بسم الله الرحمن الرحيم
RAPID METHODS FOR ANALYSIS OF EDIBLE OILS AND FATS
BY FOURIER TRANSFORM INFRARED SPECTROSCOPY

MOHAMED ELWATHIG SAEED MIRGHANI

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALASIA

2002
RAPID METHODS FOR ANALYSIS OF EDIBLE OILS AND FATS
BY FOURIER TRANSFORM INFRARED SPECTROSCOPY

By

MOHAMED ELWATHIG SAEED MIRGHANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2002
ESPECIALLY DEDICATED TO MY BELOVED FAMILY
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

RAPID METHODS FOR ANALYSIS OF EDIBLE OILS AND FATS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY

By

MOHAMED ELWATHIG SAEED MIRGHANI

October 2002

Chairman : Professor Dr. Yaakob B. Che Man

Faculty : Food Science and Biotechnology

Analysis using Fourier transform infrared (FTIR) spectroscopy techniques on edible fats and oils extracted from palm fruit, groundnut, sesame seed, cottonseed and animal body fats rendered from cow, chicken, lamb and lard were investigated. The studies included development and applications of rapid FTIR techniques to determine some quality parameters such as moisture content in crude palm oil (CPO), soap and hexane residues in refined palm oil and groundnut oil, malondialdehyde (MDA) as a secondary oxidation product in refined palm oil, minor components such as sesamol and gossypol in sesame and cottonseed oils, and aflatoxins in groundnut and groundnut cake. The detection of lard in different mixtures with other animals’ body fats such as cow, chicken and lamb was also investigated.

Different sample handling techniques were used such as transmission cells of NaCl, BF₂, KBr and attenuated total reflectance (ATR) using internal reflectance element (IRE) of ZnSe. Partial Least Square (PLS) and Principle Component Analysis
(PCA) statistical methods were used to drive calibrations from FTIR versus actual or chemical values. In this study the frequency of 3700-3072 cm\(^{-1}\) was used to determine moisture content in CPO as it indicates the absorption of compounds containing hydroxyl groups (OH). The frequency at 1675-1500 cm\(^{-1}\) was used to determine soap residues in refined edible oils. For the determination of hexane residue in oils, the frequency used included all the data from 2935-2817 cm\(^{-1}\), 1490-1333 cm\(^{-1}\) and 1200-1000 cm\(^{-1}\) for \(-\text{CH}_3\) and \(-\text{CH}_2\), and in-plane \(-\text{CH}\) bending.

In the determination of MDA as a secondary oxidation product, the correlation and variance spectra were used to select the best regions (2900-2800 and 1800-1600 cm\(^{-1}\)) to derive calibration from FTIR versus values obtained by chemical methods with SEC of 1.49. The spectral regions included the data from 3650-3000, 1600-1450 and 1200-900 cm\(^{-1}\) that were used to determine sesamol in sesame seed oil. The study also included a qualitative and semiquantitative determination of palm and groundnut oils as adulterants in sesame seed oil using the spectral regions from 1504-1503, 1400-1397 and 917-914 cm\(^{-1}\). The gossypol was also determined as an important quality factor in cottonseed oil and cakes using the spectral regions from 3600-2520 and 1900-800 cm\(^{-1}\). The study also covered the detection of lard in mixture of body fats of chicken, lamb and cow by using changes in frequency and absorbance of spectral regions 3009-3000, 1418-1417, 1385-1370, 1126-1085 and 966-967 cm\(^{-1}\). The simple Beer-Lambert law was used to develop equations for the determination of mixtures.

