UNIVERSITI PUTRA MALAYSIA

PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EBI

CHEONG WENG CHUNG

FSMB 2002 12
PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EB1

By

CHEONG WENG CHUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

October 2002
Specially dedicated to,

My beloved parents who brought me to this world,

my brothers who gave me the encouragements and laughter,

and friends for their invaluable advices and morale supports.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PRODUCTION OF L-LACTIC ACID USING VARIOUS CARBON SOURCES BY ENTEROCOCCUS GALLINARUM EB1

By
CHEONG WENG CHUNG

October 2002

This study reports on the production of L-lactic acid using a locally isolated bacteria. Bacteria were screened and isolated from POME sludge, kitchen refuse, leachate biomass, soil and fermented milk. Five bacteria shown positive result in the preliminary test and only one bacteria which was isolated from POME effluent shown the highest lactic acid production. Using shake flask culture, 18.0 g/L of L-lactic acid was produced from 20.0 g/L glucose. The selectivity of lactic acid produced by the bacteria was 99.8% compared to other organic acids. This indicated that the bacteria can be use for the production of L-lactic acid. Using the BIOLOG system, the bacteria was identified belonging to the family Enterococcus gallinarum and named as Enterococcus gallinarum EB1. Morphologically, the bacteria is cocci-shaped and in chains or grouped. The optimal growth condition for the bacteria was at pH 6 and temperature 37°C where at this condition, the bacteria able to produced highest lactic acid yield at 1.9 g/g using glucose as substrate. The organic acids composition was dependent on the pH and temperature. In an anaerobic batch fermentation to produce lactic acid using four types of
substrates (glucose, kitchen refuse, sago starch and cooked rice), the highest lactic acid production was 45.0 g/L. From the experiment, the bacteria was able to convert the kitchen refuse into lactic acid at 45.2 g/L and small amount of other organic acids. The comparison was also done with other substrates to show that the bacteria able to utilise kitchen refuse in lactic acid production. In the recovery process of lactic acid, the best method was to use H_2SO_4 prior to evaporation at 90°C with 3mmHg vacuum pressure. H_2SO_4 able to free lactic acid from lactate salts formed in the fermentation because the use of NaOH to control pH in the bioreactor throughout the fermentation process. The evaporation method able to achieved 86.76% lactic acid recovery yield from the fermentation broth. It was the highest recovery yield recorded in evaporation compared to other evaporation method with additional of solvents (propanol and butanol) with temperature at 90°C and pressure around 3mmHg.
Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHASILAN ASID L-LAKTIK MENGGUNAKAN PELBAGAI JENIS SUMBER KARBON OLEH ENTEROCOCCUS GALLINARUM EB1

