UNIVERSITI PUTRA MALAYSIA

CHARACTERISATION OF PLANT DERIVED DAMNACANTHAL AND NORDAMNACANTHAL INDUCED CYTOTOXICITY ON HUMAN HT29 COLON ADENOCARCINOMA CELL LINE

KHOR TIN OO

FSMB 2001 36
CHARACTERISATION OF PLANT DERIVED DAMNACANTHAL AND NORDAMNACANTHAL INDUCED CYTOTOXICITY ON HUMAN HT29 COLON ADENOCARCINOMA CELL LINE

By

KHOR TIN OO

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Food Science and Biotechnology
Universiti Putra Malaysia

January 2001
DEDICATION

Dedicated to my beloved choon, my parents & young sister
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

CHARACTERISATION OF PLANT DERIVED DAMNACANTHAL AND NORDAMNACANTHAL INDUCED CYTOTOXICITY ON HUMAN HT29 COLON ADENOCARCINOMA CELL LINE

By

KHOR TIN OO

January 2001

Chairman: Associate Professor Abdul Manaf Ali, Ph.D.

Faculty: Food Science and Biotechnology

Nordamnacanthal and damnacanthal are two anthraquinones isolated from the roots of Morinda elliptica. They were found to exhibit cytotoxic activity against HT29 human colon adenocarcinoma cells. The cytotoxic concentrations of damnacanthal and nordamnacanthal that inhibited 50% growth (IC50) of HT29 were 17 \( \mu \text{g/ml} \) and 7 \( \mu \text{g/ml} \) respectively. For the comparative purposes, the IC50s of several cytotoxic drugs against HT29 were also determined. The inhibition effect of nordamnacanthal was found to be comparable to etoposide (IC50 = 7 \( \mu \text{g/ml} \)), cisplatin (IC50 = 5 \( \mu \text{g/ml} \)) and doxorubicin (IC50 = 6 \( \mu \text{g/ml} \)). The compound was found to be less active than methotrexate (MTX) (IC50 < 0.05 \( \mu \text{g/ml} \)) and leunase (IC50 = 2 \( \mu \text{g/ml} \)). On the other hand, the cytotoxic effect of damnacanthal was less active as compared to all cytotoxic drugs. However both compounds were found to be less toxic against non-cancerous fibroblast 3T3 cells with the IC50s of 30 \( \mu \text{g/ml} \) (damnacanthal) and 21 \( \mu \text{g/ml} \) (nordamnacanthal) respectively. Furthermore, damnacanthal and nordamnacanthal were found to induce apoptosis on HT29 cells at their IC50 concentration as
demonstrated by conventional agarose gel electrophoresis and also morphological alterations. DNA laddering was obtained after 12 hours of treatment by both compounds in a dose-independent but time-dependent fashion. Both compounds also caused cell death with apoptotic features such as cell shrinkage, membrane blebbing, nuclear fragmentation, and the presence of apoptotic bodies. In addition, caspase-3 was found to be activated during the execution of apoptosis induced by these compounds. This caspase activation was inhibited by a peptide based general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (0Me) fluoromethylketone (Z-VAD-FMK).

In conclusion, this study demonstrates the potential antitumor activities of damnacanthal and nordamnacanthal.
PENCIRIAN SITOTOKSIKSITI YANG DIARAHKAN OLEH DAMNACANTHAL DAN NORDAMNACANTHAL DARI TUMBUHAN KE ATAS JUJUKAN SEL ADENOKARSINOMA USUS MANUSIA, HT29

Oleh

KHOR TIN OO

Januari 2001

Pengerusi: Profesor Madya Abdul Manaf Ali, Ph.D.