Aflatoxins exhibit characteristic absorption bands at wavelengths of 3004-2969 cm\(^{-1}\) for \(\text{CH}_2\), aromatic \(=\text{CH}, -\text{C} = \text{H}\), \(\text{C} = \text{C}\) and phenyls, 1744-1720 cm\(^{-1}\) for \(\text{C} = \text{O}\), 1364-369 cm\(^{-1}\) for methyl adjacent to epoxy ring, 1217-1220 cm\(^{-1}\) for in plane -
CH bending of phenyl, 1035-1037 cm\(^{-1}\) for symmetric stretching of \(=\text{C}--\text{O}--\text{C}\) or symmetric bending of phenyl, and 900-902 cm\(^{-1}\) which may be for isolated H. In this calibration set the spectral regions that showed the highest correlation between concentration information and spectral response were set to include the data from 3000-2932, 1832-1693, 1400-1329 and 1250-1187 cm\(^{-1}\) for aflatoxins B\(_1\), with standard errors of calibration (SEC) of 1.80 parts per million (ppm).

All of the results were in good correlation and of comparable accuracy to the classical wet chemical methods such as the American Oil Chemists Society (AOCS), Association of Official Analytical Chemists (AOAC) and International Union of Pure and Applied Chemistry (IUPAC) methods. This study represents the use of FTIR spectroscopy as a new rapid analytical technique developed for determination of some quality parameters of fats and oils, together with the detection of adulterants and contaminants. The FTIR spectroscopic technique has the potential to replace the time- and effort-consuming chemical methods for fast analysis of fats and oils. This can also eliminate the use of toxic chemicals that are hazardous to the analysts as well as to the environment in the analysis.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH PANTAS UNTUK MENGANALISA MINYAK DAN LEMAK MASAK DENGAN PENGGUNAAN SPEKTROSKOPI FOURIER TRANSFORM INFRARED

Oleh

MOHAMED ELWATHIG SAEED MIRGHANI

Oktuber 2002

Pengerusi: Profesor Yaakob Bin Che Man, Ph.D.
Fakulti: Sains Makanan dan Bioteknologi

Kajian telah dijalankan untuk menganalisa minyak dan lemak yang diekstrak daripada buah kelapa sawit, kacang tanah, biji bijan, biji kapas dan lemak haiwan dari lembu, ayam, kambing dan khinzir dengan menggunakan Spektroskopi Fourier Transform Infrared (FTIR). Kajian ini merangkumi pembangunan dan penggunaan teknik pantas FTIR untuk menentukan beberapa parameter kualiti seperti kandungan lembapan dalam minyak sawit mentah, sabun, sisa heksana dalam minyak yang ditulin; kandungan aflatoksin dalam kacang tanah dan hampas kacang tanah; malondialdehid (MDA) dari 2900 – 2800 dan 1800 – 1600 cm\(^{-1}\) sebagai produk oksidasi sekunder; dan komponen minor seperti sesamol dan gosipol dalam minyak bijan dan biji kapas. Pengesanan lemak khinzir dalam campuran lemak binatang lain seperti lembu, ayam dan kambing juga telah dijalankan.
Pelbagai teknik pengendalian sampel yang berlainan telah digunakan, contohnya sel-sel telusan NaCl, BF₂, KBr dan pantulan keseluruhan «attenuated» (ATR) dengan menggunakan elemen pantulan dalaman (IRE) ZnSe. Partial Least Square (PLS) dan kaedah statistik Prinsip Analisis Komponen (PCA) telah digunakan untuk mengukur kalibrasi FTIR berbanding dengan nilai kimia atau nilai sebenar. Dalam kajian ini, frekuensi pada 3700–3072 sm⁻¹ telah digunakan untuk menentukan kandungan lembapan dalam minyak sawit mentah (CPO) kerana ia mewakili penyerapan gelombang bagi bahan yang mengandungi kumpulan hidroksil (OH) seperti air (H-OH). Frekuensi pada 1675–1500 sm⁻¹ telah digunakan untuk menentukan sisa sabun dalam minyak makan tulin. Manakala bagi penentuan sisa heksana dalam minyak, frekuensi yang digunakan termasuk semua data dari 2935–2817 sm⁻¹, 1490–1333 sm⁻¹ dan 1200–1000 sm⁻¹ bagi CH₃ dan –CH₂ dan pembengkakan –CH dalam planar.

seperti ayam, kambing dan lembu dengan menggunakan perubahan frekuensi dan penyerapan kawasan spektra 3009-3000, 1418-1417, 1385-1370, 1126-1085 dan 966-967 \text{sm}^{-1}. Kaedah Beer–Lambert telah digunakan untuk menghasilkan formula penentuan campuran.