Oleh

CHEONG WENG CHUNG

Oktober 2002

Kajian ini melaporkan penggunaan bakteria tempatan dalam penghasilan asid L-laktik. Penyaringan bakteria dibuat daripada pelbagai bahan dan tempat (sisa POME, sampah sarap, enapcemar luluhan sampah dan susu basi). Lima bakteria telah menunjukkan keputusan positif pada ujian awal dan hanya satu bakteria dipilih iaitu bakteria yang disaring dari sisa POME kerana menunjukkan prestasi yang menggalakkan dalam penghasilan asid L-laktik. Kepekatan 18.0 g/L asid L-laktik dihasilkan dalam eksperimen kelalang kon menggunakan 20.0 g/L glukosa. Peratusan pemilihan asid laktik pula 99.8% oleh bakteria tersebut berbanding asid organik yang lain. Ini menunjukkan bahawa bakteria ini boleh digunakan dalam penghasilan asid L-laktik. Sistem BIOLOG digunakan untuk mengenalpasti jenis bakteria dan ia adalah daripada famili Enterococcus gallinarum, dan dinamakan Enterococcus gallinarum EB1. Morfologi bakteria ini adalah berbentuk cocci dan mempunyai ciri-ciri bersambungan antara satu sama lain atau berkelompok. Keadaan pertumbuhan optimum bagi bakteria ini adalah pada pH 6 dengan suhu 37°C dimana keadaan ini merangsangkan bakteria untuk v
menunjukkan penghasilan nisbah asid laktik dengan berat kering sel sebanyak 1.919 g/g. Komposisi asid adalah bergantung kepada pH dan suhu. Di dalam fermentasi anaerobik sesekelompok untuk menghasilkan asid laktik dari empat jenis substrat (glukosa, sampah sarap, sago dan nasi), kepekatan asid laktik paling tinggi dicatatkan pada 45.0 g/L. Dari eksperimen ini, bakteria tersebut dapat menukarkan sampah sarap kepada asid organik dan asid laktik pada kepekatan 45.2 g/L dan terdapat sedikit asid organik yang lain dihasilkan. Perbandingan juga dibuat dengan menggunakan substrat berlainan untuk perbandingan prestasi bakteria tersebut untuk penghasilan asid laktik daripada sampah-sarap. Penggunaan H2SO4 dalam proses penyulingan pada suhu 90°C dan tekanan 3mmHg adalah cara terbaik. Ini disebabkan oleh asid sulfurik dapat membebaskan asid laktik dari bentuk garam laktat yang terhasil akibat penggunaan NaOH untuk mengawal pH di dalam bioreaktor semasa sepanjang proses fermentasi. Cara penyulingan ini dapat mencatatkan 86.76% hasil perolehan semula asid laktik. Catatan ini merupakan yang tertinggi berbanding dengan cara penyulingan yang mencampurkan propanol dan butanol dengan menggunakan suhu pada 90°C dan tekanan pada 3mmHg.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my main supervisor, Associate Prof. Dr. Mohd. Ali Hassan and members of the supervisory committee, Prof. Dr. Mohamed Ismail Abdul Karim and Dr. Suraini Abdul Aziz, for their invaluable advice and support, encouragement and willingness to share their views throughout the project. I am personally grateful to Associate Prof. Dr. Mohd Ali Hassan and my supervisory committee for spending time in guiding me with this thesis in order for me to complete the Master degree.

I sincerely thank Associate Prof. Dr. Mohd Ali Hassan for giving me the chance to further my study to postgraduate level two years ago and also for his immeasurable support, advice and ideas throughout my study. I extend my gratitude to Prof. Dr. Mohamed Ismail Abdul Karim for his advice and to Dr. Suraini Abdul Aziz for her help in the project.

In addition, I would like to express my appreciation to my labmates; Phang Lai Yee, Ong Ming Hooi, Nor’ Aini Abdul Rahman, Jame’ah Hamed, Norrizan Abdul Wahab, Hafizah Kassim, Manisya Zauri, Abdul Rahman Abdul Razak, Zainal Baharum, Sim Kean Hong, Wong Kok Mun and Zaizuhana Shahrim and fermentation laboratory staffs; Mr. Rosli Aslim, Madam Renuga a/p Panjamurti, Madam Latifah Hussein and
Madam Aluyah Marzuki, thank you for your moral support, cooperation and willingness to teach me during the study.

My heartiest thanks go to my beloved parents and brothers for their patience, support and encouragement. To my friends, Chee Kuan, Shang Der and Kiat Siong, deepest appreciation for their advice, motivation and friendship.
I certify that an Examination Committee met on 22nd October 2002 to conduct the final examination of Cheong Weng Chung on his Master of Science thesis entitled "Production Of L-Lactic Acid Using Various Carbon Sources By Enterococcus gallinarum EB1" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the examination Committee are follows:

ZAITON HASSAN, Ph.D.
Department of Food Technology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

MOHD ALI HASSAN, Ph.D.
Associate Professor
Head of Department
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

MOHAMED ISMAIL ABDUL KARIM, Ph.D.
Professor
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

SURAINI ABDUL AZIZ, Ph.D.
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 NOV 2002
The thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement of the degree of Master of Science. The members of the Supervisory Committee are as follows:

MOHD ALI HASSAN, Ph.D.
Associate Professor
Head of Department
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Chairman)