Fakulti : Sains Makanan dan Bioteknologi

Nordamnacanthal dan damnacanthal merupakan dua jenis antrakuinon yang diasingkan daripada akar Morinda elliptica. Mereka didapati menunjukkan aktiviti sitotoksik ke atas jujukan sel adenokarsinoma kolon manusia, HT29. Kepekatan sitotoksik damnacanthal dan nordamnacanthal yang dapat merencat pertumbuhan sel HT29 sebanyak 50% (IC$_{50}$), adalah masing-masingnya 17 µg/ml dan 7 µg/ml. Untuk tujuan perbandingan, IC$_{50}$ bagi beberapa jenis dadah sitotoksik ke atas HT29 juga ditentukan. Kesan perencatan nordamnacanthal didapati agak setara dibandingkan dengan etoposid (IC$_{50}$ = 7 µg/ml), sisplatin (IC$_{50}$ = 5 µg/ml) dan doksorubisin (IC$_{50}$ = 6 µg/ml). Sebatian tersebut didapati kurang aktif berbanding dengan methotrexate (MTX) (IC$_{50}$ < 0.05 µg/ml) dan leunase (IC$_{50}$ = 2 µg/ml). Sebaliknya, kesan sitotoksik damnacanthal adalah kurang aktif berbanding dengan kesemua dadah sitotoksik. Walau bagaimanapun, kedua-dua sebatian itu didapati kurang aktif ke atas jujukan sel fibroblas bukan-kanser, 3T3 dengan IC$_{50}$ 30 µg/ml (damnacanthal) dan 21 µg/ml

Sebagai kesimpulan, hasil pengajian ini menunjukkan potensi antikanser damnacanthal dan nordamnacanthal.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks and appreciation to my supervisor, Prof. Madya. Dr. Abdul Manaf Ali for his invaluable advice, suggestion, and guidance throughout this challenging research. His encouragement and patient enlightened me during my difficulties.

I would like to extend my thanks to my co-supervisor Dr. Salmaan Hussain for his support and valuable discussion in making this research a success.

Not to be forgotten to express my heartiest gratitude to other members of my supervisory committee, Prof. Dr. Nordin and Dr. Norhadi for their guidance as well as providing me the compounds and Dr. Yazid for his kindness to help when I need it most. Special thanks to Dr. Khatijah for her generosity to allow me to use the equipment in her laboratory.

My sincere thanks is also extended to the Faculty of Food Science and Biotechnology, Universiti Putra Malaysia and also Malaysian Government for the financial support provided through PASCA and IRPA fund for this research.
I am also very grateful to all my friends at Animal Tissue Culture Laboratory especially to Shar, Nasir, Tony, Lim, Yih-Yih, Boon Keat, Ai Wah, Chan Leong, Kah Jin, Kak Siti, Shuhaimi, Bazli, Ernie and Ishak.

To all the "teachers" in my life, thank you for willing to share with me your knowledge. Learning from you all is one of the most beautiful things in my life.

To my beloved choon, my parents and my young sister, thank you for being understanding and supportive during my entire research life in UPM.
I certify that an Examination Committee met on 12th January 2001 to conduct the final examination of Khor Tin Oo on his Master of Science thesis entitled "Characterisation of Plant Derived Dammacanthal and Nordammacanthal Induced Cytotoxicity on Human HT29 Colon Adenocarcinoma Cell Line" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHD. ISMAIL ABDUL KARIM, Ph.D.
Professor
Department of Biotechnology,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Chairman)

ABDUL MANAF ALI, Ph.D.
Associate Professor
Department of Biotechnology,
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

NORDIN H. ALAJIS, Ph.D.
Professor
Department of Chemistry,
Faculty of Science and Environmental Studies,
Universiti Putra Malaysia
(Member)

SALMAAN H. INAYAT-HUSSAIN, Ph.D.
Department of Biomedical Sciences,
Faculty of Allied Health Science,
Universiti Kebangsaan Malaysia
(Member)

MOHD. YAZID ABDUL MANAP, Ph.D.
Department of Food Technology
Faculty of Food Science and Biotechnology,
Universiti Putra Malaysia
(Member)