Aflatoksin menunjukkan ciri rantai serapan pada jarak gelombang 3004–2969 \text{sm}^{-1} bagi CH$_2$=CH aromatik, -C– H, C=C dan kumpulan fenil, 1477–1720 \text{sm}^{-1} bagi C=O, 1364–11369 \text{sm}^{-1} bagi kumpulan metil yang bercantum dengan gelang epoksi, 1217–1220 \text{sm}^{-1} bagi fenil akibat pembengkokan –CH dalam planer, 1035 1037 \text{sm}^{-1} bagi getaran simetri =C–O–C atau pembengkokan simetri fenil, dan 900–902 \text{sm}^{-1} bagi –H yang telah diaisingkan. Set kalibrasi bagi kawasan spektra maklumat kepakatan. Reaksi spektra telah ditetapkan dan merangkumi semua data dari 3000–2932 \text{sm}^{-1}, 1832–1693 \text{sm}^{-1}, 1400–1329 \text{sm}^{-1} dan 1250–1187 \text{sm}^{-1} bagi aflatoxin B$_1$, dengan ralat standard kalibrasi (SEC) 1.80 ppm.

Semua keputusan kajian ini telah menunjukkan korelasi yang baik dan kejituan yang setanding dengan kaedah kimia klasik seperti dalam kaedah American Oil Chemists Society (AOCS), Association of Official Analytical Chemists (AOAC) dan International Union of Pure and Applied Chemistry (IUPAC). Kajian ini membuktikan bahawa spektroskopi FTIR adalah satu kaedah analitikal baru yang pantas bagi penentuan sesetengah parameter kualiti di dalam lemak dan minyak juga pengesanan bahan pencemaran. Teknik spektroskopi FTIR mempunyai potensi untuk menggantikan kaedah kimia yang memakan masa dan tenaga. Ini juga boleh mengelakkan penggunaan bahan kimia bertoksik yang membahayakan juru analisis dan alam sekitar.
AKNOWLEDGEMENTS

I pray to Almighty ALLAH Subhanahu wa Ta’ala who give me the thoughts, the will, and guided me to complete this work. I pray that ALLAH will bless this work and make it useful for mankind, and that He will forgive us.

My sincere and deepest gratitude to Professor Dr. Yaakob B. Che Man, the chairman of my supervisory committee for his guidance, encouragement, patience and continuous follow up during the course of this study. My appreciation and gratitude is also extended to members of my supervisory committee, Prof. Dr. Jinap Selamat, Assoc. Prof. Dr. Jamilah Bakar and Assoc. Prof. Badlishah Sham Baharin for their advice, punctuate comments and support.

My gratitude is also due to all the staff of the Department of Food Technology, and the Faculty of Food Science and Biotechnology, UPM for their cooperation. My special appreciation is extended to my colleagues Dr. Irwandi Jaswir, Dr. Tan C. Ping, Ms. Gabby Setiowaty, Ms. Wanna Ammawath, Mr. Kambis Shams and Ms. Mariam Abdulatif for their kind help and friendly attitude.

I would like to acknowledge the financial support provided by IRPA fund for this study awarded to Prof. Dr. Yaakob B. Che Man. Acknowledgement is also due to the National Oilseed Processing Research Institute (NOPRI), University of Gezira, Sudan, especially Prof. Dr. Ismail H. Hussein, the Director of the Institute for granting me the opportunity to pursue my PhD studies.
I am gratefully indebted to the one who have lighted the way for me, my mother Haja Waqeya (Um-Aboha), my sisters, brothers and rest of our extended family for their support, encouragement and invaluable assistance.