MOHAMED ISMAIL ABDUL KARIM, Ph.D.
Professor
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

SURAINI ABDUL AZIZ, Ph.D.
Department of Biotechnology
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia
(Member)

AINI DERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 JAN 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name: CHEONG WENG CHUNG
Date: 22nd October 2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

1.0 Lactic acid Producing Microorganism 1
1.1 Poly-L-lactic Acid from Kitchen Waste 2
1.2 Objectives 3

2. LITERATURE REVIEW

2.1 Lactic Acid Bacteria 4
2.1.1 Taxonomy and Physiology 6
2.1.2 Isolation of Lactic Acid Bacteria 8
2.1.3 Genus Streptococcus 8
2.1.4 Genus Enterococcus 9
2.2 The Choice of Various Lactic Acid Producing Bacteria 11
2.2.1 Raw Materials 13
2.3 Fermentation 14
2.4 Anaerobic Metabolism : Fermentation 15
2.5 Acidogenesis 19
2.6 Lactic and Polylactic Acid 19
2.7 Lactic Acid Pathway 21
2.7.1 Glycolysis - Embden-Meyerhoff pathway 23
2.7.2 Activation of Glucose 24
2.7.3 End Product Formation 24
2.7.4 Bacteria Producing Lactic Acid : Enterococcus Gallinarum 28
2.8 Applications of Lactic Acid 32
2.8.1 Application in Pharmaceuticals 32
2.8.2 Application in Cosmetics 32
2.8.3 Application in Food Industry 33
2.8.3.1 Confectionery
33

2.8.3.2 Beverages
33

2.8.3.3 Olives, Pickles, Cabbage, Gherkins
34

2.8.3.4 Dairy Products
34

2.8.3.5 Meat and Meat products
35

2.8.4 Industrial Applications
35

2.9 L-Lactic Acid Recovery Process Based On Vapour Pressure Temperature-Dependence
37

3 GENERAL MATERIALS AND METHODS
40

3.1 Kitchen Refuse Samples
40

3.2 Microorganisms and Preparation
41

3.2.1 Inoculum Preparation
41

3.2.2 Chemical Reagents
42

3.2.3 Biolog MicroLog Bacteria Identification Systems
43

3.2.4 Maintenance of Bacterial Strains
46

3.3 Experimental Design
46

3.3.1 Screening of Lactic Acid Producing Bacteria
46

3.3.2 Preliminary Fermentation Process using Isolated Bacteria
49

3.3.3 Fermentation Process using Various Substrates for L-Lactic Acid Production
49

3.3.3.1 Glucose as Substrate
49

3.3.3.2 Sago Starch and Cooked Rice as Substrates
50

3.3.3.3 Kitchen Refuse as Substrate
52

3.4 Analytical Methods
55

3.4.1 Organic Acids Determination
55

3.4.2 Sugar Determination
55

3.4.3 COD Determination
57

3.4.4 Total Solids
58

3.4.5 Total Kjeldahl Nitrogen Analysis
59

3.4.6 L-Lactic Acid Analysis
60

3.4.7 Recovery Process of Lactic Acid from Fermentation Broth
62

3.4.8 Cell Morphological Characteristics and Gram Staining
63

3.4.9 Catalase Test
64

3.4.9.1 Total Cells Count
64
4 SCREENING OF LOCAL BACTERIAL STRAINS 67
4.1 Introduction 67
4.2 Materials and Methods 68
4.2.1 POME Sludge and Leachate Biomass 68
4.2.2 Kitchen Refuse and Fermented Milk 68
4.2.3 Soil 69
4.2.4 Screening of Local Strains Bacteria 69
4.2.5 Cell Morphological Characteristics and Gram Staining 70
4.2.6 Catalase Test 71
4.2.7 Growth of the Screened Bacteria 72
4.2.8 The Selection of Bacteria Strain for Further Study 72
4.2.9 Sample Analyses 73
4.3 Results & Discussion 73
4.3.1 Isolation of Bacteria from Various Sources 73
4.3.2 Organic Acids Production of the Isolated Bacteria 75
4.3.3 Selectivity of Organic Acids 80
4.3.4 Gram Staining of the Isolated Bacteria 83
4.3.5 BIOLOG Identification of POME Isolated Bacteria 84
4.4 Conclusion 86

