DEVELOPMENT OF FERMENTATION AND DRYING OF COCOA BEANS USING A ROTARY FERMENTOR-DRIER

ZAIBUNNISA ABDUL HAIYEE

FSMB 2002 4
DEVELOPMENT OF FERMENTATION AND DRYING
OF COCOA BEANS USING A ROTARY FERMENTOR-DRIER

By

ZAIBUNNISA ABDUL Haiyee

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
In Fulfillment of the Requirement for the Degree of Master of Science

March 2002
To my beloved husband...
Abstract of the thesis presented to the Senate of the Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

DEVELOPMENT OF FERMENTATION AND DRYING OF COCOA BEANS USING A ROTARY FERMENTOR-DRIER

By

ZAIBUNNISA ABDUL HAIYEE

March 2002

Chairman : Associate Professor Russly Abdul Rahman, Ph.D.
Faculty : Food Science and Biotechnology

Fermentation and drying processes are interrelated, but they are been carried out as separate entities requiring specific equipment at each stage. These processes are very labour intensive and time-consuming. Therefore, this study was designed to mechanically ferment and dry cocoa beans in a single unit using a rotary fermentor-drier as model study. The system would have the advantages of reducing the labour requirement, processing time and produce better or comparable quality to commercial cocoa beans.

This study was carried out using a modified rotary drier with a capacity of 9 metric tonnes wet cocoa beans. Mixed hybrid wet cocoa beans were fermented in the rotary drier (4 days with turning after 48 hours for 5 minutes at 0.5rpm). Samples were taken everyday and were immediately sun dried. Quality characteristics of the fermenting beans were monitored everyday and compared with the existing commercial method of fermentation in Indonesia (4 days with turning every 24 hours) and standard shallow box fermentation in Malaysia (6 days with turning at every 48 hours). The results obtained from cut test, fermentation index
and colour fractionation showed that fermentation occurred significantly (p<0.05) more rapid in the rotary fermentor. Temperature development and bean colour also changed drastically in mechanical fermentation. There was no significant different (p>0.05) in acidity of the resultant beans from mechanical fermentation (4.45) and beans from commercial fermentation (4.6). However, shallow box (4.3) produced significantly (p<0.05) more acidic beans. Concentration of acetic acid was significantly (p<0.05) low in mechanically fermented beans and that of lactic acid were significantly (p<0.05) low in shallow box fermentation. Percentage of total polyphenol, which contributes to bitterness and astringency in cocoa beans, was also significantly (p<0.05) low in mechanically fermented beans (6.6) compared to other fermentation methods. Sensory evaluation results also showed that cocoa flavour were significantly (p<0.05) better in mechanically fermented beans.

The mechanically fermented beans were then dried in the same rotary drier. The effect of fermentation time and drying temperature on the acidic quality of the resultant beans were investigated. The resultant bean quality was then compared with the control drying methods; sun drying (5-7 days, 8 hours/day, turning every 12 hours) and commercial bed drier (31 hours, turning every 4 hours). Cocoa beans were fermented in the rotary fermentor-drier for 3 or 4 days. Initial drying temperature was set at 45°C, 55°C and 65°C until the bean moisture content reached 20-25%, followed by final drying at 65°C until bean moisture content reached 7.5%. Drying was stopped at night for 11-14 hours as a resting period. Air speed of the hot air and the rotating speed of the drier were kept constant, 5.2 m/s and 0.5 rpm, respectively. Generally, the beans produced from the rotary fermentor-drier were significantly (p<0.05) better quality than the beans produced from commercial bed
drier in term of lower acidity and total polyphenol content and higher fermentation level. However, sun dried beans were significantly (p<0.05) better than beans from rotary fermentor-drier. The rate of drying increased with drying temperature; most rapid at 65°C followed by 55/65°C and 45/65°C for both 3 days and 4 days fermented beans. Sun dried beans have significantly (p<0.05) the highest level of fermentation, followed by 45/65°C, 55/65°C and 65°C within the same fermentation period. The 4 day fermented beans have significantly (p<0.05) lower percentage of total polyphenol compared to 3 day. Drying method and temperature also have a significant effect on the percentage of total polyphenol in the bean. The lowest total polyphenol content were in sun-dried beans, followed with 45/65°C, 55/65°C and 65°C. Sun dried beans have significantly (p<0.05) the lowest acidity compared to rotary and commercial bed drying. However, rotary drying temperature of 55/65°C produced the best acidic characteristic beans for both 3 and 4 days fermented beans. The concentration of acetic acid and lactic acid were also low in the beans dried at 55/65°C. Sensory evaluation results showed that cocoa flavour was better in 4 day fermented beans compared to 3 day. Therefore, 4 days rotary fermentation followed with drying temperature of 55/65°C would be recommended.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