NOR HADIANI ISMAIL, Ph.D.
Department of Chemistry
Faculty of Applied Sciences,
Universiti Institute Technology Mara
(Member)

MOHD. GHAZALI MOHYIDIN, Ph.D.
Professor
Deputy Dean of Graduate School
Universiti Putra Malaysia
Date: 27 FEB 2001
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

MOHD. HAZALI MOHAYIDIN, Ph.D.
Professor
Deputy Dean of Graduate School
Universiti Putra Malaysia
Date: 12 APR 2001
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name: Khor Tin Oo
Date: 27/2/2001
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

## CHAPTER

1  INTRODUCTION

2  LITERATURE REVIEW

   2.1 What is Cancer

      2.1.1 Classification of Tumors
      2.1.2 Characteristic Features of Tumor Cells

   2.2 Molecular Basis of Cancer

      2.2.1 Oncogenes
      2.2.2 Tumor Suppressor Genes

   2.3 Antineoplastic Agents

      2.3.1 Alkylating Agents
      2.3.2 Antimetabolites
      2.3.3 Natural Products
      2.3.4 Miscellaneous Agents

   2.4 Cell Death

      2.4.1 Morphology Alterations in Apoptosis
      2.4.2 Chromatin Degradation in Apoptosis
      2.4.3 Intracellular Signaling Pathways of Apoptosis

   2.5 Caspases

   2.6 Family Rubiaceae

      2.6.1 Genus *Morinda*
      2.6.2 *Morinda Elliptica*
      2.6.3 Anthraquinones
      2.6.4 Damnacanthal
      2.6.5 Nordamnacanthal |
3 METHODOLOGY
  3.1 Plant material
  3.2 Extraction of the compounds
  3.3 Cell Lines Maintenance
  3.4 Microtitration Cytotoxicity Assay
    3.4.1 MTT Assay
  3.5 Morphology Assessment
    3.5.1 Phase Contrast Microscopy
    3.5.2 Fluorescent Microscopy (AO/PI Staining)
    3.5.3 Electron Microscopy
  3.6 DNA fragmentation assay
  3.7 CaspACE™ Assay System, Colorimetric
    3.7.1 Assay Principle
    3.7.2 Assay for Caspase Activity in Cell Extracts
    3.7.3 Preparation of Cell Extracts
    3.7.4 Calculating Caspase Specific Activity
  3.8 Statistical design of experiments

4 RESULTS AND DISCUSSION
  4.1 MTT Assay
  4.2 Trypan Blue Exclusion Assay
  4.3 DNA Fragmentation Assay
  4.4 Morphological Assessment of Apoptosis
    4.4.1 Phase Contrast Microscopy
    4.4.2 Fluorescence Microscopy
    4.4.3 Electron Microscopy
  4.5 Determination of Caspase-3 Activity

5 CONCLUSION

BIBLIOGRAPHY

APPENDICES
  A1 MTT Assay for (a) Damnacanthal and (b) Nordamnacanthal At 72 Hours
  A2 MTT Assay for Various Standard Cytotoxic Compounds Against HT29 Cells
  A3 Cytotoxic Effect of Damnacanthal and Nordamnacanthal on Cell Viability
  A4 Cytotoxic Effect of Damnacanthal and Nordamnacanthal on HT29 Cell Proliferation
  A5 The percentage of apoptotic, secondary necrotic and necrotic cell in the population of A: nordamnacanthal -treated (7 µg/ml), B: damnacanthal-treated (17 µg/ml) and C: untreated HT29 cell at different time course.
A6 The percentage of apoptotic, secondary necrotic, necrotic and normal cell in the population of damnacanthal and nordamnacanthal treated HT29 cell. A8

A7 Caspase-3 Activity of Various samples with or without the caspase inhibitor Z-VAD-FMK A9