4 OPTIMUM CONDITION OF ENTEROCOCCUS GALLINARUM EB1 FOR L-LACTIC ACID PRODUCTION 87
5.1 Introduction 87
5.1.1 Kinetics of cell growth in batch culture 89
5.1.1.1 The specific growth rate, μ 89
5.1.1.2 Product formation rate 91
5.1.1.3 Biomass and Product Yields 92
5.2 Materials and Methods 93
5.2.1 Glucose 93
5.2.2 Microorganism 93
5.2.3 Organic Acids and Sugar Determination 94
5.3 Results 96
5.3.1 The Growth of the Enterococcus gallinarum EB1 in Controlled Conditions 96
5.3.2 Lactic Acid Fermentation with Glucose as a Single Carbon Source 96
5.4 Discussion 105
5.5 Conclusion 108
FERMENTATION L-LACTIC ACID PRODUCTION FROM VARIOUS SUBSTRATES & RECOVERY OF LACTIC ACID

6.1 Introduction 109
6.2 Materials and Methods 111
6.2.1 Microorganism 111
6.2.2 Preparation of Substrate for Fermentation 111
 6.2.2.1 Kitchen Refuse 111
 6.2.2.2 Sago Starch & Cooked Rice 112
 6.2.2.3 Glucose 113
6.2.3 L-Lactic Acid Production using Various Substrates 113
 6.2.3.1 Glucose 113
 6.2.3.2 Sago Starch and Cooked Rice 114
 6.2.3.3 Kitchen Refuse 116
6.2.4 Batch Fermentation 118
6.2.5 Recovery Process of the L-lactic Acid from Fermentation Broth 118
6.2.6 Recovery Process using Alcohols 121
6.3 Results 121
 6.3.1 Lactic Acid Fermentation with Glucose as a Single Carbon Source 121
 6.3.2 Lactic Acid Production with Kitchen Garbage, Cooked Rice & Sago Starch 123
 6.3.3 Recovery of L-lactic Acid from Fermentation Broth 125
 6.3.3.1 First Approach: Normal Evaporation of Fermentation Broth 126
 6.3.3.2 Second Approach: Evaporation Using Different Solvents 126
6.4 Discussion 129
6.5 Conclusion 130

7 SUMMARY, CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 132
7.1 Summary 132
7.2 Conclusion 134
7.3 Suggestions for Future Work 136

REFERENCES 137
APPENDICES 144
BIODATA OF AUTHOR 155
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Examples of LABs species (Lactic Acid Bacteria)</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Characteristics of Kitchen Refuse Used in This Study</td>
<td>40</td>
</tr>
<tr>
<td>3.2 Composition of kitchen refuse</td>
<td>41</td>
</tr>
<tr>
<td>4.1 Results of the screened bacteria on the BCP agar</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Total organic acids production during the fermentation experiment of the lactic acid producing bacteria isolated various sources</td>
<td>81</td>
</tr>
<tr>
<td>4.3 Morphological and biochemical characteristics of isolated lactic acid producing bacteria</td>
<td>82</td>
</tr>
<tr>
<td>5.1 Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by Enterococcus gallinarum EB1 using constant pH 6 with different temperatures</td>
<td>98</td>
</tr>
<tr>
<td>5.2 Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by Enterococcus gallinarum EB1 using constant pH 5 with different temperatures</td>
<td>98</td>
</tr>
<tr>
<td>5.3 Comparison of the performance and the kinetic parameter values of lactic acid production in batch culture by Enterococcus gallinarum EB1 using constant pH 4 with different temperatures</td>
<td>99</td>
</tr>
<tr>
<td>5.4 Lactic acid and several organic acids production in batch fermentation of Enterococcus gallinarum EB1 at the end of the fermentation with temperature 30°C</td>
<td>99</td>
</tr>
<tr>
<td>5.5 Lactic acid and several organic acids production in batch fermentation of Enterococcus gallinarum EB1 at the end of fermentation with temperature 37°C</td>
<td>100</td>
</tr>
</tbody>
</table>
5.6 Lactic acid and several organic acids production in batch fermentation of *Enterococcus gallinarum* EB1 at the end of the fermentation with temperature 45°C

