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Block Backward Differentiation Formulae (BBDIY) methods of variable order is
derived to solve first order stifl ordinary differential cquations (ODEs).  These
methods computed two approximate solutions Yn+1 and gy, 0 at the points iy, g
and 2,40 of the initial value probleins (IVPs) concurrently in o block at cach step.
The numerical results are given to validate the method aud the performances
are being compared with the classical Backward Differentiation Formmlace (BDF)

method.

Furthermore. the stability properties and the stability regions for the BBDF meth-
ods are investigated to ensure the methods are useful for solving stiff ODEs. This
BEBDF is extended to variable order method in order to improve the efficiency
of the method. A single code is developed with fixed stepsize and implemented
using Microsoft Visnal C++ 2008 Express Edition and compared with odelbs and

ode23s which is run in MATLAB 7.1



A parallel scheme of the BBDF is derived in order to solve large problems in ODEs
using the Message Passing Interface (MPI) library run by the High Performance
Computer (IPC). The efficiency of the method is justified by the munerieal results
given. The results generated showed that these methods produced less computa-

tional time and achieved the desived accuracy.
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Gandaan Blok Formula Pembezaan ke Belakang untuk Menyeclesaikan
Peringkat Pertama Persamaan Pembezaan Biasa
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Pengerusi: Zarina Bibi Binti Ibrahim, PhD

Fakulti: Sains

Kaedah Blok Formula Beza Ke Belakang (BEBB) pelbagai peringkat dibina un-
tuk menyelesatkan persamaan pembezaan kaku blasa peringkat pertama (PPB).
IKacdah ini menghitung dua penyelesaian angoaran iy, dan Y2 pada titik a4
dan iy, 4o dari masalah nilai awal (MNA) secara serentak dalam satu blok pada
setiap langkah. Keputusan berangka diberikan untuk mengesahkan kaedalr terse-
but dan pelaksanaannya vang dibandingkan dengan kaedah klasik Formulasi Beza

Ke Belakang (FBB).

Selanjutnya. sifat kestabilan dan rantau kestabilan untuk kaedah BEBB disclidiki
bagi memastikan kacdah ind berguna untuk menvelesaikan PPB kaku, Kaedah
BEBB ini diperlnaskan dengan kaedah pelbagai peringkat dengan tujuan meningka-
tkan kecekapan kaedah. Kod tunggal dibangunkan dengan panjang langkah vang
tetap dan dilaksanakan dengan menggunakan Microsoft Visual C + + 2008 Ex-

press Edition dan dibandingkan dengan odel5s dan ode23s vang dijalankan dalam

MATLAB 7.1,



Satu skim selari BFBB diperolehi nntuk menvelesaikan masalah besar dalan PPB
menggunakan perpustakaan Mesej Antara Muka (MANM) dijalankan menggunakan
Komputasi Prestasi Tinggi (KPT). Kecekapan kaedalr ini diknatkan oleh hasil
berangka yang diberikan. Keputusan vang dihasilkan menunjukkan bahawa kaedah
ini menghasilkan kurang masa pengkomputeran dan mencapai ketepatan yang

dikehendaki.
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CHAPTER 1
INTRODUCTION

1.1  Introduction

Engineers, scientists and physicians are frequently confronted with mathematical
modelling problems that involved differential equations which are complicated to
he solved analyticallv. For instance. problems in physics such as projectile motion
of a satellite which involves accelerations and velocitios, determining the time of
death of John Doc using the temperature of the dead body and the surrounding,
and chemical kinetics may be modelled by differential equations. The differential
cquations can be divided into two categories. which ave ordinary differential cqua-

tions (ODEs) and partial differential equations (PDESs).

In order to solve ODEs numerically, there are two classes of numerical methods
such as the single step method and the nltistep method. The single step method
15 amethod which uses the computed previous value to calenlate the next value,
for exannple Fulers method and Runge-Kutta method. On the other hand. the
multistep method is amethod that requires other method such as {he single step
method to compute the backvalues, The examples of multistep methods are Adanms

method and Backward Differentiation Formmulae (DI,

I this chapter. we bhricfly introduce the problems and basie definitions related to

ODEs.