B1 pNA Calibration Curve A10

B2 BSA Standard Curve (Bradford Method) A11

VITA
**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Major differences between benign and malignant cells</td>
<td>2.2</td>
</tr>
<tr>
<td>2. Altered features reported for tumor cells</td>
<td>2.4</td>
</tr>
<tr>
<td>3. Selected oncogenes, their mode of activation, and associated human tumors</td>
<td>2.6</td>
</tr>
<tr>
<td>4. Tumor suppressor genes involved in human neoplasm</td>
<td>2.7</td>
</tr>
<tr>
<td>5. Optimal tetrapeptide sequence for some of the caspases</td>
<td>2.22</td>
</tr>
<tr>
<td>6. Three-fold dilution gradient</td>
<td>3.4</td>
</tr>
<tr>
<td>7. Preparation of blank, negative control, test samples and inhibited apoptosis samples</td>
<td>3.11</td>
</tr>
<tr>
<td>9. The inhibition concentration of 50% (IC₅₀) of various standard cytotoxic compounds against HT29 cell determined by using MTT assay</td>
<td>4.3</td>
</tr>
<tr>
<td>10. Suggested guidelines for distinguishing between non-specific Cytotoxicity and antineoplastic activity</td>
<td>4.6</td>
</tr>
</tbody>
</table>
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic diagram of morphological characteristics of necrosis and apoptosis</td>
<td>2.13</td>
</tr>
<tr>
<td>2.</td>
<td>Chemical structure of damnacanthal</td>
<td>2.27</td>
</tr>
<tr>
<td>3.</td>
<td>Chemical structure of nordamnacanthal</td>
<td>2.27</td>
</tr>
<tr>
<td>4.</td>
<td>MTT assay</td>
<td>4.2</td>
</tr>
<tr>
<td>5.</td>
<td>The cytotoxic effect of various standard cytotoxic compounds compare to damnacanthal and nordamnacanthal against HT29 cell</td>
<td>4.4</td>
</tr>
<tr>
<td>6.</td>
<td>The effect of damnacanthal and nordamnacanthal on (A) cell Viability and (B) total cell number compared with untreated cell.</td>
<td>4.9</td>
</tr>
<tr>
<td>7.</td>
<td>Effect of nordamnacanthal and damnacanthal on DNA fragmentation</td>
<td>4.11</td>
</tr>
<tr>
<td>8.</td>
<td>Phase-contrast microscopy examination of HT29 cells treated with damnacanthal and nordamnacanthal as compare to etoposide, doxorubicin and cisplatin</td>
<td>4.13</td>
</tr>
<tr>
<td>9.</td>
<td>Phase-contrast microscopy examination of HT29 cells treated with damnacanthal and nordamnacanthal at different exposure time</td>
<td>4.14</td>
</tr>
<tr>
<td>10.</td>
<td>Fluorescence microscopy examination of HT29 cell</td>
<td>4.17</td>
</tr>
<tr>
<td>11.</td>
<td>Fluorescence microscopy examination of HT29 cells treated with nordamnacanthal</td>
<td>4.18</td>
</tr>
<tr>
<td>12.</td>
<td>Fluorescence microscopy examination of HT29 cells treated with damnacanthal</td>
<td>4.19</td>
</tr>
<tr>
<td>13.</td>
<td>Fluorescence microscopy examination of HT29 cells treated with 30µg/ml of nordamnacanthal and damnacanthal</td>
<td>4.20</td>
</tr>
<tr>
<td>14.</td>
<td>Fluorescence microscopy examination of untreated HT29 cells</td>
<td>4.21</td>
</tr>
</tbody>
</table>
15. The percentage of apoptotic, secondary apoptotic and necrotic cell in the population of A: nordamnacanthal-treated (7 µg/ml), B: damnacanthal-treated (17 µg/ml) and C: untreated HT29 cell at different time course

16. The percentage of apoptotic, secondary apoptotic, necrotic normal cell in the population of damnacanthal and nordamnacanthal treated HT29 cell