5.7 Comparison of performance in lactic acid fermentation at 30°C by *Enterococcus gallinarum* EB1 at different culture pHs using 1 L working volume fermenter

5.8 Comparison of performance in lactic acid fermentation at 37°C by *Enterococcus gallinarum* EB1 at different culture pHs using 1 L working volume fermenter

5.9 Comparison of performance in lactic acid fermentation at 45°C by *Enterococcus gallinarum* EB1 at different culture pHs using 1 L working volume fermenter

6.1 Composition of kitchen refuse

6.2 Nutrient supplements added to the fermentation

6.3 Lactic acid concentration with normal evaporation on sample from kitchen refuse fermentation

6.4 Evaporation with H₂SO₄ for sample from kitchen refuse

6.5 Evaporation with butanol and H₂SO₄ for sample from kitchen refuse

6.6 Evaporation with propanol and H₂SO₄ for sample from kitchen refuse
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Differences of lactic acid and alcohol fermentation</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The homofermentative pathway of lactic acid bacteria</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>The heterofermentative pathway of lactic acid bacteria</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Optical active configuration of lactic acid</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Activation of glucose by phosphorylation with ATP</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Oxidation of NADH</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Formation of lactate by homofermentative bacteria</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Fermentation of glucose by heterofermentative bacteria</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>ATP production from fermentation of carbohydrates imported via the PTS system</td>
<td>31</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Vapor-pressure graph of the lactic acid against temperature</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design of screening process for L-lactic acid producing bacteria.</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental design of glucose, sago starch & cooked rice fermentation for L-lactic acid production</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental design of kitchen refuse fermentation for L-lactic acid production.</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>The set-up using kitchen refuse as substrate for L-Lactic fermentation</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>High Performance Liquid Chromatography for sugar analysis</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Grid patterns of improved Neubauer ruled Haemocytometer</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>The non-changes of color of the BCP agar</td>
<td>74</td>
</tr>
</tbody>
</table>
4.2 The changes of color of the BCP agar 75
4.3 Organic acids production with the POME sludge isolated bacteria at pH 6.0 with temperature 37°C 76
4.4 Organic acids production with the Kitchen refuse isolated bacteria at pH 6.0 with temperature 37°C 77
4.5 Organic acids production with the Fermented Milk isolated bacteria at pH 6.0 with temperature 37°C 77
4.6 Organic acids production with the Soil (river bank) isolated bacteria at pH 6.0 with temperature 37°C 78
4.7 Organic acids production with the Soil (dumpsite) isolated bacteria at pH 6.0 with temperature 37°C 79
4.8 The morphology of L-lactic acid producing bacteria under microscopy observation (Enterococcus gallinarum EB1) 84
4.9 Enterococcus gallinarum EB1 identified by Biolog MicroLog Bacteria Identification System 85
5.1 Experimental design for kinetics of Enterococcus gallinarum EB1 in L-lactic acid fermentation 95
5.2 The Ln X_t/X_0 against time graph of Enterococcus gallinarum EB1 using glucose as substrate 101
6.1 Experimental Design of glucose, sago starch and cooked rice fermentation for L-lactic acid production 115
6.2 Experimental Design of kitchen refuse fermentation for L-lactic acid production 117
6.3 The schematic diagram of the recovery process with the EYELA evaporator 119
6.4 The EYELA Rotary Evaporator used in the recovery process 120
6.5 The L-lactic acid, lactic acid and sugar concentration on glucose fermentation 121
6.6 Lactic acid concentration and glucose utilization with different substrates fermentation with *Enterococcus gallinarum* EB1