TEKNIK FERMENTASI DAN PENGGERINGAN BIJI KOKO SECARA 'ROTARY'

Oleh

ZAIBUNNISA ABDUL HAIYEE

Mac 2002

Pengerusi : Professor Madya Russly Abdul Rahman, Ph.D.
Fakulti : Sains Makanan dan Bioteknologi

Pengajian ini dijalankan menggunakan pengering 'rotary' yang telah diubahsuai yang mempunyai kapasiti pengeringan sebanyak 9 ton biji koko basah. Biji koko difermentasi didalam pengering 'rotary' (4 hari, pembalikan selepas 48 jam selama 5 minit pada 0.5 rpm). Sampel diambil setiap hari dan dikeringkan dibawah cahaya matahari. Kualiti biji koko diawasi setiap hari dan dibandingkan dengan biji koko difermentasi secara komersial di Indonesia (4 hari, pembalikan setiap hari) dan fermentasi kotak cetek (6 hari, pembalikan selepas 48 jam). Hasil yang diperolehi dari kaedah uji belah, indeks fermentasi dan pangasingan warna membuktikan fermentasi mekanikal berlaku secara beerti (p<0.05) lebih cepat
didalam pengeriting 'rotary'. Perubahan suhu dan warna biji semasa fermentasi juga lebih cepat bagi fermentasi mekanikal. Tahap keasidan biji koko difermentasi secara mekanikal adalah sama dengan fermentasi komersial tetapi fermentasi kotak cetek menghasilkan biji koko secara bererti (p<0.05) lebih berasid. Kepekatan asid acetic secara bererti (p<0.05) lebih rendah di biji koko fermentasi mekanikal tetapi kepekatan asid laktic secara bererti (p<0.05) lebih rendah dibiji koko kotak cetek. Ini membuktikan bahawa kepekatan asid acetik amat mempengaruhi keasidan biji koko. Jumlah polifenol yang memberi rasa pahit dan kelat secara bererti (p<0.05) lebih rendah pada biji koko yang difermentasi secara mekanikal. Data yang diperolehi dari penilaian deria menunjukkan perisa biji koko secara bererti (p<0.05) lebih baik jika defermentasi secara mekanikal.