17. Scanning electron microscopy examination of HT29 cells

18. Scanning electron microscopy examination of damnacanthal and nordamnacanthal treated-HT29 cells at different exposure

19. Transmission electron microscopy examination of HT29 cells

20. Transmission electron microscopy examination of HT29 cells at the early and second stage of apoptosis

21. Transmission electron microscopy examination of HT29 cells at the third stage of apoptosis

22. Transmission electron microscopy examination of apoptotic bodies

23. Transmission electron microscopy examination of HT29 cells that undergone necrosis

24. Caspase-3 activity of various samples with or without the caspase inhibitor Z-VAD-FMK.
### LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC&lt;sub&gt;50&lt;/sub&gt;</td>
<td>Inhibition concentration at 50%</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>AO</td>
<td>acridine orange</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>OsO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>osmium tetroxide</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscope</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>MTX</td>
<td>methotrexate</td>
</tr>
<tr>
<td>Z-VAD-FMK</td>
<td>benzylxoycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone</td>
</tr>
<tr>
<td>pNA</td>
<td>p-nitroaniline</td>
</tr>
<tr>
<td>Ala</td>
<td>alanine</td>
</tr>
<tr>
<td>Val</td>
<td>valine</td>
</tr>
<tr>
<td>Asp</td>
<td>aspartic acid</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Throughout the history of civilization, several diseases have challenged human health. Leprosy was the most dreaded disease in ancient times. In Medieval and Renaissance Europe the scourge was the bubonic plague or Black Death. Then in the 19th century, a major killer often associated with extreme suffering was the White Death, or tuberculosis. With the advances achieved in the 20th century in microbiology and pharmacology, many of the infectious diseases that formerly killed a large population have been overcome. However, in this century cancer becomes an increasing problem in developing as well as developed countries. Statistics have shown that one person gets cancer every 30 seconds while a person dies of cancer every 50 seconds. Each year cancer affects at least nine million people worldwide and kills five million. In Malaysia, cancer is the fifth major cause of death in government hospitals and the estimated cancer incidence is about 150 per 100,000. Meanwhile, the estimated number of new cancer cases in Malaysia per year is around 27,000 (Malaysia's Health, 1996).

Chemotherapy is one of the four major approaches used by physicians to destroy cancer cells selectively. Others included surgery and radiotherapy for treatment of localized tumors and immunotherapy, which aim to increase patient's own resistance to the cancer (Joseph and Joan, 1988).
Since the first recorded clinical trial of a chemotherapeutic agent took place in 1942, the field of chemotherapy has grown tremendously. Nowadays, emphasis has been placed on chemotherapy as a form of treatment for cancer patients instead of the use of surgery or radiotherapy. The objective of chemotherapy is to treat diseases without seriously harming the patient by the use of chemicals. Several potential chemotherapeutic agents have been discovered serendipitously while others have been discovered through large-scale experimental screening. Tropical rain forests including the one in Malaysia stores a large chemical diversity. Some of these natural products can be isolated and may become chemotherapeutic agents. Out of 12,000 species of higher plants in Malaysia, more than 1000 species are said to have therapeutic properties and currently being used in the local traditional medicine system (Said, 1995). Goniothalamin, a secondary metabolites isolated from the leaves and roots of *Goniothalamus* spp. has been shown to possess a potent antitumor activity in DMBA induced rat mammary tumor and human breast cancer cell lines (Zauyah and Azimahtol, 1992). Study by Ali et al. in 1996 showed that the fruits of *Cerbera manghas* exhibited antitumor activity against HeLa cell line with cytotoxic dose at 50%, CD$_{50}$ value at 1 µg/ml. For the reason, recently a few private research institutions as well as local universities have started the program to prospect for drugs from plants.

Since there are more than 100 different types of cancer, screening for potential antitumor compounds is very important. For large scale antitumor drug screening, *in vivo* and *in vitro* models are used. Established human tumor cell lines are used in preliminary screening for potential antitumor drugs. This rational
The approach is fairly inexpensive, rapid and capable of demonstrating high sensitivity (Shier, 1991).