1.2 The Initial Value Problem

The mitial value problems (IVPs) for a svstem of 1 first order ordinary differential

equations (ODEs) is defined by
y’' - e, Y) . Y(a) v (1.1)

- VA T T

where ) eyl S Sl oy prens o]’ and

a <<,

The following theorem states the conditions on [7 (. Y) which guarantee the ex-

istence of a unigue sohition of the IVPs (1.1).

Theorem 1.1
Let (e Y7) e defined and continuous for all points (e Y'Y in the regron 1D defined
bya Z o b - x <y < . aandb finile. and lel horve crist a consiant I such

that. for cocry oy y' such that (- Y) and (Y)Y are both in 1),

(R Y SR/ (2, )

i P

P (1.2)

Proof: sce Henriei (1962).

The requirement (1.2) is known as a Lipschilz condition. and the constant [ as a

Lipschilz constant.

The next section discusses the basic theory of Tinear multistep method (LNM)

which is given by Lambert (1991).



1.3 Lincar Multistep Method (LMM)

In LML we find the approximate solution for (1.1) on the set of points vy, =
wython 00,20 00 - 1wy = aand ey, o b where Iis the stepsize. The general

form of LMNI can be written as

k 5
L“./‘U’”./ - /},Z/')"r‘/',” 1 (]_3)
70 Jou
where aj and S are constants subject to the conditions ay. . |ag] + Lol /0.

J

The method (1.3) is explicit if 4, - 0 and is hoplicit if S /0

1.4 Block Method

The block method is a method which uses compnted previons A blocks 1o calenlate
the current block where each block contains + points. The gencral form for 1 point

k- block was given by Ihrahim et al. (2008) as

5 h
Nt vj D Bifo (1-1)
()

J A1

where A and B3 arer by ranatrices,

The advantages of the block method are-

e 1o generate solutions at several points concurrentlyv

e able to reduce the computational time and total munber of steps while main-

taning the aceuracy.,

1.5 Convergence

It is important that an acceptable LNIN generates the solntion y, should converge
to the exact solution y () as the stepsize botends to zero. In order to ensiure the

3



method proposed converges, the method must satisfy the following theorem given

by Lambert (1973, 1991).

Theorem 1.2
The necessary and sufficient conditions for a LMM to be convergent are that it be

consistent and zero-stable.

Proof: sece Henriei (1962).

Definition 1.1

The LMM (1.3) is said Lo be consistent if it has order p > 1.

Lambert (1973, 1991) states that the method (1.3) s congistent if and only if

satisfies the Definition 1.2,

Definition 1.2

k i I
Zu] - ”:Z-)”./ Z)’I (1.h)
J=0 | .
and the linear difference operator L for LA (1.3) is defined by
j.
Llyte)y:hl =" oyt + jh) - W3 f e+ i) (1.6)
40

Definition 1.3
The difference operator (1.6) and the associated LAMM (1.7) are said to be of order
P lf (,'(J = (,'1 O (V’YI" ("I"H / 0.

The general formula for 'y is as follows.



1‘.

k

1 N [ . N

_2 ey E:ql- 7

(w(/" /! gy (g 1) J /;./ (1.7)
50 J- 0

where a; and i are the cocflicients in equation (1.3).

1.6 Stability Theory of Block Method

[t is stated i Shampine and Watts (1969), the stability problem would appear
to be the most serious limitation of block methods when used as o predictor-
corrector type combination (Chu and Hamilton. 1987). The stability properties
of the proposed method shonld he analvsed and their relevance in solving stiff

problens is deonstrated.

Definition 1.4
The LMM (1.3) is said to be zero-stable if no rool of the first characteristic poly-
nomial p(t) has modulus grealer than one. and if coery rool with modulus one s

sunple.

