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In this thesis, the predictor corrector block methods are developed for solving first

and higher order initial value problems (lVPs) of ordinary differential equations

(ODEs). These methods solve higher order ODEs problem directly without reducing

to a system of first order ODEs. The derivation of these proposed block methods are

based on the numerical integration method and using an interpolation approach

which are similar to the Adams method.

These developed block methods solve higher order ODE problems directly in a

single code using variable step size strategy. In order to gain an efficient and reliable

numerical approximation, these developed block methods are implemented in the

predictor corrector mode using a simple iteration technique. The proposed block

methods compute several numerical solutions simultaneously and the number of

solutions to be computed depends on the feature of the block methods. The

integration coefficients of the developed block methods formulae arc stored in the

code to avoid tedious and repetitive computation.
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Several tested problems of ODEs are taken into account in the numerical

experiments. This is to emphasize the main features of the proposed methods by

comparing these direct block methods with the existing methods that solve the higher

order ODEs by reducing to a system of first order ODEs. The results obtained

showed that the developed block methods managed to produce acceptable results in

terms of maximum error and computational time for solving higher order ODEs

directly.
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KAEDAH BLOK PERAMAL PEMBETUL BAGI MENYELESAIKAN
PERSAMAAN PEMBEZAAN BIASA
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NAZREEN \VAELEH

November 2011

Pcngcrusi: Zanariah Abdul Majid, PhD

Fakulti: Sains

Dalam thesis 1111, kaedah blok peramal pembetul telah dibangunkan bagi

mcnyelesaikan peringkat pertama dan tinggi masalah nilai awal (MNA) untuk

persamaan pembezaan biasa (PP13). Kaedah ini mcnyelcsaikan masalah PPE

peringkat lebih tinggi secara langsung tanpa menurunkan kepada satu sistem PP13

pcringkat pertama. Pcnerbitan kacdah bl ok yang dicadangkan ini adalah berdasarkan

kaedah pengamiran berangka dan menggunakan pendekatan interpolasi yang serupa

seperti kaedah Adams.

Kaedah blok yang dibangunkan ini menyelesaikan masalah PPB pcringkat lebih

tinggi secara langsung dalam satu ked yang menggunakan strategi panjang langkah

berubah. Bagi mcmperolch penghampiran berangka yang efisien dan berkesan.

kacdah blok yang dibangunkan ini dilaksanakan dcngan mod peramal pcrnbetul

mcnggunakan kaedah lclaran mudah. Kacdah blok yang dicadangkan mcnghitung

beberapa penyelesaian bcrangka sccara screntak dan bilangan pcnyelcsaian yang

dihitung hcrgantung kcpada ciri kacdah blok. Pckali integrasi bagi formula kacdah
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blok yang dibangunkan disimpan di dalam kod bagi mengelakkan pengiraan yang

rumit dan berulang.

Beberapa masalah PPB telah diambil kira dalam ujikaji berangka. Ini adalah bagi

menekankan ciri-ciri utama kaedah yang dicadangkan dengan membandingkan

kaedah blok secara langsung ini dengan kaedah sedia ada yang menyelesaikan PPB

peringkat lebih tinggi dengan menurunkan kepada satu sistem PPB peringkat

pertama. Hasil penyelesaian yang diperolehi menunjukkan bahawa kaedah blok yang

dibangunkan berjaya menghasilkan hasil penyelesaian yang boleh diterima dari segi

ralat maksimum dan masa pengiraan bagi menyelesaikan PPB peringkat lebih tinggi

secara langsung.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many natural processes or reil-world problems can be translated into the language of

Mathematics (Order and Chaos. 2000). This formulation will explain the behaviour

of the phenomenon in detail. The result is that an appropriate strategy and technique

can be applied in order to solve any perceived problem.

The mathematical formulation of physical phenomena in science and engmcermg

often leads to differential equation. Differential equation can be categorized into

ordinary differential equation (ODE) and partial differential equation (POE). An

ODE is a differential equation involving ordinary derivatives of one or more

dependent variables with respect to a single independent variables. Meanwhile. a

POE is a differential equation involving partial derivatives of one or more dependent

variables with respect to more than one independent variable. The order of the

differential equation can be referred to the highest derivative that appears in the

differential equation and the power of the highest derivative in the equation is called

the degree.

ODE plays a key role in modelling real-world problems such as those seen in

physics, engineering. chemistry. biology. astronomy and other fields. In many

applications where real-world problems are transformed into mathematical equations.

they usually take the form of nonlinear differential equation that cannot be solved
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using analytic techniques (Chapra and Canale, 2003). There is therefore a need for

different methods in treating such problems efficiently and obtaining the desired

solutions.

Numerical approximation techniques are powerful tools to meet this need and the

role of numerical methods in engineering problems solving has increased

dramatically in recent years. The classes of the numerical methods can be divided

into a single step method and a multistep method. Generally. a single step method

utilises information only at one previous point _\ and its derivative in order to

predict a value of the dependent variable )',+1 at a future point X'tl whereas a

multistep method refers to a set of previous points and its derivative values for

computing the next solution. Furthermore. a multistep method needs starting values

to start the computation of the solution and these proposed block methods are based

on a multistep method.

1.2 Objective of the Thesis

The aim of this research is to develop the predictor corrector block methods for

solving ODEs directly. This goal can be achieved by:

I. Deriving the formulae of the 2-point. 3-point. and -l-point multistep block

methods and implementing variable step size strategy.

II. Comparing the block method in terms of total number of steps. maximum error.

total functions evaluation and computational time with the existing method for

solving higher order ODEs.
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Ill. Developing a code for each block method for solving first and higher order

ODEs.

1.3 Scope and Limitation

This study focuses on developing the block methods that consist of 2-point 3-point

and 4-point in the computing block to solve first order up to sixth order ODE

problems. The stability region of 2-point 3-point and 4-point block methods is

presented in Chapter 3, Chapter 4 and Chapter 5 respectively and the results show

that the stability region decrease as the number of points in the block increased.

Therefore, this might affect the accuracy of the developed method if we increase the

number of points in the block. In this thesis. we will only focus or deriving the block

method consists of 2-point up to 4-point. Furthermore. these methods are developed

lor solving IVPs type and particularly non-stiff problems. Lagrange polynomial IS

used in the derivation of the method with unevenly spaced data.

1.4 Outline of the Thesis

This thesis is organized in six chapters. The first chapter introduces briefly about the

importance of numerical method as one of the numerical approaches lor solving

ODEs problem. Apart from that. the intentions for developing these new methods

have also been clarified in order to convey the intended message clearly.© C
OPYRIG
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Some of the theorems and definitions related to the numerical solution have been

presented as elementary concept in Chapter 2. Apart from that, previous works

related to this area have also been discussed.

In Chapter 3, the derivation of 2-point multistep block method and the algorithm are

presented for solving ODEs. The stability analysis of the developed method is

discussed in order to make the method to be practical. Eight numerical problems are

tested for illustrating the effectiveness of the proposed method by analysing the

numerical results obtained.

Chapter 4 is devoted for elaborating the derivation of the 3-point multistep block

method. The stability regions of the devised method are also determined. Ten IVPs

are tested by using this proposed method and the outcomes are interpreted.

The derivation of the 4-point multistep block method based on the same strategies as

in Chapter 3 and 4 is presented in Chapter 5. The stability regions regarding to this

method are also determined and discussed. The obtained numerical results which are

carried out using the identical set of test problems such as in Chapter 4. are

presented, and the significant outputs of this method are discussed.

Finally. this thesis is concluded 111 Chapter 6 by making some suggestions which

could be taken for future work.© C
OPYRIG
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