Biji koko yang telah difermentasi secara mekanikal dikeringkan didalam pengeriring ‘rotary’ yang sama. Kesan masa fermentasi dan suhu pengeriringan terhadap mutu biji koko juga dikaji. Mutu biji koko kering yang diperolehi dibandingkan dengan pengeriting kawalan; cahaya matahari (5-7 hari, 8 jam/hari, pembalikan 2 kali/hari) dan pengeriting “bed” komersial (31 jam, pembalikan setiap 4 jam). Biji koko yang difermentasi selama 3 atau 4 hari dikeringkan pada suhu awal 45,55 atau 65°C sehingga kandungan air mencecah 20-25%, diikuti dengan pengeritingan akhir suhu 65°C sehingga kandungan air mencecah 7.5%. Pengeritingan diberhentikan pada malam hari (phaasa rehat). Kelajuan angin panas 5.2 m/s dan kelajuan putaran 0.5 rpm dikekalkan sepanjang pengeritingan. Secara umumnya, mutu biji koko fermentasi-penggeringan mekanikal adalah secara bererti (p<0.05) lebih baik dari pengerining ‘bed’ komersial. Tetapi mutu biji koko yang dikeringkan dibawah cahaya matahari adalah secara bererti (p<0.05) lebih baik dari biji koko
fermentasi-pengeringan mekanikal. Kadar pengeringan meningkat dengan suhu pengeringan. Kadar pengeringan paling cepat dengan suhu 65°C, diikuti dengan 55/65°C dan 45/65°C. Jumlah polifenol dalam biji koko yang defermentasi selama 4 hari secara bererti (p<0.05) lebih rendah dari fermentasi 3 hari. Jumlah polifenol juga lebih rendah di biji koko yang dikeringkan dibawah cahaya matahari, diikuti dengan suhu pengeringan 45/65, 55/65 dan 65°C. Kasidan biji koko yang dikeringkan dibawah cahaya matahari adalah secara bererti (p<0.05) lebih rendah dari pengering yang lain. Suhu pengering 'rotary' 55/65°C secara bererti (p<0.05) menghasilkan biji koko berasid rendah bagi kedua-dua 3 dan 4 hari fermentasi. Penilaian deria menunjukkan biji koko yang difermentasi selama 4 hari mempunyai perasa koko yang secara bererti (p<0.05) lebih baik dari 3 hari fermentasi sahaja. Fermentasi selama 4 hari diikuti dengan suhu pengeringan 55/65°C adalah disarankan.
ACKNOWLEDGEMENTS

All praise is for Allah s.w.t who made my university education in UPM possible. I would like to take this opportunity to express my appreciation and gratitude to the chairman of my supervisory committee, Assoc. Prof. Dr. Russly Abdul Rahman for his guidance throughout the project. I also would like to express my heartfelt appreciation to Prof. Dr. Jinap Selamat for her continuous support and encouragement, endless patience and valuable time despite her own busy schedule. I am also grateful to Assoc. Prof. Dr. Jamilah Bakar for her constructive comments towards the project and preparation of this thesis.

I would also like to extent my sincere gratitude to IRPA fund for their financial support. Acknowledgement also goes to Ir. Teguh Wahyudi and his staff from the Indonesian Coffee and Cocoa Research Institute for their knowledge, experience and guidance throughout my tenure in Indonesia. Special thanks go to Kotta Blater Plantation staff for allowing me to conduct commercial scale experiments there. I am also indebted to the entire laboratory staff who aided me with the project. Many thanks also go to my fellow graduate students, friends and housemates for their concern and moral support to complete my graduate study.

Last but not least, I also wish to express my deepest appreciation to my husband, parents, brothers and sister for their endless love, care and support.
I certify that an Examination Committee met on 19th March 2002 to conduct the final examination of Zaibunnisa Abdul Haiyee on her Master of Science thesis entitled "Development of Fermentation and Drying of Cocoa Beans Using a Rotary Fermentor-Drier" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Dzulkifly Mat Hashim.
Department of Food Technology,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia.
(Chairman)

Russly Abdul Rahman, Ph.D.
Associate Professor,
Department of Food Technology,
Faculty of Food Science and Biotechnology
Universiti Putra Malaysia.
(Member)

Jinap Selamat, Ph.D.
Professor,
Department of Food Science,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia.
(Member)

Jamilah Bakar, Ph.D.
Associate Professor,
Department of Food Technology,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia.
(Member)

[Signature]

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor / Deputy Dean,
School of Graduate Studies,
Universiti Putra Malaysia

Date: 5 APR 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies,
Universiti Putra Malaysia

Date:
I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name: ZAIBUNNISA BINTI ABDUL HAIYEE