Definition 1.5
The method (1.3) is said to be absolutely stable in a vegion R of the compler plane

if. for all lh € R . all roots of the stability polynomial = (I /)) assoctated with the

method. satisfy |rol < 1. s - 1.2, .

dased on Dahlauist (1963). @ nmmerical method is able to solve stiff systems i it

satisfies the definitions helow.

Definition 1.6

A numerical method is said to be A-stable if its vegion of absolute stability contains

the whole of the left-hand half-plane Re(h\) < 0

However, Gear (1969) has given an alternative slackening of the A-stability re-
quirenient in the following definition by Lambert (1973, 1991).

-

)



Definition 1.7

A numcerical method is said (o be stiffly stable if

(i) its region of absolute stability contains Ry and Ro and

(i) it is accurate for all h € Ry when applicd o the scalar fest cquation y' = \y.
A a complexr constant with Re(hA) < 0, where Ry == {IN Re(hA) < —a}.

Ro = {MAl —a < Be(hX)y < bo—c < Iin(hA) < ¢} and a,b and ¢ are positive con-

stants.

1.7  Stiff Problems

There is no generally aceepted definition of a stiff problem but the definition given

by Lambert (1973, 1991) is widely used.

Definition 1.8

The systems of ODEs (1.1) is said Lo be stiff if

(i) Re(N) < O F = 1.2, and

(i) maxy [Re (A)| > ming [ Re (A\)] where Ny are the cigenvalues of the Jacobian

matrir, J = (i)i)
’ dy

1.8 Literature Review

Numerous rescarchers have proposed mnnerical methods for solving ODFEs. The
munerical methods can be categorized as one-step method and mualtistep method.
The famous one-step method is Runge-Kutta method and as for the multistep

method 1s Adams method.

The carliest one-step method is known as Enler’s method which has been intro-
duced by Leonhard Euler. It is not commonly used since there are several other
methods that are more efficient. (Rao. 2002). After afew vears pass by, many
rescarchers such as Jain et al. (1979). Chang and Guepp (1981) and Chawla et al.

0



(1995) have proposed several one-step methods to nnprove the ctficicney of the
nmumerical method. In 2003, Majid et al. (200:1) has established the 2-point block
one-step method to solve non-stiffl ODEs. The method uses the latest values of
approximation solutions for computing the approximation solution for the next
iteration. The previous iteration formmlac are one order less from the next iterae
tion formmlac. This technique is called the Gauss Seidel style. Consequently, the
method has given less nmber of steps. exeention time and produced hetter ap-
proximation solutions. Mchrkanoon et al. (2010) has extended the method Majid
et il (2001) suggested and it s called modified 2-point implicit block one-step
(M2PG) method for solving first order ODEs. In M2PG. the nnprovement is done
at the predictor formula for the second approximate solution. wherehy the proedic-
tor formula has added one frontvalue. v, 1 to compute the second approximatoe
solution. Hence. this formulais oue order more than the predictor formmla for the
first approximate solution. Conscequently, the method has produced less nmber

of steps without losing the accuracy of the solutions.

The classical approach for mmnerical method is computing asolution in cach step.
The block method is proposed to reduce the overhend of computing the solutions.
Thns. this method has bheen used by several rescarchers. for example Rosser (1967).
Shampine and Watts (1969) and Chu and Hamilton (TO87). LFatunla (1990) has
derived I-block r point by determining the order of the method. [ he method
will produce 7 solution simultanconsly in a block. Voss and Abbas (1997) pro-
posed one-step fonrth-order block method with variable stepsize for solving ODEs.
The method is based on the composite Simpson rule when applied in P(FECYE
mode. Even though the order of the method has increased, the error is still within
the given tolerance. Ken ot al. (2008). has introduced explicit and nnplicit

point block methods that have been derived using hnear diflerence operator. The



Newton-Gregory backward interpolation formmla is implementod usitg constant
stepsize.

