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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

GENERALIZED DERIVATIONS AND AUTOMORPHISMS OF SOME
CLASSES OF ALGEBRAS

By

ABDULKADIR ADAMU

February 2019

Chairman: Sharifah Kartini Said Husain, PhD
Faculty: Institute For Mathematical Research

This thesis focus on the problem of generalized derivations of some classes of al-
gebras over complex field. It defined the concept of the generalization via some
complex parameters, and in particular on some values of the parameters. It uses
an algorithm in the computation of the generalized derivations of some algebras of
lower dimensional cases. Particularly, the associative algebras and the Leibniz al-
gebras. The results of the computations are presented in a matrix form, and further
interpreted. Thus, different subalgebras, subspaces, and two one-parametric sets of
linear operators are obtained. Intersection among various subspaces are also found.
The classification result of the generalized derivation of algebras are given. Eight
different subspaces and their structures are found in the case of associative algebra,
which includes, the classical derivation. In the Leibniz algebra case, we had eight
subspaces too, with different structures, it includes two one-parametric sets as well.
Furthermore, by using the two one-parametric sets, two invariant functions are de-
fined. The functions together with some criteria are used to establish contractions
among algebras of lower dimensions. The list of contractions among the Leibniz
algebras and the associative dialgebras of dimensions 2 and 3 are given. The work
also compute the automorphism group of the Leibniz and the associative dialgebras.
The work also described the concept of a generalized automorphism of algebras. The
concept is defined with the aid of some sets of automorphisms. It is found out that,
there exists an isomorphism between some corresponding sets of generalized deriva-
tions and the generalized automorphisms. In the same way, we found an isomor-
phism among various intersections of the subspaces of the generalized derivations
with that of the generalized automorphisms. The inner derivation of algebras is also
looked into. As a result, additional invariant characteristic of algebras are found.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENERBITAN DAN AUTOMORFISMA TERITLAK BAGI BEBERAPA
KELAS ALJABAR

Oleh

ABDULKADIR ADAMU

Februari 2019

Pengerusi: Sharifah Kartini Said Husain, PhD
Fakulti: Institut Penyelidikan Matematik

Tesis ini memfokuskan masalah penerbitan teritlak bagi beberapa kelas aljabar ke
atas medan kompleks. Ia mentakrifkan konsep pengitlakkan melalui beberapa pa-
rameter kompleks, dan khususnya pada beberapa nilai parameter. Ia menggunakan
algoritma dalam pengiraan penerbitan teritlak bagi beberapa aljabar untuk kes berdi-
mensi rendah. Khususnya, aljabar bersekutu dan aljabar Leibniz. Hasil pengiraan
dibentangkan dalam bentuk matriks, dan diterjemahkan selanjutnya. Oleh itu, subal-
jabar, subruang, dan dua set satu parametrik pengoperasi linear yang berbeza diper-
olehi. Persilangan di antara pelbagai subruang juga dijumpai. Hasil pengkelasan
penerbitan teritlak aljabar diberikan. Lapan subruang yang berbeza dan strukturnya
didapati dalam kes aljabar bersekutu, termasuk, penerbitan klasik. Dalam kes al-
jabar Leibniz, kami juga mempunyai lapan subruang dengan struktur yang berbeza,
ia termasuk dua set satu parametrik. Seterusnya, dengan menggunakan dua set satu
parametrik, dua fungsi tak varian ditakrifkan. Fungsi ini bersama-sama dengan be-
berapa kriteria digunakan untuk mewujudkan pengecutan di kalangan aljabar berdi-
mensi lebih rendah. Senarai pengecutan di antara aljabar Leibniz dan dwialjabar
bersekutu berdimensi 2 dan 3 diberikan. Kerja ini juga mengira kumpulan automor-
fisma Leibniz dan dwialjabar bersekutu. Kerja ini juga menghuraikan konsep auto-
morfisma teritlak aljabar. Konsep ini ditakrifkan dengan bantuan beberapa set au-
tomorfisma. Didapati, terdapat hubungan isomorfisma di antara beberapa set pener-
bitan teritlak dan automorfisma teritlak. Dengan cara yang sama, kami mendapati
isomorfisma di antara pelbagai persilangan subruang dari penerbitan teritlak dengan
automorfisma teritlak. Penerbitan dalaman aljabar juga diambil kira. Sebagai hasil,
ciri-ciri tambahan tak varian aljabar diperolehi.
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CHAPTER 1

INTRODUCTION

1.1 Background

The concept of Leibniz algebras started with the work of a Russian mathematician,
where it is refer to as D-algebras. It was later re-discovered and developed by Loday
and Pirashvili (1993). Loday described it as a non-antisymmetric version of Lie
algebras, whose bracket satisfies another identity, called Leibniz identity. Loday
also described some relationships among different kind of algebras, with the main
motivation of searching the periodicity of K-theory. The Loday diagram in Figure
1.1 defines the relationships among these algebras, namely associative, Lie, Leibniz,
zinbiel, dendriform and associative dialgebras.

Recently a strong connection is found between these algebras of Loday with
other areas of mathematics e.g classical geometry, non-commutative geometry
and Physics (Rakhimov and Atan (2012)). Since Leibniz algebras was defined as
a non-antisymmetric generalization of the Lie algebras, this fact allows to prove
many properties of the Leibniz algebras with the aid of known results in Lie
algebras, numerous remarkable results were obtained in the Leibniz algebras as a
result, for example analogues of Lie’s theorem, Engel’s theorem, Cartan criterion,
Levi decomposition theorem, etc are extended to the Leibniz algebras. However
some results hold differently in Leibniz algebra case, for example concept of
representations is defined differently for Lie algebra case. The concept of faithful
representations of Leibniz algebra as well as Leibniz algebra cohomology too are
also giving differently from Lie case.

Zinb

Dend

As

Comm

Dias

Leib

Lie

Figure 1.1: Loday diagram

Generalized derivation of finite dimensional algebras form important area of
activities in mathematics. It provide useful insight into the nature of the algebras
and their invariants. Several important works on the generalized derivation of
Lie algebra appeared in Filippov (1998, 1999), Leger and Luks (2000), Hartwig
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et al. (2006) and Novotnỳ and Hrivnák (2008) which together added new objects
to the existing set of invariants of Lie algebra. Another useful application of the
generalized derivations of finite-dimensional algebras is the concept of contraction
of algebras, for instance the contraction of Lie algebras is an important area of
research developed by Segal et al. (1951), and Craig (1990), and also in the work
of Nesterenko and Popovych (2006). It was also studied by Burde and Steinhoff
(1999),and in the work Hrivnák (2015), and recently in the work of Escobar et al.
(2016). Investigation of contraction of Lie algebras was motivated by its numerous
applications in different field of physics, and mathematics. For example, in the
study of invariants, in representation and in the study of special functions. In a
famous work by Burde and Steinhoff (1999) they use contractions as a tool to study
Lie algebra varieties. There arose naturally the idea of extending the concept of
contraction (sometimes refer to as degenerations) to the fold of Leibniz algebras.
Results on contractions of nilpotent Leibniz algebras was presented in the work of
Rakhimov (2006), and in Rakhimov and Atan (2012), it was also recently discussed
in the work of Kaygorodov et al. (2017). Throughout the works mentioned here, the
results of the contraction were achieved with the aid of some contraction invariants,
which satisfied some criterion for establishing the contraction among the Leibniz
algebras, mostly in low dimensional cases.