Date: 1 April 2002
TABLE OF CONTENTS

DEDICATION .. ii
ABSTRACT .. iii
ABSTRAK .. vi
ACKNOWLEDGEMENTS ix
APPROVAL SHEETS xii
DECLARATION FORM xiv
LIST OF TABLES xvii
LIST OF FIGURES xix
LIST OF PLATES xxi
LIST OF ABBREVIATIONS xxi

CHAPTER

1 GENERAL INTRODUCTION .. 1

2 LITERATURE REVIEW .. 6
Changes in Cocoa Beans During Fermentation 6
 Physical Characteristics 6
 Temperature ... 7
 pH .. 9
 Volatile and Non-Volatile Fatty acid 11
Factors which Affect Fermentation 17
 Duration ... 17
 Batch Size and Depth of Beans 18
 Aeration ... 19
Current Methods of Fermentation 22
 Box Fermentation 22
 Heap Fermentation 22
 Basket Fermentation 23
 Fermentation on Drying Platforms 23
Changes in Cocoa Beans during Drying 24
 Physical Characteristics 24
 Bean Moisture Content 25
 Acidic Characteristics 27
 Polyphenols ... 30
Factors which Affect drying 33
 Temperature .. 33
 Airflow Rate .. 34
Current Methods of Drying 36
 Sun Drying .. 36
 Rotary Drier ... 37
 Secador Tubular, Tunnel and Semawar Drier 37
Contribution of Organic Acids and Polyphenols to Chocolate
 Flavour .. 39

3 GENERAL MATERIALS AND METHODS 43
Samples for Fermentation 43
 Fermentation .. 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Fermentation</td>
<td>43</td>
</tr>
<tr>
<td>Commercial Fermentation</td>
<td>45</td>
</tr>
<tr>
<td>Shallow Box Fermentation</td>
<td>45</td>
</tr>
<tr>
<td>Drying</td>
<td>46</td>
</tr>
<tr>
<td>Rotary Drying</td>
<td>46</td>
</tr>
<tr>
<td>Sun Drying</td>
<td>47</td>
</tr>
<tr>
<td>Commercial Drying</td>
<td>48</td>
</tr>
<tr>
<td>Physical and Chemical Analysis</td>
<td>48</td>
</tr>
<tr>
<td>Temperature</td>
<td>49</td>
</tr>
<tr>
<td>Bean Moisture Content</td>
<td>49</td>
</tr>
<tr>
<td>pH and Titratable Acidity</td>
<td>49</td>
</tr>
<tr>
<td>Volatile Fatty Acids</td>
<td>50</td>
</tr>
<tr>
<td>Non-Volatile Fatty Acids</td>
<td>52</td>
</tr>
<tr>
<td>Cut Test</td>
<td>54</td>
</tr>
<tr>
<td>Fermentation Index</td>
<td>54</td>
</tr>
<tr>
<td>Colour Fractionation</td>
<td>55</td>
</tr>
<tr>
<td>Total Polyphenol</td>
<td>56</td>
</tr>
<tr>
<td>Sensory Evaluation</td>
<td>57</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>58</td>
</tr>
</tbody>
</table>

4 QUALITY OF MECHANICALLY FERMENTED COCOA BEANS IN COMPARISON WITH OTHER FERMENTATION METHODS

Introduction 59
Materials and Methods 61
Samples for Fermentation 61
Fermentation 61
Preparation of Sample for Analysis 61
Physical and Chemical Analysis 62
Sensory Evaluation 62
Statistical Analysis 62
Results and Discussions 63
Physical Characteristics 63
Temperature 63
Cut Test 67
Fermentation Index 69
Colour Fractionation 71
Total Polyphenol 79
pH 82
Titratable Acidity 85
Volatile Fatty Acids 87
Non-Volatile Fatty Acids 89
Sensory Evaluation 95
Conclusions 98