Finally but first in my thoughts, I owe my sincere gratitude thanks to my beloved wife, Sabah and daughters Sarrah, Faizah and Doaa for their understanding, patience, care and love.
I certify that an Examination Committee met on 4th October 2002 to conduct the final examination of Mohamed Elwathig Saeed Mirghani on his Doctor of Philosophy thesis entitled “Rapid Methods for Analysis of Edible Oils and Fats by Fourier Transform Infrared Spectroscopy” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Suhaila Mohamed, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairperson)

Yaakob B. Che Man, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Jinap Selamat, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Badlishah Sham Baharin
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Jamilah Bte Bakar, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Andrew Proctor, Ph.D.
Professor
Department of Food Science
University of Arkansas, Fayetteville, Arkansas 72704, USA
(Independent Examiner)

__

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 14 NOV 2002

xv
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Yaakob B. Che Man, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairperson)

Jinap Selamat, Ph.D.
Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Badlishah Sham Baharin
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

Jamilah Bte Bakar, Ph.D.
Associate Professor
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

![Signature]

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 9 JAN 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Mohamed Elwathig Saeed Mirghani

Date: Oct. 29th, 2002
TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGMENTS	ix
APPROVAL SHEET	xi
DECLARATION	xiii
LIST OF TABLES	xix
LIST OF FIGURES	xxii
LIST OF ABBREVIATIONS	xxix

CHAPTER

I GENERAL INTRODUCTION 1

II LITERATURE REVIEW 5

- Infrared Spectroscopy .. 5
- Vibration of Molecules .. 9
- Instrumentation .. 11
 - History of Interferometers 11
 - Michelson Interferometer 11
 - Fourier Transformation 13
- Advantages of Fourier Transformed IR Spectroscopy 15
- Sample Handling .. 16
 - Transmission Technique 17
 - Attenuated Total Reflectance (ATR) 19
 - Polyethylene Infrared Cards 21
- Data Handling Techniques 23
 - Detection of Overlapped Bands 23
 - Smoothing and Interpolation 23
 - Baseline Correction 23
 - Peak Intensity Measurements 24
 - Spectral Stripping .. 24
 - Ratio Method .. 25
- Quantitative Analysis .. 25
 - Beer-Lambert Law .. 26
 - Classical Least Squares (K - Matrix) 27
 - Inverse Least Squares (P - Matrix) 27
 - Partial Least Square (PLS) 28
 - Principal Component Regression (PCR) 29
 - Validation .. 29
 - Estimation of Errors 30
- Some FTIR Spectroscopy Applications 31
 - FTIR Spectroscopy Applications for Food and Lipids 32
- Edible Fats and Oils ... 35
III DETERMINING MOISTURE CONTENT IN CRUDE PALM OIL BY FOURIER TRANSFORM INFRARED SPECTROSCOPY 60

Introduction ... 60
Materials and Methods ... 61
 Samples and Sample Preparations 61
Analysis ... 62
 AOCS Vacuum Oven Method 62
 IUPAC Distillation Method 62
 FTIR Spectroscopy Scanning 63
 Validation ... 64
Results and Discussion ... 65
 Moisture Content Obtained by AOCS Vacuum Oven and IUPAC
 Distillation Methods 65
 Absorption Bands of Water 65
Conclusion .. 79

IV DETECTION OF SOAP RESIDUES IN REFINED VEGETABLE
OILS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY 80

Introduction .. 80
Materials and Methods .. 82
 Samples and Chemicals .. 82
 Chemical Analysis ... 82
 Instrumental Analysis ... 82
 Statistical Analysis .. 84
 Validation ... 85
Results and Discussion .. 85
 Chemical and FTIR Predicted Results 85
 Spectra ... 88
 Selection of the Optimal Frequency for Prediction 91
 Statistical Analysis .. 93
Conclusion .. 101
VIII DETERMINING SESAMOL IN SESAME SEED OIL BY FOURIER TRANSFORM INFRARED SPECTROSCOPY 163

Introduction ... 163
Materials and Methods ... 164
Materials ... 164
Samples .. 165
Fourier Transform Infrared Spectra 165
Results and Discussion .. 167
Spectra .. 167
Conclusion .. 175