In this work we introduce a concept of an (α,β ,γ)−derivation of a Leibniz algebras
as a form of a generalized derivation. Computations of all the (α,β ,γ)−derivations
of low-dimensional Leibniz, Lie, associative algebras and the associative dialgebras
were given. The focus here is to find some relevant properties of the generalized
derivations, with the motive of finding some additional invariants of some algebras,
especially Leibniz algebras and associative dialgebras. All subalgebras and sub-
spaces obtained as a result of the derivations are investigated and their properties are
described. Invariant functions ξ and ξ

′
are defined and there values were calculated,

the values obtained were used to calculate contractions among two and three
dimensional Leibniz and associative dialgebras algebras. The work also introduces
the concept of a generalized automorphisms of Leibniz and associative dialgebras.
The computations and list of the automorphisms group of the Leibniz and the
associative dialgebras are provided, in the same way some important theoretical
results on the generalized automorphisms were proven.

1.1.1 Basic concepts

In this subsection, we introduce some basic concepts and notations which are to be
refer to, throughout this thesis. Let V be a vector space over a field K with a binary
operation:

σ : V ×V →V.

2
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If the binary operation is bilinear, then V is said to be an algebra over the field K
i.e an algebra is a vector space V with a bilinear binary operation which satisfies the
conditions:

σ(α1x+α2y),z) = α1σ(x,z)+α2σ(y,z),

σ(z,α1x+α2y) = α1σ(z,x)+α2σ(z,y),∀x,y,z ∈V andα1,α2 ∈ K.

Let us introduce some important well-known class of algebras which are relevant in
this thesis, for purpose of clear presentation.

Definition 1.1 [Loday and Pirashvilli, 1993] An associative algebra A is a vector
space over a field K equipped with bilinear map σ : A× A :−→ A satisfying the
associative law:

σ(σ(x,y),z) = σ(x,σ(y,z)) for all x,y,z ∈ A. (1.1)

Sometimes notations x · y or xy will be used for σ(x,y). Among simple examples
of an associative algebras include a set of linear transformations on a vector space
over a fixed field, the square n×n matrices with entries from a fixed field forms an
associative algebra over field of reals, the complex numbers form a 2-dimensional
associative algebras over the real numbers.
Another algebra of great importance here is the Lie algebra L, we use the notation
[·, ·] as our function “σ”. It is defined as a vector space over the field K, the function

[·, ·] : L×L→ L

where the following conditions hold;

[x,x] = 0 (1.2)

and
[x, [y,z]]+ [z, [x,y]]+ [y, [x,z]] = 0, ∀x,y,z ∈ L. (1.3)

The condition [x, [y,z]]+ [z, [x,y]]+ [y, [x,z]] = 0 is refer to as the Jacobi identity, and
the condition [x,x] = 0 is called the skew-symmetry. In fact, it follows

0 = [x+ y,x+ y] = [x,x]+ [x,y]+ [y,x]+ [y,y] = [x,y]+ [y,x],

thus,
[x,y] =−[y,x].

Several examples of Lie algebras are available in literature. For example, every
vector space with the bracket [x,y] = 0, ∀x,y ∈ L is an abelian Lie algebra. Also
consider (R3, [·, ·]), where the bracket are defined by the cross-product of the vectors
in R3, it make an R3 a non abelian Lie algebra. Another example of a Lie algebra

3
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is an n×n square matrices Mn(K) over an arbitrary field K where the multiplication
[A,B] = AB−BA holds it is denoted as GL(n). The endomorphisms of V i.e EndV
over K, with the bracket [ f ,g] = f ◦g−g◦ f is also a Lie algebra, denoted as GL(v,k)
or simply GL(V ) if the field is known, it is called a general linear group.

Definition 1.2 [Loday, 2001] A Leibniz algebra L is a vector space over a field K,
together with a bilinear map

[·, ·] : L×L→ L.

If it satisfies the following condition;

[x, [y,z]] = [[x,y],z]− [y, [x,z]] ∀x,y,z ∈ L. (1.4)

This is actually a left Leibniz algebra, a right Leibniz algebra is defined similarly
with the identity written in the following way

[[x,y],z]] = [x, [y,z]]− [[x,z],y] ∀x,y,z ∈ L.

Note here that if the condition ;
[x,x] = 0.

holds for all x,y,z ∈ L, then the Leibniz algebra becomes a Lie algebra, since the
Leibniz identity in that case equals the Jacobi identity. Therefore all Lie algebras
are Leibniz algebras, in other words Leibniz algebras are the generalization of Lie
algebras. Throughout this thesis all algebras are defined over a complex field C. We
now consider some examples of a Leibniz algebra.

The following statements of definitions, theorems and propositions on Leibniz alge-
bras can be found in Loday and Pirashvili (1993), Gorbatsevich (2013) and in the
work of Lin and Zhang (2010).
Any Lie algebra is an example of Leibniz algebra. Consider an algebra L of dimen-
sion two with multiplication as follows [x,x] = 0, [x,y] = 0, [y,x] = x, [y,y] = x. Then
L is Leibniz algebra. Another example is an associative algebra A over K equipped
with a linear operator T : A→ A with the condition T 2 = T, where the multiplication
[·, ·] : A×A→ A is defined as [x,y] : (T x)y− y(T x), ∀x,y ∈ A.
Since, [x,y] = T x · y− y · T x ∈ A. It is clear that A forms a Liebniz algebra, if we
consider the Leibniz identity as follows:

[x, [y,z]] = T x[y,z]− [y,z]T x.

Also,
[x,y],z] = T [x,y]z− zT [x,y].

Similarly,
[y, [x,z] = Ty[x,z]− [x,z]Ty.

Comparing the left and the right sides of the identity proves that A forms a Leibniz
algebra, however A is a Lie algebra, if and only if T = id.