5 EFFECT OF FERMENTATION TIME AND DRYING TEMPERATURE ON THE QUALITY OF COCOA BEANS

Introduction 99

Materials and Methods
- Fermentation ... 101
- Drying ... 101
- Preparation of Sample for Analysis 101
- Physical and Chemical Analysis 101
- Sensory Evaluation .. 102
- Statistical Analysis 102

Results and Discussions
- Moisture Content .. 103
- Cut Test .. 103
- Fermentation Index 107
- Colour Fractionation 107
- Total Polyphenol ... 109
- pH and Titratable Acidity 111
- Volatile Fatty Acids 114
- Non-Volatile Fatty Acids 117
- Sensory Evaluation 119

Conclusions .. 124

CONCLUSIONS AND RECOMMENDATIONS

BIBLIOGRAPHY .. 127

APPENDICES .. 137

VITA .. 151
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fermentation Index, cut test, pH, titratable acidity, acetic and lactic acid content from different countries of origin</td>
</tr>
<tr>
<td>2</td>
<td>Some chemical characteristics of the volatile fatty acids in cocoa beans</td>
</tr>
<tr>
<td>3</td>
<td>Sample drying regimes: resting time, initial and final drying temperature and time.</td>
</tr>
<tr>
<td>4</td>
<td>Fractions and its corresponding wavelength and solvent used as blank</td>
</tr>
<tr>
<td>5</td>
<td>Effect of mechanical, commercial and shallow box fermentation on dried cocoa beans surface colour and cut test score.</td>
</tr>
<tr>
<td>6</td>
<td>Effect of mechanical, commercial and shallow box fermentation on the development of volatile fatty acids.</td>
</tr>
<tr>
<td>7</td>
<td>Effect of mechanical, commercial and shallow box fermentation on the development of non-volatile fatty acids.</td>
</tr>
<tr>
<td>8</td>
<td>Effect of fermentation time and drying temperature on bean surface colour and cut test score</td>
</tr>
<tr>
<td>9</td>
<td>Effect of fermentation time and drying temperature on colour fractions absorbance value, fermentation index and total polyphenol</td>
</tr>
<tr>
<td>10</td>
<td>Effect of fermentation time and drying temperature on the development of volatile fatty acids</td>
</tr>
<tr>
<td>11</td>
<td>Effect of fermentation time and drying temperature of fermentor drier on the development of non-volatile fatty acids</td>
</tr>
<tr>
<td>12</td>
<td>Effect of fermentation methods on colour fractions absorbance value and fermentation index</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demonstration of conditions during cocoa fermentation in different layers in deep boxes and shallow boxes. (a) after 3 days of fermentation, (b) after 5-6 days of fermentation.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Simplified model of pH changes in the seeds during fermentation</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Rate of drying curve for cocoa beans</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Oxidation of polyphenols by polyphenol oxidase</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Condensation and polymerization reaction of o-quinone and amino acids</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Schematic diagram of the rotary fermentor drier</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>Flowchart of temperature and duration of commercial bed drying</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Variation in the development of temperature during mechanical, commercial and shallow box fermentation.</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>Effect of mechanical, commercial and shallow box fermentation on fermentation index</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>Effect of (a) mechanical, (b) commercial and (c) shallow box fermentation on the spectrum of fraction 1 (purple pigment anthocyanin).</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Effect of (a) mechanical, (b) commercial and (c) shallow box fermentation on the spectrum of fraction 2 (red polymers).</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>Effect of (a) mechanical, (c) commercial and (c) shallow box fermentation on the spectrum of fraction 3 (brown polymers).</td>
<td>76</td>
</tr>
<tr>
<td>13</td>
<td>Effect of fermentation methods on colour fraction absorbance value</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>Fraction I / Fraction III ratio of mechanical, commercial and shallow box fermentation</td>
<td>78</td>
</tr>
<tr>
<td>15</td>
<td>Changes in the percentage of total polyphenol during mechanical, commercial and shallow box fermentation</td>
<td>81</td>
</tr>
</tbody>
</table>
16 Effect of mechanical, commercial and shallow box fermentation on the development of pH of wet beans (a) and sun dried beans (b).