The popular nultistep methods are Adams method and Backward Differentintion
Formulac (BDEF). The Adams method is commonly used to solve non-stifl prob-
lems. The Adams-Bashforth which is one of the families of the Adams method. is
among the carliest multistep method. This method requires one-step method to
caleulate the backvalues just hefore using the method. Given in Henriei (1962).
Moulton (1926) has improved the efficiency of the method by constructing Adams
Monlton method. The Adams Moulton method is an nnplicit method while the
Adams-Bashforth is an explicit method. In 1976, the work of fall et al. (1972)
is extended by Enright and Holl (1976) to test several methods that would fulfil
the requirement of the desired aceuracy. The methods tested are extrapolation
methods, variable-order Adams methods aod Runge-Kutta-Fehlberg method. The
results showed that the variable-order Adams mcthod produced the least munber
of function evaluation than the others. Tt is found that when derivative ovalua-
tions are relatively expensive, the variable-order Adams method are best (Enright
and Hull. 1976). Nevertheless. there are many other met hods proposed by others
researchers sueh as Burrage (1993). Omar (1999) and Majid (2004). Majid and
Suleiman (2006) have extended the work by Owmar (1999) in purpose to rednce the

computation costs by storing all the coefficionts of the mtegration in their codes.

Curtiss and Hirschfelder (1952) have introdnced the BDE. although at that time
they have mot given the name for the method (Henrici, 1962). The BDI is a
method that have been widely nsed by Gear (197:1) to solve various still problems.
Unfortunately. the order of the formulae used in these met hods st be restricted
to be six at most (Sacks-Davis. 1930} To overcome these diflienlties. Enright

et al (1975), Jackson and Sacks-Davis (1980). Sacks-Davis (1980) and Lebedey



(1998) have formulated a new method to improve the ofliciency for solving stifl
ODEs. Ibrahim (2006) has introduced Block BDE (BBDIY) method for solving
stift ODEs. The implementation of the method is nsing Newton'’s two stages it-

cration and stored all coefficient of differentiations to save the computational time.

In addition. there are many approaches and techniques that have been proposed
and implemented to enhance the efficiency of the methods. The ideas are to use
all the information in the literature to improve the method and to increase the
efficiency. Hence, the intention of this studv is to extend the method developed

by Ihrahim (2006) to variable order BBDE method for solving stiff ODTs.

1.9 Objective of the Study
The objectives of this study are

e to formulate the BBDI corvector formulae for fourth order, fifth order and

sixth order BBDE method.
e to investigate the stability properties of the derived method.

e to develop the codes for all formmlace nsing fixed stepsize and extend the

method to variable order method,

e to compare the perforimance in terms of wmaximum error and computational

thme.

e parallclization of the fourth order BBDE method.



1.10  Planning of the Thesis

The thesis comprises the following:

In chapter 1, we bricfly introduce the TVPs and definitions that can be used (o
solve the problemms. The problem is solved nsing block multistep method and the
convergence of the method is discussed. The definition of st ODISs is also mmoen-
tioned in the Jast part of the chapter.

I Chapter 2. the formlations of the fourth order, fifth order and sixth order
BBDIE method are presented. This chapter also discusses the 2-point block method
which means that the solitions are computed at two points concurrently and the
implementation of the method is derived. Numerical results are being discnssed

based on the performance of the existing methods.

The stability properties of the derived methods are elaborated finther in Chapter
3. The regions of the methods are plotted and discussed. We will seek the restrice-
tion on the stepsize of the method i order to achieve a nser-friendly eriterion. in

choosing the right stepsize,

The methods are extended to variable order method in Chapter 1. The strategy
of the method will be discussed further. In the chapter. the performance of the
method will be compared with odel5s and ode23s in MATLADB. Parallelization of
the fourth order method will be carried ont in Chapter 5 to increase the efficiency

of the method.

Finally, Chapter 6 will sinmarize the conclusion of the rescarch and the fture

work will be suggested.
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