4
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Definition 1.3 [Novotny and Hrivnak,2008] Let {ek} be a set of a basis vectors
for the underlined vector space of an arbitrary algebra. The numbers γk

i j ∈ K defined
as ei · e j = ∑

k
γk

i jek are called the structure constants with respect to the basis {ek}.

Let L and L
′

be two Leibniz algebras and a linear map; f : L→ L
′

is a homomorphism
if it preserves multiplication i.e ; f [x,y] = [ f (x) ∗ f (y)], for all x,y ∈ L. The
kernel of homomorphism is an ideal in L, if the ker f = 0, then the homomorphism
becomes an isomorphism, hence L and L

′
are said to be isomorphic, written L∼= L

′
.

All standard morphisms of Lie algebras hold in the Leibniz algebras as well.
Let GL(V ) denote the group of all linear maps on an arbitrary vector space V , for
the Leibniz algebra (L, [·, ·]) we define the GL(L) as GL(V ). Therefore we can write
EndL = { f : L→ L| f is linear}. So, if f : L→ L

′
is an isomorphism of Leibniz

algebras L and L
′
, then the map

g : EndL→ EndL
′
∀d ∈ EndL

defined as
g(d) = f d f−1 (1.5)

is an isomorphism of Leibniz algebras EndL and EndL
′
. An isomorphism of the

Leibniz algebra L to itself ; f : L→ L is called an automorphism of the Leibniz algebra
(L, [·, ·]). The set of all the automorphism forms a multiplicative group AutL which
coincides with GL(L) i.e

AutL = { f ∈ GL(L)| f ([x,y]) = [ f (x), f (y)] ∀x,y ∈ L}. (1.6)

The isomorphism relation between two Leibniz algebras L and L
′

is an equivalence
relation, therefore the set of all algebras can be decomposed into an isomorphism
classes i.e the coset of the equivalence classes of L written as [L]. Now L

′ ∈ [L] is
true if and only if L∼= L

′
. A map d ∈ EndL is a derivation of a Leibniz algebra if the

following holds ;

d([x,y]) = [d(x),y]+ [x,d(y)], ∀x,y ∈ L. (1.7)

The set of all derivations of L is given as;

DerL = {d ∈ EndL|d([x,y]) = [d(x),y]+ [x,d(y)], ∀x,y ∈ L}. (1.8)

Remark 1.1 Obviously, DerL is a Lie algebra. Let L be a Leibniz algebra, a left
multiplication operator lx : L→ L defined as lx(y) = [x,y] and a right multiplication
operator rx : L→ L defined as rx(y) = [y,x] for all x,y ∈ L.

Proposition 1.1 [Gorbatsevich, 2013]For every right Leibniz algebra a right multi-

5
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plication operation is a derivation. Obviously, re-writting the identity, we have:

rz([x,y]) = [rz(x),y]+ [x, [rz,y]

take rz = d, we get
d([x,y]) = [d(x),y]+ [x,d(y)].

Similarly a left multiplication operation is a derivation in a left Leibniz algebra.

Let N be a non empty set and E a subset of [L], a map h : E → N is an invariant
characteristic of E. Consider E to be the set of all isomorphism classes of L and set
N =N, for any [L]∈ E, then we define h[L] = dimL = n. Obviously h is well defined,
and has values for the isomorphic algebras L and L

′
, it is called a numerical invariant.

Similarly another example of a numerical invariant for a Leibniz algebra L can be
written as hder[L] = dimderL. Therefore, for any L,L

′ ∈ [A], we have

g(derL) = derL
′
. (1.9)

Therefore, dimderL = dimderL
′
, hence the map hder is well defined. Let (L, [·, ·])

be a Leibniz algebra, we call adz(x) = [x,z] , an inner derivation of L,∀x,z ∈ L, It
is denoted as Inn(L), the inner derivation of L is a subspace of Der(L). Let L be a
Leibniz algebra and I is a subspace of L , i.e I ⊆ L, then I is a subalgebra if [I, I]⊆ I.
Let L be a Leibniz algebra and I is a subspace of L , i.e I ⊆ L, then I is a left ideal
if [L, I] ⊆ I. Similarly I is a right ideal if [L, I] ⊆ I. Hence I is an ideal of L if it
is both left and right ideal. The sum and intersection of two ideals of a Leibniz
algebra L is an ideal. Let L be a Leibniz algebra. For any x,y ∈ L we define a left
center of L as Zl = {x ∈ L|[x,y] = 0, ∀ y ∈ L}. Similarly a right center is giving as
Zr = {x ∈ L|[y,x] = 0∀ y ∈ L}. So the center of L is defined as

Z(L) = {x ∈ L|[x,y] = [y,x] = 0 ∀y ∈ L}. (1.10)

The center is clearly the intersection of the left and the right center i.e Z(L) = Zl∩Zr.

Remark 1.2 The left center of a left and a right Leibniz algebra is a two sided ideal,
However the right center of a left and also of a right Leibniz algebra is a subalgebra.

Suppose L is a Leibniz algebra and L
′

is a subspace of L. A left centralizer is defined
as Zl

L(L
′
) = {x ∈ L|[L′ ,x] = 0. Similarly a right centralizer Zr

L(L
′
) = {x ∈ L|[x,L′ ] =

0. Hence a centralizer of L is the intersection of the left and the right ;

ZL(L
′
) = {x ∈ L|[L

′
,x] = [x,L

′
] = 0}. (1.11)

Suppose L is a Leibniz algebra. For any x,y ∈ L, we define a left centroid of L as
Γl

L = {d ∈ EndL|d([x,y]) = [d(x),y],∀x,y ∈ L}. Similarly a right centroid is given
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as Γr
L = {d ∈ EndL|d([x,y]) = [x,d(y)],∀x,y ∈ L.} Hence a centroid of L is

ΓL = {d ∈ EndL|d([x,y]) = [d(x),y] = [x,d(y)],∀x,y ∈ L}. (1.12)

A representation of G on V is a group homomorphism ρ : G→GL(V ) which induces
an action of G on V by the relation (g · f )(x) := f (g−1(x)) on K[V ] where K[V ] is a
space of polynomial function on V. For all x ∈V,g ∈ G and f ∈ K[V ]. Note that the
function f ∈ K[V ] is called an invariant if f (x) = f (gx), for all x ∈V and g ∈ G.
Consider the following derived series of a Leibniz algebra
D0(L)⊃ D1(L)⊃ D2(L)⊃ .... written as:

D0(L) = L, D1(L) = [L,L], Dn+1(L) = [DnL,DnL], ∀n ∈ N∗.

