analysis Determination of Aflatoxins and Free Fatty Acids Results and Discussion	95 95 97 97 97 98 98 98 98
VI	EFFECT OF FUMIGANT AND CO ₂ TREATMENTS ON CONTROLLING STORED- PRODUCT INSECTS, RESIDUE FORMATION AND CHEMICAL CHANGES OF THE TREATED COCOA BEANS Introduction Materials and Methods Experimental Design Enclosure Gas-tightness Testing Methyl Bromide Purging Process Phosphine Treatment Carbon Dioxide Purging Process Fumigation Effectiveness Evaluation	113 113 115 115 116 117 117 118 118

Analysis of Residues and Methylation of Protein	118
of Cocoa Beans Results and Discussion	118
Results and Discussion	119
VII EFFECT OF CO ₂ UNDER HIGH-PRESSURE ON	
CONTROLLING STORED-PRODUCT INSECTS	
AND QUALITY ASPECTS OF COCOA BEANS	129
Introduction	129
Materials and Methods	130
Experimental Design	130
Determination of Percent Reduction in Emergence	133
Determination of pH Value, Titratable Acidity and	155
Non-volatile Acids	133
Results and Discussion	134
Changes in CO_2 and O_2 Concentration During	151
Exposure Time	134
Percent Reduction in Emergence	134
Chemical Characteristic	138
VIII CONCLUSION AND RECOMMENDATION	142
BIBLIOGRAPHY	145
APPENDICES	158
BIODATA OF THE AUTHOR	218

LIST OF TABLES

Table		Page
2.1	Properties of methyl bromide as fumigant	32
2.2	Dosage schedules and exposure periods for fumigation with methyl bromide	34
2.3	Properties phosphine as fumigant	36
2.4	Recommended dosage rates and minimum duration of fumigation with phosphine	38
2.5	Permitted tolerances of some pesticide residues for imports into the United States in 1988	43
2.6	Suggested dosage targets for gaseous treatments of grain at 25°C	47
2.7	Exposure time (days) for > 95% mortality of insect pests to high-CO ₂ or low-O ₂ controlled atmosphere	53
2.8	Aflatoxin production in groundnut kernels stored in various combinations of atmospheric gases at 30° C and 99% RH	56
4.1	Main storage insect-pests found in stored cocoa beans	84
4.2	Changes of pH value, reducing sugars, free amino acids, free fatty acids content and flavor score of cocoa beans during exposure in high CO_2 concentration	91
4.3	Changes of pyrazines content (mg/kg) of cocoa beans during exposure in high CO_2 concentration	94
5.1	Aflatoxins $(B_1, B_2, G_1 \text{ and } G_2)$ content after 1-month storage of cocoa beans in various CO_2 concentration atmospheres and moisture content	106
6.1	Percent reduction in emergence (RIE) of <i>E. cautella</i> , <i>A. fasciculatus</i> and <i>T. castaneum</i> after fumigation with methyl bromide, phosphine and carbon dioxide	120
6.2	Methylation of protein of cocoa beans treated with different dosage levels of methyl bromide during 24 hours exposure time	128
7.1	Titratable acidity content and pH value of cocoa beans after treatments with CO_2 under high-pressure	140

7.2	Non-volatile acids content of cocoa beans after treatments with $\rm CO_2$ under high-pressure	141
A1	pH value of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	159
A2	Reducing sugars content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	161
A3	Free amino acids content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	163
A4	Free fatty acids content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	165
A5	Flavor score of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	167
A6	2-methyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	169
A7	2,3,5,6-tetra methyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	171
A8	2,6-dimethyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	173
A9	2,3-dimethyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	175
A10	2,3,5-trimethyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	177
A11	Acethyl pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	179

A12	Total pyrazine content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	181
A13	Total fungal counts of Aspergillus flavus in the inoculated cocoa beans after 1 month storage in various CO_2 concentration atmospheres and moisture content	183
A14	Analysis of covariance for total fungal counts	184
A15	Results on the analysis of significant differences for total fungal counts	185
A16	Aw values of cocoa beans for several moisture content	186
A17	Percentage of internal infection of cocoa beans inoculated by Aspergillus flavus after 1 month storage in various CO_2 concentration atmospheres and moisture content	187
A18	Results on the analysis of significant differences for percentage of internal infection of cocoa beans	188
A19	Aflatoxin B_1 content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	189
A20	Aflatoxin B_2 content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	191
A21	Aflatoxin G_1 content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	193
A22	Aflatoxin G_2 content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	195
A23	Free fatty acids content of cocoa beans after treatments with high CO_2 concentration atmospheres during 1 to 3 months exposure time	197
A24	Results on the analysis of significant differences for free fatty acids content	199
A25	Percent reduction in emergence (RIE) of <i>Ephestia cautella</i> after fumigation with methyl bromide, phosphine and carbon dioxide	200

A26	Percent reduction in emergence (RIE) of Araecerus fasciculatus after fumigation with methyl bromide, phosphine and carbon dioxide	201
A27	Percent reduction in emergence (RIE) of <i>Tribolium</i> castaneum after fumigation with methyl bromide, phosphine and carbon dioxide	202
A28	Changes in CO_2 and O_2 concentration during 72-hour exposure time with 80% CO_2 under plastic enclosure	203
A29	Methyl bromide residue content of cocoa beans fumigated with several dosages of methyl bromide gas within 24 hours exposure time	204
A30	Phosphine residue content of cocoa beans fumigated with several dosages of phosphine tablet within 4 days exposure time	205
A31	Changes in CO_2 and O_2 concentration during treatment with 4 bar initial pressure of CO_2 gas inside the high-pressure chamber	206
A32	Changes in CO_2 and O_2 concentration during treatment with 7 bar initial pressure of CO_2 gas inside the high-pressure chamber	207
A33	Changes in CO_2 and O_2 concentration during treatment with 10 bar initial pressure of CO_2 gas inside the high-pressure chamber	208
A34	Changes in CO_2 and O_2 concentration during treatment with 13 bar initial pressure of CO_2 gas inside the high-pressure chamber	209
A35	Percent reduction in emergence (RIE) of <i>Ephestia cautella</i> after treatments with CO_2 under high-pressure	210
A36	Percent reduction in emergence (RIE) of <i>Araecerus</i> fasciculatus after treatments with CO ₂ under high-pressure	211
A37	Percent reduction in emergence (RIE) of <i>Tribolium</i> $castaneum$ after treatments with CO ₂ under high-pressure	212
A38	Titratable acidity content of cocoa beans after treatments with CO_2 under high-pressure	213