Once certain compounds have demonstrated cytotoxicity against tumors in tissue culture or in small animals, the study of their actual mechanism of action is also very important. Many closely related derivatives could be synthesized by knowing their mode of action. Some of these derivatives have been great improvements over the original compounds in treating many types of cancer.

The aim of this research is to evaluate further the cytotoxic potential of two anthraquinone compounds, nordamnacanthal and damnacanthal on human colon cancer cell line, HT 29.

The objectives of this study are:

i) to determine the cytotoxicity of damnacanthal and nordamnacanthal on human colon adenocarcinoma HT29 cells.

ii) to study the effects of damnacanthal and nordamnacanthal on HT29 cells in terms of proliferation, morphological changes and the mode of cell death induced by the compounds.

iii) To identify the mode of action of damnacanthal and nordamnacanthal.
2.1 What is Cancer?

Cancer or a malignant tumor is also called neoplasm in the scientific or medical term. Neoplasm, meaning a new growth results from an inheritable change in a cell (or cells) which allow them to escape from many of the normal homeostatic mechanisms that control proliferation. When any of the dividing cells undergo this type of changes they are said to be transformed. Transformation may be triggered in a number of ways, including exposure to chemicals, certain viruses, and radiation. The basis of transformation is probably a mutation (a change in the primary structure of DNA) but it is likely to be influenced by epigenetic events (shifts in gene expression) (Evans, 1991).

2.1.1 Classification of Tumors

Tumors are classified based on a number of criteria including their behavior, their appearances and their origin. Basically they are two types of tumors, benign and malignant which differ in their behavior. Table 1 shows the major differences between benign and malignant cells.
Table 1: Major differences between benign and malignant cells

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoplasm</td>
<td>Slight basophilia</td>
<td>Marked basophilia</td>
</tr>
<tr>
<td>Mitotic figures</td>
<td>Few and normal</td>
<td>Many and abnormal</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Predominantly normal</td>
<td>Pleomorphic</td>
</tr>
<tr>
<td>Nucleoli</td>
<td>Little altered</td>
<td>Often swollen</td>
</tr>
<tr>
<td>Tissue structure</td>
<td>Usually normal</td>
<td>Dyplastic/anaplastic</td>
</tr>
<tr>
<td>Functions</td>
<td>Usually normal</td>
<td>Lost or deranged</td>
</tr>
<tr>
<td>Capsule</td>
<td>Usually intact</td>
<td>Often lacking</td>
</tr>
<tr>
<td>Metastasis</td>
<td>Never</td>
<td>Often</td>
</tr>
<tr>
<td>Local invasion</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Fatalities</td>
<td>Rare</td>
<td>Common</td>
</tr>
</tbody>
</table>

(Evans, 1991)
2.1.2 Characteristic Features of Tumor Cells

A summary of some of the features possibly altered in tumor cells is provided in Table 2. Many of these changes reflect alterations in cell metabolism/behavior without any readily obvious direction of change. Therefore it is difficult to define any universal tumor cell characteristic.

2.2 Molecular Basis of Cancer

It has been realized for many years that cancer has a genetic component and at the level of the cell it can be said to be a genetic disease. The genetic injury may be acquired in somatic cells by environmental agents or inherited in the germ-line. The clonal progeny of single genetically damaged progenitor cell will develop as tumor. Recently, the involvement of specific genes has been demonstrated at the molecular level. These specific genes are usually the targets of genetic damage and can be classified into three classes as growth-promoting proto-oncogenes, the growth-inhibiting tumor suppressor genes, and genes that regulate apoptosis (Cotran et al., 1994).

2.2.1 Oncogenes

The term oncogenes are used to describe any gene sequence whose products are associated with neoplastic transformation. Many oncogenes causing human cancer are mutated versions of normal cellular genes that control growth