Whenever the derived series comes to {0} after some finite steps, then the Leibniz
algebra L is called solvable. Another the series L1 ⊃ L2 ⊃ ... defined as

L1 = L, Ln+1 = [Ln,L], ∀n ∈ N

is called a descending central series. Whenever the descending series comes to {0}
after some finite steps, then the Leibniz algebra L is called nilpotent. An ascending
central series C0(L)⊂C1(L)⊂ .... is defined by

C0(L) = 0,Cn+1(L)/Cn(L) =C(L/Cn(L)) ∀n ∈ N∗.

Remark 1.3 From the definitions of the series, some important numerical invariants
are observed and defined as follows:

dn(L) = dimDn(L); ln(L) = dimLn+1; cn(L) = dimCn+1(L).

Theorem 1.1 [Gorbatsevich, 2013]A Leibniz algebra L is nilpotent if and only if
the right multiplicative operator Lx(y) = [y,x] is nilpotent for any x,y ∈ L.

A representation of Leibniz algebra L is k−module M equipped with two actions of
L;

[·, ·] : L×M→M

and
[·, ·] : M×L→M

which satisfies the following conditions;

[m, [x,y]] = [[m,x],y]− [[m,y],x],

together with
[x, [m,y]] = [[x,m],y]− [[x,y],m]

and
[x, [y,m] = [[x,y],m]− [[x,m],y]
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for any m ∈M and x,y ∈ L.

A Leibniz algebra representation is called symmetric if for all x,y ∈ L and m ∈ M,
the relation

[m,x]+ [x,m] = 0

is true, and anti-symmetric if
[x,m] = 0,

and a trivial representation is when

[x,m] = 0 = [m,x].

A Leibniz algebra cohomology: Let L be Leibniz algebra and M be a representa-
tion of L. Let

Cn(L,M) := HomK(L
⊗

n,M), n > 0

and
dn : Cn(L,M)→Cn+1(L,M)

be a K− homomorphism defined by;

(dn f )(x1, ...,xn+1) := [x1, f (x2, ...,xn+1)]+
n+1

∑
i=2

(−1)i[ f (x1, ..., x̂i, ...,xn+1),xi]

+ ∑
1≤i< j≤n

(−1) j+1 f (x1, ...,xi−1, [xi,x j],xi+1, ..., x̂ j, ...,xn).

Then, (CL∗(L,M),d) is a cochain complex, whose cohomology is called the coho-
mology of the Leibniz algebra L with coefficient in the representation of M:

HL∗(L,M) := H∗(C∗(L,M),d).

Consider the case of n = 0, the Leibniz cohomology becomes a submodule of a left
invariant of the representation, defined as ;

HL0(L,M) = {m ∈M|[x,m] = 0∀ x ∈ L}.

When n = 1, a 1-cocycle is a k-module homomorphism δ : L→ M which satisfies
δ ([x,y]) = [δ (x),y] + [x,δ (y)]. which is actually a derivation from L to M. The k-
module of derivation is denoted as der(L,M). It is called a coboundary if it is of the
form, adm = [x,m] for some m ∈M, therefore the 1-cocycle is given as;

HL1(L,M) = der(L′M)/adm

where adm is an inner derivation. The following statements and propositions can be
found in Novotnỳ and Hrivnák (2008).
The set of complex n×n invertible matrices forms a group with respect to multiplica-
tion, it is called a general linear group denoted as GL(n,C), its subsets SL(n,C), are
the matrices with +1 determinants which also form a group in the same way, usually
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referred to as special linear groups. The vector spaces gl(n,C) and sl(n,C) are Lie
algebras. The Lie algebra structure is given with respect to the Lie brackets defined
as ; [X ,Y ] = XY −Y X . It is also clear that GL(n,C) and SL(n,C) are complex Lie
groups.
Let G be a subgroup of a group GL(n,C), if there exists a set of polynomials
Q⊂ C[u11,u12, ...,unn] such that

G = {(vi j) ∈ GL(n,C)|p(v11,v12, ...,vnn) = 0,∀p ∈ P}

then G is called an algebraic group. Let A be an arbitrary algebra, giving as
A = (V, f ). A subgroup GL(A) is an algebraic group if it is represented by an al-
gebraic group in GL(n,C) with respect to the basis {e1,e2, ...,en} of the underlined
vector space V. Let A = (V, f ) be an arbitrary algebra over a complex field C. Then
the automorphism group AutA is an algebraic group in GL(A). The property of an
exponential map is important in the study of Lie groups. Consider the map

exp : gl(n,C)→ GL(n,C)

given as:

eX =
∞

∑
n=0

1/n!Xn = I +1/2X2 + · · ·,

for any X ∈ gl(n,C). Obviously the map is well defined and surjective too. Since the
group G is linear, it follows that our set:

g = {Y ∈ gl(n,C|exp(λY ) ∈ G,∀λ ∈ R}

is a Lie algebra over R.

Remark 1.4 Recall that a linear group G in GL(n,C) is complex if and only if, its
Lie algebra g is a subset of gl(n,C), and if it also satisfies the Lie bracket over the
field C. Additionally for any two linear groups G,G

′
from the Lie group, the inter-

section of g,g
′

is the Lie algebra of the two linear groups. Moreover the subgroups
G,G

′
can be regarded as an algebraic groups, hence the algebraic groups of the Lie

groups here, are complex linear groups.

We now bring the definition of contraction (or continuous contraction) of Leibniz
algebras as follows:

Definition 1.4 [Rakhimov and Atan, 2012]Let L1 = (V, [·.·]1) be a complex Leibniz
algebra and ft : (0,1] → GL(V ) a continuous mapping where ft(ε) ∈ GL(V ) for
0 < ε ≤ 1. If the limit [x,y]2 = limε→0+ ft(ε)−1[ ft(ε)x, ft(ε)y] exists ∀x,y ∈V, then
algebra L2 = (V, [·.·]2) is called a one-parametric continuous contraction(or in short
contraction)of L1 = (V, [·.·]1) written as L1 7→ L2.
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The following propositions can be found in Novotnỳ and Hrivnák (2008),Nesterenko
and Popovych (2006) and Burde (2005) describe the criteria for computing the con-
traction of algebras.

Proposition 1.2 Any two of two three- dimensional complex Lie algebras L1 and
L2 are isomorphic if and only if ξ L1 = ξ L2 or ξ

′
L1 = ξ

′
L2.

Proposition 1.3 Let L2 be a proper contraction of L1 where L1 and L2 are complex
Lie algebras, then dimDerL1 < dimDerL2.

Proposition 1.4 Let L2 be a proper contraction of L1 where L1 and L2 are complex
Lie algebras, then it holds:
1. ξ L1 ≤ ξ L2.
2. ξ L1(1)< ξ L2(1).