17 Effect of mechanical, commercial and shallow box fermentation on the development of titratable acidity of wet beans (a) and sun dried beans (b).

18 Flavour intensity of the cocoa liquor from mechanical, commercial and shallow box fermentation relative to cocoa liquor from Ghana (reference).

19 Changes in mechanically fermented beans moisture content during rotary drying

20 Effect of fermentation time and drying temperature on pH and titratable acidity

21 Effect of fermentation time and drying temperature on flavour intensity of cocoa liquor relative to Ghanian cocoa liquor

22 Questionnaire to test panelist interest for sensory evaluation

23 Sensory evaluation form used to screen panelist for training.

24 Sensory handout used to train panelist

25 Sensory evaluation form used by panelist to indicate the difference between the sample and reference.

26 Diagram of the rotary drier

27 Lateral view of rotary mechanical fermentor drier

28 Labourer filling the rotary fermentor drier with wet cocoa beans through the top opening.

29 Fermented and dried cocoa beans being collected through the bottom opening of rotary fermentor drier.
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Changes in bean colour during (a) mechanical, commercial (b) and (c) shallow box fermentation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CTS</td>
<td>cut test score</td>
</tr>
<tr>
<td>C3</td>
<td>carbon 3</td>
</tr>
<tr>
<td>C5</td>
<td>carbon 5</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CF</td>
<td>commercial fermentation</td>
</tr>
<tr>
<td>FRI</td>
<td>fraction 1</td>
</tr>
<tr>
<td>FRII</td>
<td>fraction 2</td>
</tr>
<tr>
<td>FRIII</td>
<td>fraction 3</td>
</tr>
<tr>
<td>kg</td>
<td>kilogramme</td>
</tr>
<tr>
<td>m/s</td>
<td>meter per second</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>Meq</td>
<td>milliequivalent</td>
</tr>
<tr>
<td>MF</td>
<td>mechanical fermentation</td>
</tr>
<tr>
<td>N</td>
<td>normality</td>
</tr>
<tr>
<td>NVFA</td>
<td>non-volatile fatty acid</td>
</tr>
<tr>
<td>PPO</td>
<td>polyphenol oxidase</td>
</tr>
<tr>
<td>rpm</td>
<td>revolution per minute</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SF</td>
<td>shallow box fermentation</td>
</tr>
<tr>
<td>VFA</td>
<td>volatile fatty acid</td>
</tr>
</tbody>
</table>
w/w/w weight/weight/weight
% percentage
\(\alpha \) alpha
\(\beta \) beta
\(\mu \) micro
CHAPTER I

GENERAL INTRODUCTION

Proper curing procedures namely fermentation and drying process are essential to ensure the production of good quality cocoa beans. Good fermentation and drying practices will produce cocoa beans, which have low acidity, bitterness and astringency, strong cocoa flavour and a typical brown colour (Lehrian and Patterson, 1983).

Most of the world's cocoa is fermented in boxes, heaps, in baskets and on drying platforms (Lopez and Dimick, 1995; Lehrian and Patterson, 1983). Box fermentation that requires a relatively large fixed volume of cocoa is the method of choice on large estates. The boxes vary considerably in size, the dimensions of the smallest is 0.4 x 0.4 x 0.5 m and the largest is 7 x 5 x 1 m (Lopez and Dimick, 1995). The beans are turned or mixed manually during fermentation from one box to another with varying frequency from every 12 to 48 hr (Hidayatullah et al., 1998). The minimum quantity of cocoa which can be properly fermented under natural conditions vary from 35 kg (Lehrian, 1989) to 450 kg (Shahrir et al., 1978). Traditionally, the Criollo type of cocoa is fermented for 2 to 3 days while Forastero type is generally fermented for 5 to 7 days worldwide (Lehrian and Patterson, 1983; Wood and Lass, 1985; Biehl, 1995). Fermentation process is crucial to remove mucilage of the pulp, to provoke aeration of the seeds and to facilitate drying, to prevent germination of the seeds and to produce flavour precursors (Lopez and Dimick, 1995; Lehrian and Patterson, 1983). Cocoa beans fermentation is
influenced by many factors such as type of cocoa, disease, climatic and seasonal differences (Rohan, 1963), duration, aeration and death of the beans (Lehrian and Patterson, 1983), storage of pods (Lehrian and Patterson, 1983) and also batch size and turning (Lehrian and Patterson, 1983; Mamot and Sammarakhody, 1984).