IX DETECTION OF PALM AND GROUNDNUT OILS AS ADULTERANTS IN SESAME OIL BY FOURIER TRANSFORM INFRARED SPECTROSCOPY .. 176

Introduction ... 176
Materials and Methods ... 177
Materials ... 177
Samples .. 178
HPLC Analysis of TAG .. 178
FTIR Spectra .. 179
Results and Discussion .. 179
FTIR Spectra ... 182
Conclusion .. 189

X DETECTION OF GOSSYPOL IN COTTONSEED OIL BY FOURIER TRANSFORM INFRARED SPECTROSCOPY 190

Introduction ... 190
Materials and Methods ... 192
Materials ... 192
Chemical Analysis ... 192
Instrumental Analysis .. 193
Statistical Analysis .. 193
Validation .. 194
Results and Discussion .. 194
Chemical Method .. 194
FTIR Spectra ... 195
Development of Calibration Models 196
Conclusion .. 203

XI DETECTING LARD ADULTERATION OF BODY FATS OF CHICKEN, LAMB AND COW BY FOURIER TRANSFORM INFRARED SPECTROSCOPY ... 204

Introduction ... 204
Materials and Methods ... 206
Sample Preparation ... 206
Instrumentation/Spectral Acquisition 207
Results and Discussion .. 208
 Lamb Body Fat (LBF) 208
 Chicken Fat (CF) 222
 Cow Body Fat (CBF) 232
 Conclusion ... 240

XII CONCLUSIONS AND RECOMMENDATIONS 241

 Summary ... 241
 Conclusions and Recommendations 246

REFERENCES ... 248
APPENDICES .. 268
BIOGRAPHICAL SKETCH .. 274
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristic mid-infrared absorption of some common functional groups in edible fats and oils</td>
</tr>
<tr>
<td>2</td>
<td>Calibration and cross validation statistics for moisture content values measured by AOCS and IUPAC methods</td>
</tr>
<tr>
<td>3</td>
<td>Result of the developed calibration models of AOCS and IUPAC methods at the wavelength region (3074-3700 cm(^{-1})) for moisture content of CPO samples(^a)</td>
</tr>
<tr>
<td>4</td>
<td>Calibration statistics for moisture content values obtained by classical references and FTIR methods(^a)</td>
</tr>
<tr>
<td>5</td>
<td>A general comparison between the three methods used in the study</td>
</tr>
<tr>
<td>6</td>
<td>Calibration and cross-validation for soap content in palm and groundnut oils by FTIR methods in comparison with chemical methods</td>
</tr>
<tr>
<td>7</td>
<td>Effect of different wavelength regions in developing calibration model for the determination of soap in palm and groundnut oils</td>
</tr>
<tr>
<td>8</td>
<td>Results from PLS calibration models using the 1675 to 1500 cm(^{-1}) region in the FTIR spectrum to determine the soap content in palm and groundnut oils</td>
</tr>
<tr>
<td>9</td>
<td>Calibration statistics for soap content from data obtained by chemical analysis and FTIR spectroscopy</td>
</tr>
<tr>
<td>10</td>
<td>Calibration and cross-validation for hexane content in palm and groundnut oils by the FTIR method</td>
</tr>
<tr>
<td>11</td>
<td>Effect of different wavelength regions in developing calibration model for determining hexane residues in palm and groundnut oils</td>
</tr>
<tr>
<td>12</td>
<td>Results from calibration models using PLS of wavelength regions 2935 to 2817, 1490 to 1334 and 1200 to 1000 cm(^{-1}) to determine the hexane content in palm and groundnut oils</td>
</tr>
</tbody>
</table>
Calibration statistics for hexane content from data obtained by GC analysis and FTIR spectroscopy ... 116

Calibration and validation statistics for aflatoxins determined by AOCS TLC and FTIR/ATR spectroscopic methods ... 129