Here we introduce in this work the concept an algebra with two product operations
which are refer to as dialgebras. Basic definitions and properties of dialgebras are
giving in the works of Loday (2001), Lin and Zhang (2010) and also in Rakhimov
and Fiidow (2015). We now focus on an associative dialgebra.

Definition 1.5 [Loday, 2001]Associative dialgebras: An associative dialgebra is a
vector space D, over a field K, equipped with two associative multiplication ` and a
called right and left multiplications respectively, together with a bilinear maps;

`: D×D→ D,
a: D×D→ D.

If it satisfies the following five conditions;

(x a y) a z = x a (y ` z),

(x a y) a z = x a (y a z),

(x ` y) a z = x ` (y a z),

(x a y) ` z = x ` (y ` z),

(x ` y) ` z = x ` (y ` z),∀x,y,z ∈ D.,

However, we can have the following equivalent formulation, i.e three di-associativity
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conditions instead of the five conditions above,

x a (y a z) = x a (y ` z),

(x ` y) a z = x ` (y a z),

(x ` y) ` z = (x a y) ` z,∀x,y,z ∈ D.

We denote by Dias the category of dialgebras.

Remark 1.5 A bar unit in a dialgebra D is the element e ∈ D, such that

x ` e = e a x,∀x ∈ D.

The subset of a bar units of associative dialgebra D is called its halo.

Let A be an associative algebra over the field K, then the formulas x a y = xy = x ` y,
defines a dialgebra structure on A. If the unit of an associative algebra e = 1, then
e = 1 is the unit of the dialgebra D and the set {1} is the halo of D.

Let (A,d) be a differential associative algebra over the field K, and define the left and
the right product on A by the relations: x a y := xdy and x ` y := dxy, together with
d2 = 0 defines an associative dialgebra structure on A.
Suppose K[x,y] is a polynomial algebra over K(Char = 0) with two indeterminates x
and y. Let defines the right product ` and the left product a on K[x,y] as follows:

f (x,y) ` g(x,y) = f (x,y)g(y,y)

and
f (x,y) a g(x,y) = f (x,x)g(x,y).

Obviously (K[x,y],`,a) is an associative dialgebra.

Remark 1.6 It is clear here that K[x,y] can be considered as a Leibniz algebra, hav-
ing the Leibniz bracket as

[ f (x,y) ·g(x,y)] = f (x,y)(g(y,y)−g(x,x)).

In fact any associative dialgebra can be naturally defined as a Leibniz algebra.

Suppose that I is the subspace of the associative dialgebra D. If for any x,y ∈ D,
we have x ` y ∈ I and x a y ∈ I, then I is called a subdialgebra of D. Suppose that
I is the subspace of the associative dialgebra D. If for any x ∈ D, and y ∈ I, we
have x ` y ∈ I and x a y ∈ I, and y ` x ∈ I and y a x ∈ I, then I is called an ideal
of D. Let (D

′
,`,a),(D′′ ,`,a) be two associative dialgebras over a field K, then a
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homomorphism from D
′

to D
′′

is a K - linear map such that

f (x ` y) = f (x) ` f (y)

and
f (x a y) = f (x) a f (y)

for all x,y ∈ D.

Remark 1.7 If D
′
= D

′′
then the homomorphism becomes an endomorphism.

Let (D,`,a) be an associative dialgebra over a field K, and f ∈ EndD if f satisfies
the condition:

f (x ` y) = f (x) ` f (y)

and
f (x a y) = f (x) a f (y)

for all x,y ∈D and f is bijective, then f is called an automorphism of the associative
dialgebra D. The set of all automorphisms of D is denoted as AutD.

A linear transformation d : D→ D which satisfies the following conditions:

d(x ` y) = d(x) ` y+ x ` d(y)

and
d(x a y) = d(x) a y+ x a d(y)

for all x,y ∈ D, is called a derivation of the associative dialgebra. The set of all
derivations of D is a subspace of EndKD.

Remark 1.8 The subspace above equipped with the bracket [d1,d2] = d1 ◦d2−d2 ◦
d1, is a Lie algebra and is denoted as DerD.

Theorem 1.2 [Rikhsiboev et al,2014]Any two-dimensional complex associative
dialgebra is included in the following isomorphism classes:

Dias1
2 :e1 a e1 = e1, e2 a e1 = e2, e1 ` e1 = e1;

Dias2
2 :e1 a e1 = e1, e1 ` e2 = e2, e1 ` e1 = e1;

Dias3
2 :e1 a e1 = αe2, e1 ` e1 = e2, α ∈ C;

Dias4
2 :e1 a e1 = e1, e2 a e1 = e2, e1 ` e1 = e1, e1 ` e2 = e2;

where {e1,e2} is a basis.

Theorem 1.3 [Rakhimov et al,2015] Any three-dimensional complex associative
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dialgebra is included in the following:

Dias1
3 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e2 = e2, e3 ` e3 = e3;

Dias2
3 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e2 = e2, e3 ` e3 = e3,

e2 a e1 = e1;

Dias3
3 :e1 a e2 = e1, e2 a e2 = e2, e3 a e3 = e3, e2 ` e2 = e2, e3 ` e1 = e1;

Dias4
3 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias5
3 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e1− e2;

Dias6
3 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e1,

e3 ` e2 = e2;

Dias7
3 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e2,

e3 ` e2 = e2;

Dias8
3 :e1 a e3 = e2, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e1 ` e3 = e2,

e3 ` e2 = e2, e3 ` e1 = e1− e2;

Dias9
3 :e3 a e1 = e2, e3 a e2 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e1,

e3 ` e2 = e2;

Dias10
3 :e3 a e1 = e1, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e1;

Dias11
3 :e3 a e1 = e1, e2 a e3 = e2, e3 a e3 = e3, e3 ` e3 = e3, e3 ` e1 = e1,

e3 ` e2 = e2;

Dias12
3 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 ` e3 = e3, e1 ` e3 = e1,

e3 ` e1 = e1, e3 a e3 = e3;

Dias13
3 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 ` e3 = e3, e1 ` e3 = e1,

e3 a e1 = e1, e3 ` e2 = e2, e3 a e3 = e3;

Dias14
3 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e1, e3 a e3 = e3, e1 ` e3 = e1 + e2,

e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;

Dias15
3 :e1 a e1 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias16
3 :e1 a e3 = e2, e3 a e1 = ke2, e1 ` e1 = me2, e3 ` e1 = pe2,

e3 ` e3 = qe2, e1 ` e3 = ne2 wherek,m, p,q ∈ C;