Following fermentation, the beans are sun or artificially dried until bean moisture content reached about 7.0-7.5% (Lehrian, 1983; McDonald and Freire, 1981). Sun drying is the most preferred drying method for smallholders because it is cheap and simple. This method cannot be practiced by estates and medium scale processors because of the length of time involved, labour requirement and uncertain weather conditions (Jinap et al., 1994). Current available artificial dryers are circular / uni, semawar, samoa, martin, secador tubular, infrared, tunnel, platform, rotary, solar (McDonald et al., 1981) and tray dryer (Lopez and Dimick, 1995). The beans are turned frequently, either mechanically or manually during drying to ensure even drying and to avoid bean clumping. The duration of drying process is from 36 to 96 hours depending on the equipment and drying methods used (Hidayatullah et al., 1998). Sun drying needs longer period, 4 to 7 days in good weather conditions. Quality of dried cocoa beans depends on the temperature, rate of airflow and the depth of the beans (Puziah et al., 1998).

Chocolate manufacturers prefer cocoa beans with a good level of basic cocoa flavour, no excess of acidity and astringency and absence of any off-flavour (Clapperton, 1993; Clapperton et al. 1994). Therefore, by determining the acidic characteristics, polyphenol content, fermentation level and also by sensory evaluation, the quality of the resultant beans can be predicted.
pH and titratable acidity of fermented and dried cocoa beans are in the range of 4.70 - 5.74 and 0.109 - 0.198, respectively (Jinap and Dimick, 1990). The volatile acids present in cocoa beans are acetic, propionic, butyric, isobutyric and isovaleric acid (Jinap, 1994). Rohan and Stewart (1964) found that the total volatile acids in cocoa beans from 8 different geographic origins ranged from 0.33 to 1.14 g/100g. However, Jinap and Dimick (1990) reported that the total volatile acids in 39 samples of cocoa beans ranged from 0.43 to 0.82 g/100g. The non-volatile acids include oxalic, citric, tartaric, malic and succinic (Jinap, 1994). Rohan and Steward (1964) showed that the total non-volatile acids ranged from 1.04 to 5.25 g/100g. However, Jinap and Dimick (1990) found the total non-volatile acids in fermented and dried beans ranged from 1.09-1.83 g/100g. Flavour quality of Malaysian beans was recognized as low, reveals a strong acidic and insipid aroma (Dougan and Carr, 1977). The presence of acetic and lactic acid, either alone or in combination, has been implicated as the most likely cause of the high acidity (Rohan and Stewart, 1964; Biehl, 1965; Lopez, 1983; Chong et al., 1980; Liau, 1980, Jinap and Dimick, 1990).

The decrease in bitterness and astringency during fermentation and drying is probably due to loss of polyphenols through condensation and polymerization reactions (Jinap, 1995). Unfermented cocoa beans contain 12-18% polyphenol (Kim and Keeney, 1984); the value decreases to about 5.27 % after fermentation (Misnawi et al., 2000). Polyphenol, anthocyanin, 3-α-D-galactosidly and 3-β-L-arabinosidlycyanidin is responsible for the purple colour of fresh Forestero cocoa beans (Forsyth and Quesnel, 1957). Anthocyanin does not directly contribute to flavour. However, reports indicated that there is an inverse relationship between