6.7 Cell counts of bacteria with different substrates fermentation with *Enterococcus gallinarum* EB1

6.8 Brownish color of the fermentation broth with high lactic acid

6.9 The dark color of recovered lactic acid using H_2SO_4
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
</tr>
<tr>
<td>PHA</td>
<td>Polyhydroxyalkanoates</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly-L-lactic acid</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>ATP</td>
<td>Phosphoenolpyruvate</td>
</tr>
<tr>
<td>PGA</td>
<td>Polyglycolic acid</td>
</tr>
<tr>
<td>EMP</td>
<td>Glycolysis-Embden-Meyerhoff-Parnas pathway</td>
</tr>
<tr>
<td>BOD₅</td>
<td>Biological Oxygen Demand 5 Days</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>TS</td>
<td>Total Solids</td>
</tr>
<tr>
<td>PTS</td>
<td>Phosphotransferase system</td>
</tr>
<tr>
<td>L. lactis</td>
<td>Lactococcus lactis</td>
</tr>
<tr>
<td>BUG</td>
<td>BIOLOG Universal Growth</td>
</tr>
<tr>
<td>PTS</td>
<td>Phospho-Transferase System</td>
</tr>
<tr>
<td>EII</td>
<td>Enzyme 2</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.0 Lactic Acid Producing Microorganism

Lactic acid bacteria (LABs) belong to a group of Gram-positive anaerobic bacteria that excrete lactic acid as their main fermentation product into the culture medium. LABs were among the first organisms to be used in food manufacturing. Today LABs play crucial roles in the manufacturing of fermented milk products, vegetables and meat, as well as in the processing of other products such as wine. In order to understand and especially to manipulate the roles of these LABs in these fermentation processes, LABs have been studied extensively and are now among the best-characterised microorganisms with respect to their genetics, physiology and applications. The relative simplicity of LABs makes them excellent candidates for complete analysis of the metabolic pathways in the near future. The extensive knowledge gained of LABs has opened new possibilities for their application. Tailor-made LABs with desired physiological traits can be constructed and can be applied to optimize the food manufacturing processes or to manipulate the organoleptic properties.
1.1 Lactic acid and Poly-L-lactic Acid from Kitchen Refuse

Kitchen garbage or refuse is another organic substance that can be subjected to biological treatment for organic acids production, particularly for lactic acid production under controlled conditions. Since kitchen refuse mainly contained cooked waste and remains of meals, it provides rich nutrients including carbohydrate, lipid, protein and other compounds and does not usually contain harmful compounds (Rintala and Birgitte, 1994). These compounds are essential for the growth of microorganisms to synthesize desired products. In developed countries such as Japan, segregation of wastes according to different criteria e.g. combustible and non-combustible material, recyclable materials (bottles, cans, newsprint and paper), has been adopted in the whole country. Kitchen waste is classified as combustible material which is usually subjected to incineration. However, owing to the environment pollution problem, an appropriate method of handling this organic waste has to be developed. Kitchen and restaurant wastes have been utilised as substrates for the production of organic acids. A variety of organic acids at different concentrations could be produced under different fermentation conditions. The organic acids were then converted to bacterial biopolymers or polyhydroxyalkanoates (PHA). Another strategy in the utilisation of such wastes is to produce L-lactic acid which can be used for the production of polylactate or PLA. This is another kind of bioplastic which is gaining popularity due to its superior physical strength and longer
durability compared to PHA.

Recently, lactic acid fermentation has received much attention because of increasing demands for new bioengineering materials such as biodegradable lactide polymers and the high cost of petroleum which is usually used as feed stock for production of lactic acid in the conventional chemical processes.

1.2 Objectives

The scope of this study focused on development of process for establishing high performance L-lactic acid fermentation using local isolate. Therefore, the objectives of this research are;

1. To screen local bacteria strain for the production of pure L-lactic acid from various sources
2. To investigate the effect of the culture pH and temperature on lactic acid production
3. To perform kinetic studies for optimization of L-lactic acid fermentation