Dias17
3 :e1 a e1 = e2, e1 a e2 = e3, e2 a e1 = e3, e1 ` e1 = e2 + e3, e1 ` e2 = e3,

e2 ` e1 = e3;

Dias18
3 :e3 a e3 = e3, e3 ` e1 = e2, e3 ` e2 = e2, e3 ` e3 = e3;

Dias19
3 :e1 a e3 = e1, e2 a e3 = e2, e3 a e1 = e2, e3 ` e3 = e3, e3 ` e2 = e2,

e3 ` e3 = e3;

Dias20
3 :e3 a e1 = e2, e2 a e3 = e2, e1 a e3 = e1− e2, e3 a e3 = e3,

e3 ` e1 = e2, e3 ` e2 = e2, e3 ` e3 = e3;
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Dias21
3 :e1 a e3 = e1, e2 a e3 = e2, e3 a e3 = e3, e1 ` e3 = e2, e2 ` e3 = e2,

e3 ` e3 = e3;

Dias22
3 :e1 a e3 = e1, e1 ` e3 = e1, e3 ` e2 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias23
3 : = e1 a e3 = e1, e2 ` e3 = e2, e1 ` e3 = e1, e3 a e3 = e3, e2 a e2 = e2

e3 ` e3 = e3;

Dias24
3 :e3 a e1 = e1, e1 ` e3 = e1, e3 ` e1 = e1, e3 a e3 = e3, e3 ` e2 = e2,

e3 ` e3 = e3;

Dias25
3 :e1 a e1 = e1, e1 ` e1 = e1, e1 ` e2 = e2, e3 a e3 = e3, e3 ` e3 = e3;

Dias26
3 :e1 a e1 = e1, e1 a e2 = e1, e1 a e3 = e1, e2 a e1 = e2, e2 a e2 = e2,

e2 a e3 = e2, e3 a e1 = e3, e3 a e2 = e3, e3 a e3 = e3, e1 ` e1 = e1,

e1 ` e2 = e2, e1 ` e3 = e3, e2 ` e1 = e1, e2 ` e2 = e2, e2 ` e3 = e3

e3 ` e1 = e1, e3 ` e2 = e2, e3 ` e3 = e3;
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The following tables described the generalized derivations of associative dialgebras
[Fiidow et al, 2016] and the ”trivial” refers to a null matrix.

Table 1.1: Description of generalized derivations of two dimensional associative
dialgebras

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)
(

0 0
0 d22

)
1 (1,1,0)

(
d11 0
0 d22

)
2

D1
2 (1,0,1)

(
d11 0
0 d11

)
1 (1,0,0)

(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
0 0

d21 d22

)
2

(0,1,0)
(
trivial

)
2 (0,1,δ )

(
trivial

)
3

(1,1,1)
(

0 0
0 d22

)
1 (1,1,0)

(
d11 0
0 d11

)
1

D2
2 (1,0,1)

(
d11 0
0 d22

)
2 (1,0,0)

(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(

0 0
d21 d22

)
2 (0,1,δ )

(
trivial

)
4

(1,1,1)
(

d11 0
d21 2d11

)
2 (1,1,0)

(
d11 0
d21 d11

)
2

D3
2 (1,0,1)

(
d11 0
d21 d11

)
0 (1,0,0)

(
d11 0
d21 0

)
2

(0,1,1)
(

0 0
d21 d22

)
2 (0,0,1)

(
0 0

d21 d22

)
2

(0,1,0)

 0 0
d21 d22

 2 (0,1,δ )
(

0 0
d21 d22

)
2

(1,1,1)
(

0 0
d21 d22

)
2 (1,1,0)

(
d11 0
0 d11

)
1

D4
2 (1,0,1)

(
d11 0
0 d11

)
1 (1,0,0)

(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(
trivial

)
0 (0,1,δ )

(
trivial

)
0
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Table 1.2: Description of generalized derivations of three dimensional associa-
tive dialgebras

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

d11 0 0
0 0 0
0 0 0

 1 (1,1,0)

d11 0 0
0 d22 0
0 0 d33

 3

D1
3 (1,0,1)

d11 0 0
0 d22 0
0 0 d33

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

d11 d12 d13
0 0 0
0 0 0

 3

(0,1,0)
(
trivial

)
2 (0,1,δ )

t6 0 0
0 l6 0
0 0 l7∫

 3

(1,1,1)

d11 d12 0
0 0 0
0 0 0

 2 (1,1,0)

d11 0 0
0 d22 0
0 0 d33

 3

D2
3 (1,0,1)

d11 0 0
0 d22 0
0 0 d33

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(
trivial

)
2 (0,1,δ )

t6 0 0
0 l6 0
0 0 l7∫

 4

(1,1,1)

d11 0 0
0 0 0
0 0 0

 1 (1,1,0)

d11 0 0
0 d22 0
0 0 d33

 3

D3
3 (1,0,1)

d11 0 0
0 d22 0
0 0 d11

 2 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(
trivial

)
0 (0,1,δ )

t6 0 0
0 t6 0
0 0 l7

 2

(1,1,1)

d11 0 0
d21 m2 0
0 0 0

 2 (1,1,0)

d11 0 0
d21 m2 0
0 0 d33

 3

D4
3 (1,0,1)

d11 0 0
d21 d22 0
0 0 d22

 3 (1,0,0)

d11 0 0
d21 0 0
d31 0 0

 3

(0,1,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3 (0,0,1)

d11 d12 d13
d21 d22 d23
0 0 0

 6

(0,1,0)

 d11 d12 d13
−d11 −d12 −d23

0 0 0

 3 (0,1,δ )

 t3 d12 d13
d21 t4 −d13
0 0 t7

 4
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

d11 0 0
d21 m2 0
0 0 0

 2 (1,1,0)

d11 0 0
d21 m2 0
0 0 d22

 2

D5
3 (1,0,1)

d11 0 0
d21 m2 0
0 0 m2

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

 0 0 0
d21 d22 d23
0 0 0

 3

(0,1,0)
(
trivial

)
2 (0,1,δ )

t6 0 0
0 l6 0
0 0 l7∫

 3

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D6
3 (1,0,1)

d11 0 0
d21 d22 0
0 0 d22

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 2 (0,1,δ )

t9 0 0
0 t9 0
0 0 t9

 1

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
d21 m2 0
0 0 m2

 2

D7
3 (1,0,1)

d11 0 0
d21 m2 0
0 0 m2

 2 (1,0,0)

d11 0 0
d21 0 0
d31 0 0

 0

(0,1,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3 (0,0,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 0