Results of calibration models of AOCS TLC reference method for aflatoxins in reference standards (groundnut and groundnut cake) and FTIR/ATR methods ... 133

Calibration statistics for aflatoxin content in groundnut and groundnut cake obtained by classical TLC and the FTIR/ATR methods 135

Calibration and cross-validation statistics for malondialdehyde (TBARS) content in palm oil obtained by the PLS and PCR methods with zero (none) baseline .. 150

Results accuracy of prediction by the PLS and PCR calibration models of the reference method assessed against the FTIR spectroscopic method at the frequency regions 2900 - 2800 cm\(^{-1}\) and 1800 - 1600 cm\(^{-1}\) with different baseline types for malondialdehyde in palm oil 155

Calibration statistics for malondialdehyde (TBARS) content in palm oil obtained by reference and FTIR methods using the PLS and PCR techniques ... 158

SEP ratios of the different FTIR methods and their F-values (critical) at 95% confidence level .. 160

Calibration and cross-validation statistics for sesamol content in sesame groundnut and RBDPOo oils measured by FTIR spectroscopic method ... 171

Result of the developed calibration models for sesamol content of sesame groundnut and RBDPOo oils at the wavelength ranges 3650 – 3000, 1600 – 1450 and 1200 – 900 cm\(^{-1}\) ... 172

Distribution of trisaturated, monounsaturated, diunsaturated, and triunsaturated triacylglycerols (TAG) in sesame, palm, groundnut oils and their blends ... 181

Sets of samples and frequency of bands a, b, c and d in cm\(^{-1}\) of the FTIR spectra of sesame oil, Groundnut oil, Palm oil and mixtures 184

Gossypol contents determined by the AOCS and FTIR methods 195
26 Calibration and cross-validation using PLS of wavenumber regions 3600 to 2520 and 1900 to 800 cm\(^{-1}\) for gossypol content in cottonseed oil samples ... 200

27 Calibration statistics for gossypol content using data obtained by chemical analysis and FTIR spectroscopy ... 200

28 Band frequencies in the Fourier transform infrared (FTIR) spectra of lamb body fat (LBF), lard and their blends in region (3009-3000 cm\(^{-1}\)) ... 214

29 Absorbance values in the FTIR spectra of LBF, lard, and their blends in region b (1418-1417 cm\(^{-1}\)) ... 216

30 Absorbance values in the FTIR spectra of CF, lard and their blends at 1417.85 cm\(^{-1}\) and 1377.58 cm\(^{-1}\) ... 229

31 Absorbance values in the FTIR spectra of cow body fat, and their blends at 966.22 cm\(^{-1}\) ... 239
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy levels</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Part of the electromagnetic radiation</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Stretching and Bending Vibration Modes</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Optical Diagram of Michelson Interferometer</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Schematic representation of infrared transmission cells</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Internal reflection element (IRE)</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Schematic representation of an attenuated total reflectance (ATR) accessory</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Polyethylene Infrared (IR) Card</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Chemical structure of glycerol and triacylglycerol (TAG)</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>Mean spectrum of calibration set</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>Correlation spectrum, showing better correlation of water absorption at 3700 - 3074 cm⁻¹ than 1700 - 1500 cm⁻¹</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>Variance spectrum obtained from the calibration set, determined by calculating the average absorbance at each wavenumber position over the entire calibration data set and then calculating the square root of variance about that mean for the entire data set generated the variance spectrum</td>
<td>69</td>
</tr>
<tr>
<td>13</td>
<td>Absorption changes at 3700 - 3074 cm⁻¹ with the changes in moisture content</td>
<td>70</td>
</tr>
<tr>
<td>14</td>
<td>American Oil Chemists’ Society (AOCS) vacuum oven method compared with Fourier transform infrared (FTIR) spectroscopic predicted values, calculated with partial least square (PLS) calibration</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>International Union of Pure and Applied Chemistry (IUPAC) distillation method compared with FTIR spectroscopic predicted values, calculated</td>
<td>xxii</td>
</tr>
</tbody>
</table>