A39	pH value of cocoa beans after treatments with CO_2 under high-pressure	214
A40	Non-volatile acids content of cocoa beans after treatments with $\rm CO_2$ under high-pressure	215
A41	Number of survivor insect of <i>E. cautella</i> and <i>A. fasciculatus</i> at different CO ₂ concentrations and exposure times at room temperature $(27 \pm 3^{\circ} \text{ C})$	217

LIST OF FIGURES

8		Figure
62	Visual of stack of bagged cocoa beans sealed in plastic enclosures during gas treatment	3.1
64	General experimental design on the study of effect of high carbon dioxide concentrations on stored-product insects, aflatoxin production and storage quality changes of cocoa bean	3.2
86	Visual of A). <i>Ephestia cautella</i> , B). <i>Araecerus fasciculatus</i> and C). <i>Tribolium castaneum</i> (source: CAB International, 2001)	4.1
87	CO_2 concentration changes in hermetic plastic sacks contained 62.5 kg of cocoa bean during 3 months exposure time	4.2
100	Total fungal counts of <i>A. flavus</i> in the inoculated cocoa beans after 1-month storage in various CO_2 concentration atmospheres and moisture content	5.1
102	Relationship between cocoa beans moisture content and $a_{\rm w}$ value	5.2
104	Percentage of internal infection of cocoa beans inoculated by A . <i>flavus</i> after 1-month storage in various CO ₂ concentration atmospheres and moisture content	5.3
108	Free fatty acids of cocoa butter after 1-month storage of cocoa beans in various CO_2 concentration atmospheres and moisture content	5.4
109	Relationship between total fungal counts of A. flavus in the inoculated cocoa bean and: A). Aflatoxin B_1 ; B). Aflatoxin B_2	5.5
110	Relationship between total fungal counts of <i>A. flavus</i> in the inoculated cocoa bean and: A). Aflatoxin G_1 ; B). Aflatoxin G_2	5.6
122	CO_2 and O_2 concentration changes during 72-hour exposure time of cocoa beans fumigation with 80% CO_2 under plastic enclosure	6.1

Page

6.2	Methyl bromide residue content of cocoa beans fumigated with several dosages of methyl bromide gas within 24 hours exposure time	124
6.3	Phosphine residue content of cocoa beans fumigated with several dosages of phosphine tablet within 4 days exposure time	126
7.1	Diagrammatic representation of experimental layout using 1 m ³ high-pressure chamber	120
7.2	Lateral view of the high-pressure chamber	132
7.3	Changes in CO ₂ and O ₂ concentration during treatment with: a) 4 bar pressure; b) 7 bar pressure; c) 10 bar pressure; d) 13 bar pressure of CO ₂ gas inside the high-pressure chamber	135
7.4	Percent reduction in emergence (RIE) of <i>E. cautella</i> , <i>A. fasciculatus</i> and <i>T. castaneum</i> after treatments with CO_2 under high-pressure	136

LIST OF ABBREVIATIONS

kg	: kilogram
g	: gram
mg	: milligram
μg	: microgram
ng	: nanogram
m	: metre
cm	: centimetre
mm	: millimetre
μm	: micrometre
nm	: nanometre
mL	: millilitre
μL	: microlitre
mM	: millimole
hr	: hour
min	: minute
sec	: second
L	: litre
lb	: pound
М	: molarity
Ν	: normality
ppb	: part per billion
ppm	: parts per million
t	: metric tonne
v	: volume
bp	: boiling point
RH	: relative humidity
rpm	: rotation per minute
eq	: equivalent

CHAPTER I

GENERAL INTRODUCTION

Protection of already produced grains is critical to human survival. Storage and warehousing have an important role to protect inherent natural nutritional values of grains and provide wholesome food, free of insect damage, live insects and mites, insects' fragments, molds, mycotoxins, and residues of pesticides.

The storage of cocoa beans in the tropics presents two potential problems: the spread of the storage product pest and the development of molds. The common storage insect, which attacks cocoa beans, is *Ephestia cautella*. Apart from the tropical warehouse moth, there are two other pests, *Lasioderma serricorne* (the tobacco beetle) and *Araecerus fasciculatus* (the coffee weevil) (Wood, 1985a). *Aspergillus* and *Penicillium* are the two main types of mold isolated from cocoa beans (Hansen and Keeney, 1970).

Currently, fumigation is still widely used as a rapid method to control storage pest of cocoa beans. Methyl bromide and phosphine are the most commonly used fumigant for treatment prior to storage and export of cocoa beans.

The current concern about the possible withdrawal of methyl bromide as a plant quarantine treatment stems from identification of the fumigant as an ozone depletant in the atmosphere (Catley, 1992). Methyl bromide is being phased out internationally under the Montreal Protocol in 1992. The Montreal Protocol is a treaty signed by over 160 countries to protect the stratospheric ozone layer, which protects the earth