(0,1,0)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3 (0,1,δ )

 t3 d12 d13
d21 t4 −d13
0 0 t7

 2

(1,1,1)

d11 0 0
d21 m2 0
0 0 0

 2 (1,1,0)

d11 0 0
d21 m2 d23
0 0 d11

 3

D8
3 (1,0,1)

d11 0 0
d21 m2 0
0 0 m2

 2 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

 0 0 0
d21 d22 d23
0 0 0

 3

(0,1,0)

 d11 d12 d13
−d11 −d12 −d23

0 0 0

 3 (0,1,δ )

t7 0 0
0 t7 0
0 0 t7

 1
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D9
3 (1,0,1)

d11 0 0
d21 m2 d23
d31 d31 d33

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
3

(0,1,0)

d11 d12 d13
d21 d22 d23
0 0 0

 6 (0,1,δ )

t9 0 0
0 t9 0
0 0 t9

 3

(1,1,1)

d11 0 d13
0 d22 0
0 0 0

 3 (1,1,0)

d11 0 0
0 d22 0
0 0 d11

 2

D10
3 (1,0,1)

d11 0 d13
0 d22 0
0 0 d22

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)

d11 d12 d13
0 0 0
0 0 0

 3 (0,1,δ )

t9 0 0
0 t9 0
0 0 t9

 1

(1,1,1)

d11 0 d13
0 d22 d23
0 0 0

 4 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D11
3 (1,0,1)

d11 0 d13
0 d22 0
0 0 d22

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)

d11 d12 d13
0 0 0
0 0 0

 3 (0,1,δ )

t9 0 0
0 t9 0
0 0 t9

 2

(1,1,1)

d11 0 0
0 d22 0
0 0 0

 2 (1,1,0)

d11 0 d13
0 d22 0
0 0 d11

 3

D12
3 (1,0,1)

d11 0 d13
0 d11 0
0 0 d11

 3 (1,0,0)
(
trivial

)
3

(0,1,1)
(
trivial

)
3 (0,0,1)

 0 0 0
d21 d22 d23
0 0 0

 3

(0,1,0)
(
trivial

)
3 (0,1,δ )

t9 0 −δd13
0 t9 0
0 0 t9

 2
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

d11 0 0
0 d22 d23
0 0 0

 3 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D13
3 (1,0,1)

d11 0 0
0 d11 0
0 0 d11

 1 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
3

(0,1,0)
(
trivial

)
2 (0,1,δ )

t7 0 0
0 t7 0
0 0 t7

 1

(1,1,1)

d11 0 0
0 d11 d23
0 0 0

 2 (1,1,0)

d11 0 0
0 d11 d13
0 0 d11

 2

D14
3 (1,0,1)

d11 0 d13
0 d11 0
0 0 d11

 2 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(
trivial

)
2 (0,1,δ )

t9 0 0
0 t9 0
0 0 l9

 4

(1,1,1)

d11 0 0
d21 2d110 0
0 0 0

 2 (1,1,0)

d11 0 0
d21 d11 0
0 0 d33

 3

D15
3 (1,0,1)

d11 0 0
d21 d11 0
0 0 d33

 3 (1,0,0)

d11 0 0
d21 0 0
d31 0 0

 3

(0,1,1)

 0 0 0
d21 d22 d22
0 0 0

 2 (0,0,1)

 0 0 0
d21 d22 d23
0 0 0

 3

(0,1,0)

 0 0 0
d21 d22 d23
0 0 0

 3 (0,1,δ )

 0 0 0
d21 d22 d23
0 0 0

 3

(1,1,1)

 t 0 t1
d21 t2 d23
d31 0 d33

 4 (1,1,0)

d11 0 0
d21 d11 d23
d31 0 d33

 5

D16
3 (1,0,1)

d11 0 0
d21 d22 0
0 0 d22

 3 (1,0,0)

d11 0 d13
d21 d22 d23
0 0 d22

 5

(0,1,1)

 d13r 0 d13
d21 d22 d23
−d13s 0 −d13s

 4 (0,0,1)

 0 0 0
d21 d22 d23
0 0 0

 3

(0,1,0)

 0 0 0
d21 d22 d23

0d31 d32 d33

 6 (0,1,δ )

 t11 0 −δkd13
d21 d22 d23
t12 0 −δ t14

 4
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

 0 0 0
d21 0 0
d31 2d21 0

 2 (1,1,0)

d11 0 0
d21 d11 0
d31 d21 d11

 3

D17
3 (1,0,1)

d11 0 0
d21 d11 0
d31 d21 d11

 3 (1,0,0)

d11 0 0
d21 0 0
d31 0 0

 3

(0,1,1)

 0 0 0
0 0 0

d31 d32 d33

 3 (0,0,1)

 0 0 0
0 0 0

d31 d32 d33

 3

(0,1,0)

 0 0 0
0 0 0

d31 d32 d33

 3 (0,1,δ )

 t9 0 0
δd21 t9 0
d31 d32 d33

 5

(1,1,1)

d11 0 0
d21 m2 0
0 0 0

 2 (1,1,0)

d11 0 0
d21 m2 0
0 0 d22

 3

D18
3 (1,0,1)

d11 0 0
d21 m2 0
0 0 d33

 3 (1,0,0)

d11 0 0
d21 0 0
d31 0 0

 0

(0,1,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3 (0,0,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3

(0,1,0)

d11 d12 d13
d21 d22 d23
0 0 0

 6 (0,1,δ )

 t12 d12 d13
−d12 d22 −d13

0 0 l7∫
 4

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
d21 d22 0
0 0 d22

 3

D19
3 (1,0,1)

d11 0 0
0 d11 0
0 0 d11

 1 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 d11

 3

(0,1,0)
(
trivial

)
0 (0,1,δ )

t7 0 0
0 t7 0
0 0 t7

 1

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
d21 m2 0
0 0 2

 2

D20
3 (1,0,1)

d11 0 0
d21 m2 d23
0 0 d11

 3 (1,0,0)
(
trivial

)
3

(0,1,1)
(
trivial

)
3 (0,0,1)

 d11 d12 d13
−d11 −d12 −d13

0 0 0

 3

(0,1,0)

 0 0 0
d21 d22 d23
0 0 0

 3 (0,1,δ )
(
trivial

)
0
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

d11 0 0
d21 m2 d23
0 0 0

 3 (1,1,0)

d11 0 0
d21 m2 d23
d31 d31 d33

 5

D21
3 (1,0,1)

d11 0 0
0 d11 0
0 0 d11

 1 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

d11 d12 d13
d21 d22 d23
0 0 0

 6

(0,1,0)
(
trivial

)
2 (0,1,δ )

t7 0 0
0 t7 0
0 0 t7

 1

(1,1,1)

d11 0 d13
0 d22 0
0 0 d22

 3 (1,1,0)

d11 0 d13
0 d22 0
0 0 d22

 3

D22
3 (1,0,1)

d11 0 0
0 d22 0
0 0 d22

 2 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

d11 d12 d13
0 0 0
0 0 0

 3

(0,1,0)

 0 0 0
d21 d22 d23
0 0 0

 2 (0,1,δ )

t7 0 0
0 −(/δ )d33 0
0 0 t7

 1

(1,1,1)

d11 0 d13
0 d22 d23
0 0 d11

 4 (1,1,0)

d11 0 d13
0 d22 0
0 0 d22

 3

D23
3 (1,0,1)

d11 0 0
0 d11 0
0 0 d11

 1 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

d11 d12 d13
0 0 0
0 0 0

 3

(0,1,0)
(
trivial

)
0 (0,1,δ )

t7 0 0
0 t7 0
0 0 t7

 1

(1,1,1)

d11 0 0
d22 0 0
0 0 0

 2 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D24
3 (1,0,1)

d11 0 d13
0 d22 0
0 0 d11

 3 (1,0,0)
(
trivial

)
3

(0,1,1)
(
trivial

)
3 (0,0,1)

(
trivial

)
6

(0,1,0)

 0 0 0
d21 d22 d23
0 0 0

 3 (0,1,δ )

t9 0 0
0 t9 0
0 0 t9

 1
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Table 1.2

IC (α,β ,γ) Der(α,β ,γ)D Dim (α,β ,γ) Der(α,β ,γ)D Dim

(1,1,1)

0 0 0
0 d22 0
0 0 0

 1 (1,1,0)

d11 0 0
0 d11 0
0 0 d33

 2

D25
3 (1,0,1)

d11 0 0
0 d22 0
0 0 d33

 3 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
3

(0,1,0)

 0 0 0
d21 d22 d23
0 0 0

 3 (0,1,δ )

t9 0 0
0 −(1/δ )d11 0
0 0 t7

 3

(1,1,1)

 t4 d12 d13
d21 t5 d23
d31 d32 t6

 6 (1,1,0)

d11 0 0
0 d11 0
0 0 d11

 1

D26
3 (1,0,1)

d11 0 0
0 d11 0
0 0 d11

 1 (1,0,0)
(
trivial

)
0

(0,1,1)
(
trivial

)
0 (0,0,1)

(
trivial

)
0

(0,1,0)
(
trivial

)
0 (0,1,δ )

t9 0 0
0 −(1/δ )d11 0
0 0 t9

 1

Now we recall that various forms of generalization of derivation exists, of importance
for instance, Novotnỳ and Hrivnák (2008) defined it as follows;

Definition 1.6 Let A = (V, ·) be an arbitrary algebra. We call a linear operator
d ∈ EndA an (α,β ,γ)−derivation of A if ∃ α,β ,γ ∈ C 3,∀x,y ∈ A, the fol-
lowing expression holds true, i.e, αd(x · y) = β (dx) · y + γx · y. The set of all
(α,β ,γ)−derivations is denoted as der(α,β ,γ)A. It is also a linear subspace of EndA.

The “.” in the above expression represent the operation in the arbitrary algebra.
Important results emerges from this definition, among which we mention few funda-
mental theorems in this part, which are found to be relevant throughout this thesis.

Theorem 1.4 [Novotny and Hrivnak, 2008] Let A = (V, ·) be an arbitrary algebra,
then for α,β ,γ ∈ C, ∃ δ ∈ C, 3 the subspace der(α,β ,γ)A⊂ EndA, is equal to some
of the followings ;
1. der(δ ,0,0)A,
2. der(δ ,1,−1)A,
3. der(δ ,1,0)A,
4. der(δ ,1,1)A.
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1.1.2 Motivation

It is well known that a generalized derivation of algebras is a very important area of
research, for example Leger and Luks (2000) studied a systematic approach to gener-
alization of Lie and Lie subalgebras. As a result of which some important properties
were obtained, for instance the centroids and quasiderivations were described. More
importantly they studied the structure of the generalized derivation and thereby char-
acterized the Lie algebras according to some conditions. They also showed in their
work the relations between quasi-derivations and cohomology of Lie algebras. An-
other important work on the generalized derivations of Lie algebras is by Hartwig
et al. (2006), in that work crucial results were obtained, which enable them to de-
velop an approach to the ”deformations” of Witt and Virasoro algebras, which are
some forms of a Lie algebras, It was also shown among the results ways to construct
new deformation of Lie algebras and its central extensions. Hrivnák (2015) described
the concept of generalized derivations of Lie algebras using some complex param-
eters, and presented the results related to its structure and invariants. They defined
some invariant functions and used the calculated values of the invariant function as a
classification tool. Hence employed the calculated values of the invariant functions
to find possible contractions among the Lie algebras. Associative dialgebra structure
was presented by Loday (2001). Other properties of the associative dialgebra, like
derivations, automorphisms, generalized derivations et cetera were studied in work
of Lin and Zhang (2010) and also in Rikhsiboev et al. and Fiidow et al. (2016).

1.2 Objectives of the study

The main objectives of this research are :

• To describe and compute the generalized (α,β ,γ)-derivations of low-
dimensional associative and Lie algebras.

• To describe and compute the generalized (α,β ,γ)-derivations of Leibniz al-
gebras.

• To describe the automorphism group of low-dimensional Leibniz algebras and
associative dialgebras.

• To describe the concept of a generalized automorphism of low-dimensional
Leibniz algebras and associative dialgebras.

• To find and describe additional invariant functions of Leibniz algebras and
associative dialgebras.

• To apply a contraction criteria to find possible contractions among low-
dimensional Leibniz algebras and associative dialgebras .
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1.3 Outline of the thesis

This work comprises of six chapters, it is given briefly as follows:

• Chapter one is basically concerned about a review of some important results
on the associative algebras, Lie algebras, Leibniz algebras and the associa-
tive dialgebras. It includes basic definitions, fundamental concepts, and other
relevant statements etc.

• In the second chapter. The review of literature and a description and compu-
tations of the generalized (α,β ,γ)-derivations of low-dimensional associative
and Lie algebras were given, including some important results.

• In the third chapter, we introduce, describe and compute the generalized
(α,β ,γ)-derivations of Leibniz algebras, some important properties are also
presented.

• Chapter 4 focusses on the concept of a generalized automorphism of Leibniz
algebras and associative dialgebras, and also provide some important results.

• In chapter 5, the invariants and contractions of Leibniz algebras and associative
dialgebras are considered. The list of the contractions on lower dimensional
cases are given.

• Chapter six is about the conclusion and the summary of the work, it also carries
some recommendations for future work.
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